Atomic Orbitals
Table of Contents
1 Context
The following arrays are stored in the context:
type |
Gaussian ('G' ) or Slater ('S' ) |
|
shell_num |
Number of shells | |
prim_num |
Total number of primitives | |
shell_center |
[shell_num] |
Id of the nucleus on which each shell is centered |
shell_ang_mom |
[shell_num] |
Angular momentum of each shell |
shell_prim_num |
[shell_num] |
Number of primitives in each shell |
shell_prim_index |
[shell_num] |
Address of the first primitive of each shell in the EXPONENT array |
shell_factor |
[shell_num] |
Normalization factor for each shell |
exponent |
[prim_num] |
Array of exponents |
coefficient |
[prim_num] |
Array of coefficients |
For H2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 shell_center = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2] shell_ang_mom = ['S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D'] shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] shell_prim_index = [1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0]
1.1 Data structure
typedef struct qmckl_ao_basis_struct { int32_t uninitialized; int64_t shell_num; int64_t prim_num; int64_t * shell_center; char * shell_ang_mom; int64_t * shell_prim_num; int64_t * shell_prim_index; double * shell_factor; double * exponent ; double * coefficient ; bool provided; char type; } qmckl_ao_basis_struct;
The uninitialized
integer contains one bit set to one for each
initialization function which has not bee called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and provided == true
.
1.2 Access functions
Access to scalars copies the values at the passed address, and for array values a pointer to the array is returned.
char qmckl_get_ao_basis_type (const qmckl_context context); int64_t qmckl_get_ao_basis_shell_num (const qmckl_context context); int64_t qmckl_get_ao_basis_prim_num (const qmckl_context context); int64_t* qmckl_get_ao_basis_shell_center (const qmckl_context context); char* qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context); int64_t* qmckl_get_ao_basis_shell_prim_num (const qmckl_context context); int64_t* qmckl_get_ao_basis_shell_prim_index (const qmckl_context context); double* qmckl_get_ao_basis_shell_factor (const qmckl_context context); double* qmckl_get_ao_basis_exponent (const qmckl_context context); double* qmckl_get_ao_basis_coefficient (const qmckl_context context);
bool qmckl_ao_basis_provided (const qmckl_context context);
if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; }
char qmckl_get_ao_basis_type (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return (char) 0; } assert (ctx->ao_basis.type != (char) 0); return ctx->ao_basis.type; } int64_t qmckl_get_ao_basis_shell_num (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (int64_t) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return (int64_t) 0; } assert (ctx->ao_basis.shell_num > (int64_t) 0); return ctx->ao_basis.shell_num; } int64_t qmckl_get_ao_basis_prim_num (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (int64_t) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return (int64_t) 0; } assert (ctx->ao_basis.prim_num > (int64_t) 0); return ctx->ao_basis.prim_num; } int64_t* qmckl_get_ao_basis_shell_center (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 3; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.shell_center != NULL); return ctx->ao_basis.shell_center; } char* qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 4; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.shell_ang_mom != NULL); return ctx->ao_basis.shell_ang_mom; } int64_t* qmckl_get_ao_basis_shell_prim_num (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 5; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.shell_prim_num != NULL); return ctx->ao_basis.shell_prim_num; } int64_t* qmckl_get_ao_basis_shell_prim_index (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 6; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.shell_prim_index != NULL); return ctx->ao_basis.shell_prim_index; } double* qmckl_get_ao_basis_shell_factor (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 7; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.shell_factor != NULL); return ctx->ao_basis.shell_factor; } double* qmckl_get_ao_basis_exponent (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 8; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.exponent != NULL); return ctx->ao_basis.exponent; } double* qmckl_get_ao_basis_coefficient (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return NULL; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 9; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return NULL; } assert (ctx->ao_basis.coefficient != NULL); return ctx->ao_basis.coefficient; } bool qmckl_ao_basis_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->ao_basis.provided; }
1.3 Initialization functions
To set the basis set, all the following functions need to be called. When
qmckl_exit_code qmckl_set_ao_basis_type (qmckl_context context, const char t); qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num); qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num); qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t * shell_prim_index); qmckl_exit_code qmckl_set_ao_basis_shell_center (qmckl_context context, const int64_t * shell_center); qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const char * shell_ang_mom); qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t * shell_prim_num); qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double * shell_factor); qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double * exponent); qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double * coefficient);
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
ctx->ao_basis.uninitialized &= ~mask;
ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0);
return QMCKL_SUCCESS;
qmckl_exit_code qmckl_set_ao_basis_type(qmckl_context context, const char t) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; if (t != 'G' && t != 'S') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_type", NULL); } int32_t mask = 1; ctx->ao_basis.type = t; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_num(qmckl_context context, const int64_t shell_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; if (shell_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "shell_num <= 0"); } int64_t prim_num = qmckl_get_ao_basis_prim_num(context); if (0L < prim_num && prim_num < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "shell_num > prim_num"); } int32_t mask = 1 << 1; ctx->ao_basis.shell_num = shell_num; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_prim_num(qmckl_context context, const int64_t prim_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; if (prim_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "prim_num must be positive"); } int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (prim_num < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "prim_num < shell_num"); } int32_t mask = 1 << 2; ctx->ao_basis.prim_num = prim_num; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_center(qmckl_context context, const int64_t* shell_center) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 3; const int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_center", "shell_num is not set"); } if (ctx->ao_basis.shell_center != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_center); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_center", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_center", NULL); } memcpy(new_array, shell_center, mem_info.size); ctx->ao_basis.shell_center = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom(qmckl_context context, const char* shell_ang_mom) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 4; const int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_ang_mom", "shell_num is not set"); } if (ctx->ao_basis.shell_ang_mom != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_ang_mom); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_ang_mom", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(char); char* new_array = (char*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_ang_mom", NULL); } memcpy(new_array, shell_ang_mom, mem_info.size); ctx->ao_basis.shell_ang_mom = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_prim_num(qmckl_context context, const int64_t* shell_prim_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 5; const int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_prim_num", "shell_num is not set"); } if (ctx->ao_basis.shell_prim_num != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_num); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_prim_num", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_prim_num", NULL); } memcpy(new_array, shell_prim_num, mem_info.size); ctx->ao_basis.shell_prim_num = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_prim_index(qmckl_context context, const int64_t* shell_prim_index) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 6; const int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_prim_index", "shell_num is not set"); } if (ctx->ao_basis.shell_prim_index != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_index); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_prim_index", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_prim_index", NULL); } memcpy(new_array, shell_prim_index, mem_info.size); ctx->ao_basis.shell_prim_index = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_shell_factor(qmckl_context context, const double* shell_factor) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 7; const int64_t shell_num = qmckl_get_ao_basis_shell_num(context); if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_factor", "shell_num is not set"); } if (ctx->ao_basis.shell_factor != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_factor); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_factor", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_factor", NULL); } memcpy(new_array, shell_factor, mem_info.size); ctx->ao_basis.shell_factor = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_exponent(qmckl_context context, const double* exponent) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 8; const int64_t prim_num = qmckl_get_ao_basis_prim_num(context); if (prim_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_exponent", "prim_num is not set"); } if (ctx->ao_basis.exponent != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.exponent); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_exponent", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = prim_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_exponent", NULL); } memcpy(new_array, exponent, mem_info.size); ctx->ao_basis.exponent = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_ao_basis_coefficient(qmckl_context context, const double* coefficient) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; int32_t mask = 1 << 9; const int64_t prim_num = qmckl_get_ao_basis_prim_num(context); if (prim_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_coefficient", "prim_num is not set"); } if (ctx->ao_basis.coefficient != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.coefficient); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_coefficient", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = prim_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_coefficient", NULL); } memcpy(new_array, coefficient, mem_info.size); ctx->ao_basis.coefficient = new_array; ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); return QMCKL_SUCCESS; }
1.4 Fortran interfaces
qmcklcontext | context | in | Global state |
int64t | n | in | Number of values |
double | X[n] | in | Array containing the input values |
int32t | LMAX[n] | in | Array containing the maximum power for each value |
double | P[n][ldp] | out | Array containing all the powers of X |
int64t | ldp | in | Leading dimension of array P |
1.5 Test
/* Reference input data */ char typ = 'G'; #define shell_num ((int64_t) 12) #define prim_num ((int64_t) 20) int64_t shell_center [shell_num] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2 }; char shell_ang_mom [shell_num] = { 'S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D' }; double shell_factor [shell_num] = { 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. }; int64_t shell_prim_num [shell_num] = {5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1}; int64_t shell_prim_index [shell_num] = {1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20}; double exponent [prim_num] = { 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057 }; double coefficient [prim_num] = { 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0 }; /* --- */ qmckl_exit_code rc; munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_type (context, typ); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_num (context, shell_num); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_prim_num (context, prim_num); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_center (context, shell_center); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_ang_mom (context, shell_ang_mom); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_factor (context, shell_factor); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_center (context, shell_prim_num); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_num (context, shell_prim_num); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_index (context, shell_prim_index); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_exponent (context, exponent); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_coefficient (context, coefficient); munit_assert_int64(rc, ==, QMCKL_SUCCESS); munit_assert(qmckl_ao_basis_provided(context));
2 Polynomial part
2.1 Powers of \(x-X_i\)
The qmckl_ao_power
function computes all the powers of the n
input data up to the given maximum value given in input for each of
the \(n\) points:
\[ P_{ik} = X_i^k \]
qmcklcontext | context | in | Global state |
int64t | n | in | Number of values |
double | X[n] | in | Array containing the input values |
int32t | LMAX[n] | in | Array containing the maximum power for each value |
double | P[n][ldp] | out | Array containing all the powers of X |
int64t | ldp | in | Leading dimension of array P |
2.1.1 Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0X
is allocated with at least \(n \times 8\) bytesLMAX
is allocated with at least \(n \times 4\) bytesP
is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytesLDP
>= \(\max_i\)LMAX[i]
2.1.2 C Header
qmckl_exit_code qmckl_ao_power ( const qmckl_context context, const int64_t n, const double* X, const int32_t* LMAX, double* const P, const int64_t ldp );
2.1.3 Source
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info) use qmckl implicit none integer*8 , intent(in) :: context integer*8 , intent(in) :: n real*8 , intent(in) :: X(n) integer , intent(in) :: LMAX(n) real*8 , intent(out) :: P(ldp,n) integer*8 , intent(in) :: ldp integer*8 :: i,k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= ldp) then info = QMCKL_INVALID_ARG_2 return endif k = MAXVAL(LMAX) if (LDP < k) then info = QMCKL_INVALID_ARG_6 return endif if (k <= 0) then info = QMCKL_INVALID_ARG_4 return endif do i=1,n P(1,i) = X(i) do k=2,LMAX(i) P(k,i) = P(k-1,i) * X(i) end do end do end function qmckl_ao_power_f
2.1.4 C interface
2.1.5 Fortran interface
2.1.6 Test
integer(c_int32_t) function test_qmckl_ao_power(context) bind(C) use qmckl implicit none integer(qmckl_context), intent(in), value :: context integer*8 :: n, LDP integer, allocatable :: LMAX(:) double precision, allocatable :: X(:), P(:,:) integer*8 :: i,j double precision :: epsilon epsilon = qmckl_get_numprec_epsilon(context) n = 100; LDP = 10; allocate(X(n), P(LDP,n), LMAX(n)) do j=1,n X(j) = -5.d0 + 0.1d0 * dble(j) LMAX(j) = 1 + int(mod(j, 5),4) end do test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP) if (test_qmckl_ao_power /= QMCKL_SUCCESS) return test_qmckl_ao_power = QMCKL_FAILURE do j=1,n do i=1,LMAX(j) if ( X(j)**i == 0.d0 ) then if ( P(i,j) /= 0.d0) return else if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return end if end do end do test_qmckl_ao_power = QMCKL_SUCCESS deallocate(X,P,LMAX) end function test_qmckl_ao_power
2.2 Value, Gradient and Laplacian of a polynomial
A polynomial is centered on a nucleus \(\mathbf{R}_i\)
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
The gradients with respect to electron coordinates are
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}and the Laplacian is
\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}. \end{eqnarray*}
qmckl_ao_polynomial_vgl
computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to lmax
.
qmcklcontext | context | in | Global state |
double | X[3] | in | Array containing the coordinates of the points |
double | R[3] | in | Array containing the x,y,z coordinates of the center |
int32t | lmax | in | Maximum angular momentum |
int64t | n | inout | Number of computed polynomials |
int32t | L[n][ldl] | out | Contains a,b,c for all n results |
int64t | ldl | in | Leading dimension of L |
double | VGL[n][ldv] | out | Value, gradients and Laplacian of the polynomials |
int64t | ldv | in | Leading dimension of array VGL |
2.2.1 Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least \(3 \times n \times 4\) bytesVGL
is allocated with at least \(5 \times n \times 8\) bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
- On output, the powers are given in the following order (l=a+b+c):
- Increasing values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increasing values of
2.2.2 C Header
qmckl_exit_code qmckl_ao_polynomial_vgl ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
2.2.3 Source
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info) use qmckl implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer , intent(in) :: lmax integer*8 , intent(out) :: n integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldl real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldv integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) integer :: lmax_array(3) real*8 :: pows(-2:lmax,3) integer, external :: qmckl_ao_power_f double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax < 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < 5) then info = QMCKL_INVALID_ARG_9 return endif do i=1,3 Y(i) = X(i) - R(i) end do lmax_array(1:3) = lmax if (lmax == 0) then VGL(1,1) = 1.d0 vgL(2:5,1) = 0.d0 l(1:3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 l (1:3,1:4) = 0 VGL(1 ,1 ) = 1.d0 vgl(1:5,2:4) = 0.d0 l (1,2) = 1 vgl(1,2) = pows(1,1) vgL(2,2) = 1.d0 l (2,3) = 1 vgl(1,3) = pows(1,2) vgL(3,3) = 1.d0 l (3,4) = 1 vgl(1,4) = pows(1,3) vgL(4,4) = 1.d0 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) vgl(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz vgl(2,n) = pows(a-1,1) * yz vgl(3,n) = pows(b-1,2) * xz vgl(4,n) = pows(c-1,3) * xy vgl(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_vgl_f
2.2.4 C interface
2.2.5 Fortran interface
2.2.6 Test
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C) use qmckl implicit none integer(c_int64_t), intent(in), value :: context integer :: lmax, d, i integer, allocatable :: L(:,:) integer*8 :: n, ldl, ldv, j double precision :: X(3), R(3), Y(3) double precision, allocatable :: VGL(:,:) double precision :: w double precision :: epsilon epsilon = qmckl_get_numprec_epsilon(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) lmax = 4; ldl = 3; ldv = 100; d = (lmax+1)*(lmax+2)*(lmax+3)/6 allocate (L(ldl,d), VGL(ldv,d)) test_qmckl_ao_polynomial_vgl = & qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return if (n /= d) return do j=1,n test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE do i=1,3 if (L(i,j) < 0) return end do test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (dabs(1.d0 - VGL(1,j) / (& Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(1,j) < 1) then if (VGL(2,j) /= 0.d0) return else if (dabs(1.d0 - VGL(2,j) / (& L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(2,j) < 1) then if (VGL(3,j) /= 0.d0) return else if (dabs(1.d0 - VGL(3,j) / (& L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(3,j) < 1) then if (VGL(4,j) /= 0.d0) return else if (dabs(1.d0 - VGL(4,j) / (& L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE w = 0.d0 if (L(1,j) > 1) then w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j) end if if (L(2,j) > 1) then w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j) end if if (L(3,j) > 1) then w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2) end if if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return end do test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS deallocate(L,VGL) end function test_qmckl_ao_polynomial_vgl
int test_qmckl_ao_polynomial_vgl(qmckl_context context); munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
3 Radial part
3.1 Gaussian basis functions
qmckl_ao_gaussian_vgl
computes the values, gradients and
Laplacians at a given point of n
Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
context |
input | Global state |
X(3) |
input | Array containing the coordinates of the points |
R(3) |
input | Array containing the x,y,z coordinates of the center |
n |
input | Number of computed Gaussians |
A(n) |
input | Exponents of the Gaussians |
VGL(ldv,5) |
output | Value, gradients and Laplacian of the Gaussians |
ldv |
input | Leading dimension of array VGL |
Requirements
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesA
is allocated with at least \(n \times 8\) bytesVGL
is allocated with at least \(n \times 5 \times 8\) bytes
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv);
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info) use qmckl implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer*8 , intent(in) :: n real*8 , intent(in) :: A(n) real*8 , intent(out) :: VGL(ldv,5) integer*8 , intent(in) :: ldv integer*8 :: i,j real*8 :: Y(3), r2, t, u, v info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldv < n) then info = QMCKL_INVALID_ARG_7 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl_f
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C) use qmckl implicit none integer(c_int64_t), intent(in), value :: context integer*8 :: n, ldv, j, i double precision :: X(3), R(3), Y(3), r2 double precision, allocatable :: VGL(:,:), A(:) double precision :: epsilon epsilon = qmckl_get_numprec_epsilon(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) r2 = Y(1)**2 + Y(2)**2 + Y(3)**2 n = 10; ldv = 100; allocate (A(n), VGL(ldv,5)) do i=1,n A(i) = 0.0013 * dble(ishft(1,i)) end do test_qmckl_ao_gaussian_vgl = & qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) if (test_qmckl_ao_gaussian_vgl /= 0) return test_qmckl_ao_gaussian_vgl = -1 do i=1,n test_qmckl_ao_gaussian_vgl = -11 if (dabs(1.d0 - VGL(i,1) / (& dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -12 if (dabs(1.d0 - VGL(i,2) / (& -2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -13 if (dabs(1.d0 - VGL(i,3) / (& -2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -14 if (dabs(1.d0 - VGL(i,4) / (& -2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) & )) > epsilon ) return test_qmckl_ao_gaussian_vgl = -15 if (dabs(1.d0 - VGL(i,5) / (& A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) & )) > epsilon ) return end do test_qmckl_ao_gaussian_vgl = 0 deallocate(VGL) end function test_qmckl_ao_gaussian_vgl