Atomic Orbitals
Table of Contents
The atomic basis set is defined as a list of shells. Each shell \(s\) is centered on a nucleus \(A\), possesses a given angular momentum \(l\) and a radial function \(R_s\). The radial function is a linear combination of \emph{primitive} functions that can be of type Slater (\(p=1\)) or Gaussian (\(p=2\)):
\[ R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks} \exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). | \]
In the case of Gaussian functions, \(n_s\) is always zero. The normalization factor \(\mathcal{N}_s\) ensures that all the functions of the shell are normalized to unity. As this normalization requires the ability to compute overlap integrals, it should be written in the file to ensure that the file is self-contained and does not require the client program to have the ability to compute such integrals.
Atomic orbitals (AOs) are defined as
\[ \chi_i (\mathbf{r}) = P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]
where \(\theta(i)\) returns the shell on which the AO is expanded, and \(\eta(i)\) denotes which angular function is chosen.
In this section we describe the kernels used to compute the values, gradients and Laplacian of the atomic basis functions.
1 Polynomial part
1.1 Powers of \(x-X_i\)
The qmckl_ao_power
function computes all the powers of the n
input data up to the given maximum value given in input for each of
the \(n\) points:
\[ P_{ik} = X_i^k \]
context |
input | Global state |
n |
input | Number of values |
X(n) |
input | Array containing the input values |
LMAX(n) |
input | Array containing the maximum power for each value |
P(LDP,n) |
output | Array containing all the powers of X |
LDP |
input | Leading dimension of array P |
Requirements:
context
is notQMCKL_NULL_CONTEXT
n
> 0X
is allocated with at least \(n \times 8\) bytesLMAX
is allocated with at least \(n \times 4\) bytesP
is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytesLDP
>= \(\max_i\)LMAX[i]
qmckl_exit_code qmckl_ao_power(const qmckl_context context, const int64_t n, const double *X, const int32_t *LMAX, const double *P, const int64_t LDP);
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info) use qmckl implicit none integer*8 , intent(in) :: context integer*8 , intent(in) :: n real*8 , intent(in) :: X(n) integer , intent(in) :: LMAX(n) real*8 , intent(out) :: P(ldp,n) integer*8 , intent(in) :: ldp integer*8 :: i,k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= ldp) then info = QMCKL_INVALID_ARG_2 return endif k = MAXVAL(LMAX) if (LDP < k) then info = QMCKL_INVALID_ARG_6 return endif if (k <= 0) then info = QMCKL_INVALID_ARG_4 return endif do i=1,n P(1,i) = X(i) do k=2,LMAX(i) P(k,i) = P(k-1,i) * X(i) end do end do end function qmckl_ao_power_f
integer(c_int32_t) function test_qmckl_ao_power(context) bind(C) use qmckl implicit none integer(c_int64_t), intent(in), value :: context integer*8 :: n, LDP integer, allocatable :: LMAX(:) double precision, allocatable :: X(:), P(:,:) integer*8 :: i,j double precision :: epsilon epsilon = qmckl_context_get_epsilon(context) n = 100; LDP = 10; allocate(X(n), P(LDP,n), LMAX(n)) do j=1,n X(j) = -5.d0 + 0.1d0 * dble(j) LMAX(j) = 1 + int(mod(j, 5),4) end do test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP) if (test_qmckl_ao_power /= 0) return test_qmckl_ao_power = -1 do j=1,n do i=1,LMAX(j) if ( X(j)**i == 0.d0 ) then if ( P(i,j) /= 0.d0) return else if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return end if end do end do test_qmckl_ao_power = 0 deallocate(X,P,LMAX) end function test_qmckl_ao_power
1.2 Value, Gradient and Laplacian of a polynomial
A polynomial is centered on a nucleus \(\mathbf{R}_i\)
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
The gradients with respect to electron coordinates are
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}and the Laplacian is
\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}. \end{eqnarray*}
qmckl_ao_polynomial_vgl
computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to lmax
.
context |
input | Global state |
X(3) |
input | Array containing the coordinates of the points |
R(3) |
input | Array containing the x,y,z coordinates of the center |
lmax |
input | Maximum angular momentum |
n |
output | Number of computed polynomials |
L(ldl,n) |
output | Contains a,b,c for all n results |
ldl |
input | Leading dimension of L |
VGL(ldv,n) |
output | Value, gradients and Laplacian of the polynomials |
ldv |
input | Leading dimension of array VGL |
Requirements:
context
is notQMCKL_NULL_CONTEXT
n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least \(3 \times n \times 4\) bytesVGL
is allocated with at least \(5 \times n \times 8\) bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
- On output, the powers are given in the following order (l=a+b+c):
- Increasing values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increasing values of
qmckl_exit_code qmckl_ao_polynomial_vgl(const qmckl_context context, const double *X, const double *R, const int32_t lmax, const int64_t *n, const int32_t *L, const int64_t ldl, const double *VGL, const int64_t ldv);
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info) use qmckl implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer , intent(in) :: lmax integer*8 , intent(out) :: n integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldl real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldv integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) integer :: lmax_array(3) real*8 :: pows(-2:lmax,3) integer, external :: qmckl_ao_power_f double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < 5) then info = QMCKL_INVALID_ARG_9 return endif do i=1,3 Y(i) = X(i) - R(i) end do lmax_array(1:3) = lmax if (lmax == 0) then VGL(1,1) = 1.d0 vgL(2:5,1) = 0.d0 l(1:3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 l (1:3,1:4) = 0 VGL(1 ,1 ) = 1.d0 vgl(1:5,2:4) = 0.d0 l (1,2) = 1 vgl(1,2) = pows(1,1) vgL(2,2) = 1.d0 l (2,3) = 1 vgl(1,3) = pows(1,2) vgL(3,3) = 1.d0 l (3,4) = 1 vgl(1,4) = pows(1,3) vgL(4,4) = 1.d0 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) vgl(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz vgl(2,n) = pows(a-1,1) * yz vgl(3,n) = pows(b-1,2) * xz vgl(4,n) = pows(c-1,3) * xy vgl(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_vgl_f
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C) use qmckl implicit none integer(c_int64_t), intent(in), value :: context integer :: lmax, d, i integer, allocatable :: L(:,:) integer*8 :: n, ldl, ldv, j double precision :: X(3), R(3), Y(3) double precision, allocatable :: VGL(:,:) double precision :: w double precision :: epsilon epsilon = qmckl_context_get_epsilon(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) lmax = 4; ldl = 3; ldv = 100; d = (lmax+1)*(lmax+2)*(lmax+3)/6 allocate (L(ldl,d), VGL(ldv,d)) test_qmckl_ao_polynomial_vgl = & qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return if (n /= d) return do j=1,n test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE do i=1,3 if (L(i,j) < 0) return end do test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (dabs(1.d0 - VGL(1,j) / (& Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(1,j) < 1) then if (VGL(2,j) /= 0.d0) return else if (dabs(1.d0 - VGL(2,j) / (& L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(2,j) < 1) then if (VGL(3,j) /= 0.d0) return else if (dabs(1.d0 - VGL(3,j) / (& L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(3,j) < 1) then if (VGL(4,j) /= 0.d0) return else if (dabs(1.d0 - VGL(4,j) / (& L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE w = 0.d0 if (L(1,j) > 1) then w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j) end if if (L(2,j) > 1) then w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j) end if if (L(3,j) > 1) then w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2) end if if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return end do test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS deallocate(L,VGL) end function test_qmckl_ao_polynomial_vgl
int test_qmckl_ao_polynomial_vgl(qmckl_context context); munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
2 Gaussian basis functions
qmckl_ao_gaussian_vgl
computes the values, gradients and
Laplacians at a given point of n
Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
context |
input | Global state |
X(3) |
input | Array containing the coordinates of the points |
R(3) |
input | Array containing the x,y,z coordinates of the center |
n |
input | Number of computed gaussians |
A(n) |
input | Exponents of the Gaussians |
VGL(ldv,5) |
output | Value, gradients and Laplacian of the Gaussians |
ldv |
input | Leading dimension of array VGL |
Requirements :
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesA
is allocated with at least \(n \times 8\) bytesVGL
is allocated with at least \(n \times 5 \times 8\) bytes
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv);
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info) use qmckl implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer*8 , intent(in) :: n real*8 , intent(in) :: A(n) real*8 , intent(out) :: VGL(ldv,5) integer*8 , intent(in) :: ldv integer*8 :: i,j real*8 :: Y(3), r2, t, u, v info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldv < n) then info = QMCKL_INVALID_ARG_7 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl_f
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C) use qmckl implicit none integer(c_int64_t), intent(in), value :: context integer*8 :: n, ldv, j, i double precision :: X(3), R(3), Y(3), r2 double precision, allocatable :: VGL(:,:), A(:) double precision :: epsilon epsilon = qmckl_context_get_epsilon(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) r2 = Y(1)**2 + Y(2)**2 + Y(3)**2 n = 10; ldv = 100; allocate (A(n), VGL(ldv,5)) do i=1,n A(i) = 0.0013 * dble(ishft(1,i)) end do test_qmckl_ao_gaussian_vgl = & qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) if (test_qmckl_ao_gaussian_vgl /= 0) return test_qmckl_ao_gaussian_vgl = -1 do i=1,n test_qmckl_ao_gaussian_vgl = -11 if (dabs(1.d0 - VGL(i,1) / (& dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -12 if (dabs(1.d0 - VGL(i,2) / (& -2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -13 if (dabs(1.d0 - VGL(i,3) / (& -2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -14 if (dabs(1.d0 - VGL(i,4) / (& -2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -15 if (dabs(1.d0 - VGL(i,5) / (& A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) & )) > epsilon ) return end do test_qmckl_ao_gaussian_vgl = 0 deallocate(VGL) end function test_qmckl_ao_gaussian_vgl