#+TITLE: Electrons #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org In conventional QMC simulations, up-spin and down-spin electrons are different. The ~electron~ data structure contains the number of up-spin and down-spin electrons, and the electron coordinates. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_ELECTRON_HPT #define QMCKL_ELECTRON_HPT #include #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "chbrclf.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_electron_private_func.h" #+end_src * Context The following data stored in the context: | ~uninitialized~ | int32_t | Keeps bit set for uninitialized data | | ~num~ | int64_t | Total number of electrons | | ~up_num~ | int64_t | Number of up-spin electrons | | ~down_num~ | int64_t | Number of down-spin electrons | | ~walk_num~ | int64_t | Number of walkers | | ~kappa_ee~ | double | The distance scaling factor | | ~kappa_en~ | double | The distance scaling factor | | ~provided~ | bool | If true, ~electron~ is valid | | ~coord_new~ | double[walk_num][3][num] | New set of electron coordinates | | ~coord_old~ | double[walk_num][3][num] | Old set of electron coordinates | | ~coord_new_date~ | uint64_t | Last modification date of the coordinates | | ~ee_distance~ | double[walk_num][num][num] | Electron-electron distances | | ~ee_distance_date~ | uint64_t | Last modification date of the electron-electron distances | | ~en_distance~ | double[walk_num][nucl_num][num] | Electron-nucleus distances | | ~en_distance_date~ | uint64_t | Last modification date of the electron-electron distances | | ~ee_distance_rescaled~ | double[walk_num][num][num] | Electron-electron distances | | ~ee_distance_rescaled_date~ | uint64_t | Last modification date of the electron-electron distances | | ~en_distance_rescaled~ | double[walk_num][nucl_num][num] | Electron-nucleus distances | | ~en_distance_rescaled_date~ | uint64_t | Last modification date of the electron-electron distances | ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_electron_struct { int64_t num; int64_t up_num; int64_t down_num; int64_t walk_num; double kappa_ee; double kappa_en; int64_t coord_new_date; int64_t ee_distance_date; int64_t en_distance_date; int64_t ee_distance_rescaled_date; int64_t en_distance_rescaled_date; double* coord_new; double* coord_old; double* ee_distance; double* en_distance; double* ee_distance_rescaled; double* en_distance_rescaled; int32_t uninitialized; bool provided; } qmckl_electron_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not bee called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. When all the data relative to electrons have been set, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_electron_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_electron_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->electron.provided; } #+end_src ** Access functions Access functions return ~QMCKL_SUCCESS~ when the data has been successfully retrieved. It returnes ~QMCKL_INVALID_CONTEXT~ when the context is not a valid context, and ~QMCKL_NOT_PROVIDED~ when the data has not been provided. If the function returns successfully, the variable pointed by the pointer given in argument contains the requested data. Otherwise, this variable is untouched. #+NAME:post #+begin_src c :exports none if ( (ctx->electron.uninitialized & mask) != 0) { return NULL; } #+end_src *** Number of electrons #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num); qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num); qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_num", "num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.num > (int64_t) 0); ,*num = ctx->electron.num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (up_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_up_num", "up_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.up_num > (int64_t) 0); ,*up_num = ctx->electron.up_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (down_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_down_num", "down_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.down_num >= (int64_t) 0); ,*down_num = ctx->electron.down_num; return QMCKL_SUCCESS; } #+end_src *** Number of walkers A walker is a set of electron coordinates that are arguments of the wave function. ~walk_num~ is the number of walkers. #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_walk_num", "walk_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.walk_num > (int64_t) 0); ,*walk_num = ctx->electron.walk_num; return QMCKL_SUCCESS; } #+end_src *** Scaling factors Kappa #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_kappa_ee (const qmckl_context context, double* const kappa_ee); qmckl_exit_code qmckl_get_kappa_en (const qmckl_context context, double* const kappa_en); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_kappa_ee (const qmckl_context context, double* const kappa_ee) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (kappa_ee == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_kappa_ee", "kappa_ee is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } // TODO: assert (ctx->electron.kappa_ee > (double) 0); ,*kappa_ee = ctx->electron.kappa_ee; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_kappa_en (const qmckl_context context, double* const kappa_en) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (kappa_en == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_kappa_en", "kappa_en is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } // TODO: assert (ctx->electron.kappa_en > (double) 0); ,*kappa_en = ctx->electron.kappa_en; return QMCKL_SUCCESS; } #+end_src *** Electron coordinates Returns the current electron coordinates. The pointer is assumed to point on a memory block of size ~3 * elec_num * walk_num~. The order of the indices is: | | Normal | Transposed | |---------+---------------------------+---------------------------| | C | ~[walk_num][elec_num][3]~ | ~[walk_num][3][elec_num]~ | | Fortran | ~(3,elec_num,walk_num)~ | ~(elec_num,3,walk_num)~ | #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_coord", "transp should be 'N' or 'T'"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_electron_coord", "coord is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if ( !(ctx->electron.provided) ) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_electron_coord", "electron data is not provided"); } int64_t elec_num = ctx->electron.num; int64_t walk_num = ctx->electron.walk_num; assert (ctx->electron.coord_new != NULL); double* ptr1 = ctx->electron.coord_new; double* ptr2 = coord; if (transp == 'N') { for (int64_t i=0 ; ielectron.uninitialized &= ~mask; ctx->electron.provided = (ctx->electron.uninitialized == 0); if (ctx->electron.provided) { if (ctx->electron.coord_new != NULL) { qmckl_free(context, ctx->electron.coord_new); ctx->electron.coord_new = NULL; } if (ctx->electron.coord_old != NULL) { qmckl_free(context, ctx->electron.coord_old); ctx->electron.coord_old = NULL; } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.walk_num * 3 * sizeof(double); double* coord_new = (double*) qmckl_malloc(context, mem_info); if (coord_new == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_electron_num", NULL); } ctx->electron.coord_new = coord_new; double* coord_old = (double*) qmckl_malloc(context, mem_info); if (coord_old == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_electron_num", NULL); } ctx->electron.coord_old = coord_old; } return QMCKL_SUCCESS; #+end_src To set the number of electrons, we give the number of up-spin and down-spin electrons to the context and we set the number of walkers. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_num(qmckl_context context, const int64_t up_num, const int64_t down_num) { <> if (up_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_num", "up_num <= 0"); } if (down_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_num", "down_num <= 0"); } int32_t mask = 1 << 0; ctx->electron.up_num = up_num; ctx->electron.down_num = down_num; ctx->electron.num = up_num + down_num; <> } #+end_src The following function sets the number of walkers. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_walk_num(qmckl_context context, const int64_t walk_num) { <> if (walk_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_walk_num", "walk_num <= 0"); } int32_t mask = 1 << 1; ctx->electron.walk_num = walk_num; <> } #+end_src Next we set the rescale parameter for the rescaled distance metric. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_kappa(qmckl_context context, const double kappa_ee, const double kappa_en) { <> // TODO: Check for 0 values //if (kappa_ee != 0) { // return qmckl_failwith( context, // QMCKL_INVALID_ARG_2, // "qmckl_set_kappa", // "kappa_ee == 0"); //} //if (kappa_en <= 0) { // return qmckl_failwith( context, // QMCKL_INVALID_ARG_3, // "qmckl_set_kappa", // "kappa_en == 0"); //} int32_t mask = 1 << 2; ctx->electron.kappa_ee = kappa_ee; ctx->electron.kappa_en = kappa_en; <> } #+end_src The following function sets the electron coordinates of all the walkers. When this is done, the pointers to the old and new sets of coordinates are swapped, and the new coordinates are overwritten. This can be done only when the data relative to electrons have been set. Important: changing the electron coordinates increments the date in the context. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_coord(qmckl_context context, const char transp, const double* coord) { <> if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_coord", "transp should be 'N' or 'T'"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_coord", "coord is a null pointer"); } int64_t elec_num; qmckl_exit_code rc; rc = qmckl_get_electron_num(context, &elec_num); if (rc != QMCKL_SUCCESS) return rc; if (elec_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_electron_coord", "elec_num is not set"); } int64_t walk_num; rc = qmckl_get_electron_walk_num(context, &walk_num); if (rc != QMCKL_SUCCESS) return rc; if (walk_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_electron_coord", "walk_num is not set"); } /* If num and walk_num are set, the arrays should be allocated */ assert (ctx->electron.coord_old != NULL); assert (ctx->electron.coord_new != NULL); /* Increment the date of the context */ ctx->date += 1UL; /* Swap pointers */ double * swap; swap = ctx->electron.coord_old; ctx->electron.coord_old = ctx->electron.coord_new; ctx->electron.coord_new = swap; double* ptr1 = ctx->electron.coord_new; if (transp == 'N') { for (int64_t i=0 ; ielectron.coord_new_date = ctx->date; return QMCKL_SUCCESS; } #+end_src ** Test #+begin_src python :results output :exports none import numpy as np #+end_src #+begin_src c :tangle (eval c_test) /* Reference input data */ int64_t walk_num = chbrclf_walk_num; int64_t elec_num = chbrclf_elec_num; int64_t elec_up_num = chbrclf_elec_up_num; int64_t elec_dn_num = chbrclf_elec_dn_num; double kappa_ee = 1.0; // TODO Get kappa_ee from chbrclf double kappa_en = 1.0; // TODO Get kappa_en from chbrclf double* elec_coord = &(chbrclf_elec_coord[0][0][0]); int64_t nucl_num = chbrclf_nucl_num; double* charge = chbrclf_charge; double* nucl_coord = &(chbrclf_nucl_coord[0][0]); double nucl_kappa = 1.0; // TODO Change get kappa from chbrclf example /* --- */ qmckl_exit_code rc; assert(!qmckl_electron_provided(context)); int64_t n; rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_electron_provided(context)); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_up_num); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_dn_num); rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_num); double k_ee; double k_en; rc = qmckl_get_kappa_ee (context, &k_ee); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_kappa_en (context, &k_en); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_kappa (context, kappa_ee, kappa_en); assert(rc == QMCKL_SUCCESS); assert(!qmckl_electron_provided(context)); rc = qmckl_get_kappa_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == kappa_ee); rc = qmckl_get_kappa_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == kappa_en); int64_t w; rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_walk_num (context, walk_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_SUCCESS); assert(w == walk_num); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', elec_coord); assert(rc == QMCKL_SUCCESS); double elec_coord2[walk_num*3*elec_num]; rc = qmckl_get_electron_coord (context, 'N', elec_coord2); assert(rc == QMCKL_SUCCESS); for (int64_t i=0 ; i<3*elec_num ; ++i) { assert( elec_coord[i] == elec_coord2[i] ); } #+end_src * Computation The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored. ** Electron-electron distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num; memcpy(distance, ctx->electron.ee_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.ee_distance_date) { /* Allocate array */ if (ctx->electron.ee_distance == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* ee_distance = (double*) qmckl_malloc(context, mem_info); if (ee_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_distance", NULL); } ctx->electron.ee_distance = ee_distance; } qmckl_exit_code rc = qmckl_compute_ee_distance(context, ctx->electron.num, ctx->electron.walk_num, ctx->electron.coord_new, ctx->electron.ee_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_distance_args | qmckl_context | context | in | Global state | | int64_t | elec_num | in | Number of electrons | | int64_t | walk_num | in | Number of walkers | | double | coord[walk_num][3][elec_num] | in | Electron coordinates | | double | ee_distance[walk_num][elec_num][elec_num] | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_distance_f(context, elec_num, walk_num, coord, ee_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: coord(elec_num,3,walk_num) double precision , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif do k=1,walk_num info = qmckl_distance(context, 'T', 'T', elec_num, elec_num, & coord(1,1,k), elec_num, & coord(1,1,k), elec_num, & ee_distance(1,1,k), elec_num) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_ee_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_ee_distance ( const qmckl_context context, const int64_t elec_num, const int64_t walk_num, const double* coord, double* const ee_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_distance & (context, elec_num, walk_num, coord, ee_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: coord(elec_num,3,walk_num) real (c_double ) , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_ee_distance_f info = qmckl_compute_ee_distance_f & (context, elec_num, walk_num, coord, ee_distance) end function qmckl_compute_ee_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-elec_1_w1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-elec_2_w1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_2_w1-elec_1_w1) ) print ( "[0][0][1] : ", np.linalg.norm(elec_1_w2-elec_1_w2) ) print ( "[0][1][1] : ", np.linalg.norm(elec_1_w2-elec_2_w2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-elec_1_w2) ) #+end_src #+RESULTS: : [0][0][0] : 0.0 : [0][1][0] : 7.152322512964209 : [1][0][0] : 7.152322512964209 : [0][0][1] : 0.0 : [0][1][1] : 6.5517646321055665 : [1][0][1] : 6.5517646321055665 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double ee_distance[walk_num * elec_num * elec_num]; rc = qmckl_get_electron_ee_distance(context, ee_distance); // (e1,e2,w) // (0,0,0) == 0. assert(ee_distance[0] == 0.); // (1,0,0) == (0,1,0) assert(ee_distance[1] == ee_distance[elec_num]); // value of (1,0,0) assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12); // (0,0,1) == 0. assert(ee_distance[elec_num*elec_num] == 0.); // (1,0,1) == (0,1,1) assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]); // value of (1,0,1) assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12); #+end_src ** Electron-nucleus distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(distance, ctx->electron.en_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return QMCKL_NOT_PROVIDED; } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_distance_date) { /* Allocate array */ if (ctx->electron.en_distance == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* en_distance = (double*) qmckl_malloc(context, mem_info); if (en_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance", NULL); } ctx->electron.en_distance = en_distance; } qmckl_exit_code rc = qmckl_compute_en_distance(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->electron.coord_new, ctx->nucleus.coord, ctx->electron.en_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_args | qmckl_context | context | in | Global state | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nuclei | | int64_t | walk_num | in | Number of walkers | | double | elec_coord[walk_num][3][elec_num] | in | Electron coordinates | | double | nucl_coord[3][elec_num] | in | Nuclear coordinates | | double | en_distance[walk_num][nucl_num][elec_num] | out | Electron-nucleus distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_f(context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: elec_coord(elec_num,3,walk_num) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance(elec_num,nucl_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif do k=1,walk_num info = qmckl_distance(context, 'T', 'T', elec_num, nucl_num, & elec_coord(1,1,k), elec_num, & nucl_coord, nucl_num, & en_distance(1,1,k), elec_num) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_en_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const int64_t walk_num, const double* elec_coord, const double* nucl_coord, double* const en_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance & (context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: elec_coord(elec_num,3,walk_num) real (c_double ) , intent(in) :: nucl_coord(elec_num,3) real (c_double ) , intent(out) :: en_distance(elec_num,nucl_num,walk_num) integer(c_int32_t), external :: qmckl_compute_en_distance_f info = qmckl_compute_en_distance_f & (context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) end function qmckl_compute_en_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-nucl_1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-nucl_2) ) print ( "[0][0][1] : ", np.linalg.norm(elec_2_w1-nucl_1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_1_w2-nucl_1) ) print ( "[1][1][0] : ", np.linalg.norm(elec_1_w2-nucl_2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-nucl_1) ) #+end_src #+RESULTS: : [0][0][0] : 7.546738741619978 : [0][1][0] : 8.77102435246984 : [0][0][1] : 3.698922010513608 : [1][0][0] : 5.824059436060509 : [1][1][0] : 7.080482110317645 : [1][0][1] : 3.1804527583077356 #+begin_src c :tangle (eval c_test) assert(!qmckl_nucleus_provided(context)); assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_kappa (context, nucl_kappa); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge (context, charge); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord); assert (rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); double en_distance[walk_num][nucl_num][elec_num]; rc = qmckl_get_electron_en_distance(context, &(en_distance[0][0][0])); assert (rc == QMCKL_SUCCESS); // (e,n,w) in Fortran notation // (1,1,1) assert(fabs(en_distance[0][0][0] - 7.546738741619978) < 1.e-12); // (1,2,1) assert(fabs(en_distance[0][1][0] - 8.77102435246984) < 1.e-12); // (2,1,1) assert(fabs(en_distance[0][0][1] - 3.698922010513608) < 1.e-12); // (1,1,2) assert(fabs(en_distance[1][0][0] - 5.824059436060509) < 1.e-12); // (1,2,2) assert(fabs(en_distance[1][1][0] - 7.080482110317645) < 1.e-12); // (2,1,2) assert(fabs(en_distance[1][0][1] - 3.1804527583077356) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance_rescaled(qmckl_context context, double* distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance_rescaled(qmckl_context context, double* distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance_rescaled(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(distance_rescaled, ctx->electron.en_distance_rescaled, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return QMCKL_NOT_PROVIDED; } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_distance_rescaled_date) { /* Allocate array */ if (ctx->electron.en_distance_rescaled == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* en_distance_rescaled = (double*) qmckl_malloc(context, mem_info); if (en_distance_rescaled == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance_rescaled", NULL); } ctx->electron.en_distance_rescaled = en_distance_rescaled; } qmckl_exit_code rc = qmckl_compute_en_distance_rescaled(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.kappa_en, ctx->electron.walk_num, ctx->electron.coord_new, ctx->nucleus.coord, ctx->electron.en_distance_rescaled); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_rescaled_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance_rescaled :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_rescaled_args | qmckl_context | context | in | Global state | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nuclei | | double | kappa_en | in | The factor for rescaled distances | | int64_t | walk_num | in | Number of walkers | | double | elec_coord[walk_num][3][elec_num] | in | Electron coordinates | | double | nucl_coord[3][elec_num] | in | Nuclear coordinates | | double | en_distance_rescaled_date[walk_num][nucl_num][elec_num] | out | Electron-nucleus distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_rescaled_f(context, elec_num, nucl_num, kappa_en, walk_num, elec_coord, & nucl_coord, en_distance_rescaled) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num double precision , intent(in) :: kappa_en integer*8 , intent(in) :: walk_num double precision , intent(in) :: elec_coord(elec_num,3,walk_num) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif ! TODO: comparison with 0 !if (kappa_en <= 0) then ! info = QMCKL_INVALID_ARG_4 ! return !endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif do k=1,walk_num info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, nucl_num, & elec_coord(1,1,k), elec_num, & nucl_coord, nucl_num, & en_distance_rescaled(1,1,k), elec_num, kappa_en) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_en_distance_rescaled_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance_rescaled ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const double kappa_en, const int64_t walk_num, const double* elec_coord, const double* nucl_coord, double* const en_distance_rescaled ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_rescaled_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance_rescaled & (context, elec_num, nucl_num, kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) , value :: kappa_en integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: elec_coord(elec_num,3,walk_num) real (c_double ) , intent(in) :: nucl_coord(elec_num,3) real (c_double ) , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num) integer(c_int32_t), external :: qmckl_compute_en_distance_rescaled_f info = qmckl_compute_en_distance_rescaled_f & (context, elec_num, nucl_num, kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled) end function qmckl_compute_en_distance_rescaled #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-nucl_1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-nucl_2) ) print ( "[0][0][1] : ", np.linalg.norm(elec_2_w1-nucl_1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_1_w2-nucl_1) ) print ( "[1][1][0] : ", np.linalg.norm(elec_1_w2-nucl_2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-nucl_1) ) #+end_src #+RESULTS: : [0][0][0] : 7.546738741619978 : [0][1][0] : 8.77102435246984 : [0][0][1] : 3.698922010513608 : [1][0][0] : 5.824059436060509 : [1][1][0] : 7.080482110317645 : [1][0][1] : 3.1804527583077356 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_kappa (context, nucl_kappa); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge (context, charge); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord); assert (rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); double en_distance_rescaled[walk_num][nucl_num][elec_num]; rc = qmckl_get_electron_en_distance_rescaled(context, &(en_distance[0][0][0])); assert (rc == QMCKL_SUCCESS); // TODO: check exact values //// (e,n,w) in Fortran notation //// (1,1,1) //assert(fabs(en_distance[0][0][0] - 7.546738741619978) < 1.e-12); // //// (1,2,1) //assert(fabs(en_distance[0][1][0] - 8.77102435246984) < 1.e-12); // //// (2,1,1) //assert(fabs(en_distance[0][0][1] - 3.698922010513608) < 1.e-12); // //// (1,1,2) //assert(fabs(en_distance[1][0][0] - 5.824059436060509) < 1.e-12); // //// (1,2,2) //assert(fabs(en_distance[1][1][0] - 7.080482110317645) < 1.e-12); // //// (2,1,2) //assert(fabs(en_distance[1][0][1] - 3.1804527583077356) < 1.e-12); #+end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) if (qmckl_context_destroy(context) != QMCKL_SUCCESS) return QMCKL_FAILURE; return 0; } #+end_src *** Compute file names #+begin_src emacs-lisp ; The following is required to compute the file names (setq pwd (file-name-directory buffer-file-name)) (setq name (file-name-nondirectory (substring buffer-file-name 0 -4))) (setq f (concat pwd name "_f.f90")) (setq fh (concat pwd name "_fh.f90")) (setq c (concat pwd name ".c")) (setq h (concat name ".h")) (setq h_private (concat name "_private.h")) (setq c_test (concat pwd "test_" name ".c")) (setq f_test (concat pwd "test_" name "_f.f90")) ; Minted (require 'ox-latex) (setq org-latex-listings 'minted) (add-to-list 'org-latex-packages-alist '("" "listings")) (add-to-list 'org-latex-packages-alist '("" "color")) #+end_src #+RESULTS: | | color | | | listings | # -*- mode: org -*- # vim: syntax=c