#+TITLE: Code examples #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org In this section, we present examples of usage of QMCkl. For simplicity, we assume that the wave function parameters are stored in a [[https://github.com/TREX-CoE/trexio][TREXIO]] file. * Python ** Check numerically that MOs are orthonormal In this example, we will compute the numerically the overlap between the molecular orbitals: \[ S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r}) \text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k) \phi_j(\mathbf{r}_k) \delta \mathbf{r} \] #+begin_src python :session import numpy as np import qmckl #+end_src #+RESULTS: First, we create a context for the QMCkl calculation, and load the wave function stored in =h2o_5z.h5= inside it: #+begin_src python :session trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5" context = qmckl.context_create() qmckl.trexio_read(context, trexio_filename) #+end_src #+RESULTS: : None We now define the grid points as a regular grid around the molecule. We fetch the nuclear coordinates from the context, #+begin_src python :session :results output nucl_num = qmckl.get_nucleus_num(context) nucl_charge = qmckl.get_nucleus_charge(context, nucl_num) nucl_coord = qmckl.get_nucleus_coord(context, 'N', nucl_num*3) nucl_coord = np.reshape(nucl_coord, (3, nucl_num)) for i in range(nucl_num): print("%d %+f %+f %+f"%(int(nucl_charge[i]), nucl_coord[i,0], nucl_coord[i,1], nucl_coord[i,2]) ) #+end_src #+RESULTS: : 8 +0.000000 +0.000000 +0.000000 : 1 -1.430429 +0.000000 -1.107157 : 1 +1.430429 +0.000000 -1.107157 and compute the coordinates of the grid points: #+begin_src python :session nx = ( 40, 40, 40 ) point_num = nx[0] * nx[1] * nx[2] rmin = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) ) rmax = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) ) shift = np.array([5.,5.,5.]) linspace = [ None for i in range(3) ] step = [ None for i in range(3) ] for a in range(3): linspace[a], step[a] = np.linspace(rmin[a]-shift[a], rmax[a]+shift[a], num=nx[a], retstep=True) dr = step[0] * step[1] * step[2] dr #+end_src #+RESULTS: : 0.024081249137090373 Now the grid is ready, we can create the list of grid points on which the MOs will be evaluated, and transfer them to the QMCkl context: #+begin_src python :session point = [] for x in linspace[0]: for y in linspace[1]: for z in linspace[2]: point += [x, y, z] #point = np.array(point) qmckl.set_point(context, 'N', point, len(point)/3) #+end_src #+RESULTS: Then, will first evaluate all the MOs at the grid points, and then we will compute the overlap between all the MOs. * Fortran ** Checking errors All QMCkl functions return an error code. A convenient way to handle errors is to write an error-checking function that displays the error in text format and exits the program. #+NAME: qmckl_check_error #+begin_src f90 subroutine qmckl_check_error(rc, message) use qmckl implicit none integer(qmckl_exit_code), intent(in) :: rc character(len=*) , intent(in) :: message character(len=128) :: str_buffer if (rc /= QMCKL_SUCCESS) then print *, message call qmckl_string_of_error(rc, str_buffer) print *, str_buffer call exit(rc) end if end subroutine qmckl_check_error #+end_src ** Computing an atomic orbital on a grid :PROPERTIES: :header-args: :tangle ao_grid.f90 :END: The following program, in Fortran, computes the values of an atomic orbital on a regular 3-dimensional grid. The 100^3 grid points are automatically defined, such that the molecule fits in a box with 5 atomic units in the borders. This program uses the ~qmckl_check_error~ function defined above. To use this program, run #+begin_src bash :tangle no $ ao_grid #+end_src #+begin_src f90 :noweb yes <> program ao_grid use qmckl implicit none integer(qmckl_context) :: qmckl_ctx ! QMCkl context integer(qmckl_exit_code) :: rc ! Exit code of QMCkl functions character(len=128) :: trexio_filename character(len=128) :: str_buffer integer :: ao_id integer :: point_num_x integer(c_int64_t) :: nucl_num double precision, allocatable :: nucl_coord(:,:) integer(c_int64_t) :: point_num integer(c_int64_t) :: ao_num integer(c_int64_t) :: ipoint, i, j, k double precision :: x, y, z, dr(3) double precision :: rmin(3), rmax(3) double precision, allocatable :: points(:,:) double precision, allocatable :: ao_vgl(:,:,:) #+end_src Start by fetching the command-line arguments: #+begin_src f90 if (iargc() /= 3) then print *, 'Syntax: ao_grid ' call exit(-1) end if call getarg(1, trexio_filename) call getarg(2, str_buffer) read(str_buffer, *) ao_id call getarg(3, str_buffer) read(str_buffer, *) point_num_x if (point_num_x < 0 .or. point_num_x > 300) then print *, 'Error: 0 < point_num < 300' call exit(-1) end if #+end_src Create the QMCkl context and initialize it with the wave function present in the TREXIO file: #+begin_src f90 qmckl_ctx = qmckl_context_create() rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename))) call qmckl_check_error(rc, 'Read TREXIO') #+end_src We need to check that ~ao_id~ is in the range, so we get the total number of AOs from QMCkl: #+begin_src f90 rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num) call qmckl_check_error(rc, 'Getting ao_num') if (ao_id < 0 .or. ao_id > ao_num) then print *, 'Error: 0 < ao_id < ', ao_num call exit(-1) end if #+end_src Now we will compute the limits of the box in which the molecule fits. For that, we first need to ask QMCkl the coordinates of nuclei. #+begin_src f90 rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num) call qmckl_check_error(rc, 'Get nucleus num') allocate( nucl_coord(3, nucl_num) ) rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num) call qmckl_check_error(rc, 'Get nucleus coord') #+end_src We now compute the coordinates of opposite points of the box, and the distance between points along the 3 directions: #+begin_src f90 rmin(1) = minval( nucl_coord(1,:) ) - 5.d0 rmin(2) = minval( nucl_coord(2,:) ) - 5.d0 rmin(3) = minval( nucl_coord(3,:) ) - 5.d0 rmax(1) = maxval( nucl_coord(1,:) ) + 5.d0 rmax(2) = maxval( nucl_coord(2,:) ) + 5.d0 rmax(3) = maxval( nucl_coord(3,:) ) + 5.d0 dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1) #+end_src We now produce the list of point coordinates where the AO will be evaluated: #+begin_src f90 point_num = point_num_x**3 allocate( points(point_num, 3) ) ipoint=0 z = rmin(3) do k=1,point_num_x y = rmin(2) do j=1,point_num_x x = rmin(1) do i=1,point_num_x ipoint = ipoint+1 points(ipoint,1) = x points(ipoint,2) = y points(ipoint,3) = z x = x + dr(1) end do y = y + dr(2) end do z = z + dr(3) end do #+end_src We give the points to QMCkl: #+begin_src f90 rc = qmckl_set_point(qmckl_ctx, 'T', points, point_num) call qmckl_check_error(rc, 'Setting points') #+end_src We allocate the space required to retrieve the values, gradients and Laplacian of all AOs, and ask to retrieve the values of the AOs computed at the point positions. #+begin_src f90 allocate( ao_vgl(ao_num, 5, point_num) ) rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num) call qmckl_check_error(rc, 'Setting points') #+end_src We finally print the value of the AO: #+begin_src f90 do ipoint=1, point_num print '(3(F16.10,X),E20.10)', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint) end do #+end_src #+begin_src f90 deallocate( nucl_coord, points, ao_vgl ) end program ao_grid #+end_src