UP | HOME

Atomic Orbitals

Table of Contents

1 Context

The following arrays are stored in the context:

type   Gaussian ('G') or Slater ('S')
shell_num   Number of shells
prim_num   Total number of primitives
nucleus_index [nucl_num] Index of the first shell of each nucleus
nucleus_shell_num [nucl_num] Number of shells per nucleus
shell_ang_mom [shell_num] Angular momentum of each shell
shell_prim_num [shell_num] Number of primitives in each shell
shell_prim_index [shell_num] Address of the first primitive of each shell in the EXPONENT array
shell_factor [shell_num] Normalization factor for each shell
exponent [prim_num] Array of exponents
coefficient [prim_num] Array of coefficients
prim_factor [prim_num] Normalization factors of the primtives
ao_num   Number of AOs
ao_cartesian   If true, use polynomials. Otherwise, use spherical harmonics
ao_factor [ao_num] Normalization factor of the AO
ao_shell [ao_num] For each AO, specify to which shell it belongs

Computed data:

coefficient_normalized [prim_num] Normalized primitive coefficients
nucleus_prim_index [nucl_num] Index of the first primitive for each nucleus
nucleus_max_ang_mom [nucl_num] Maximum angular momentum for each nucleus
nucleus_range [nucl_num] Distance beyond which all the AOs are zero
primitive_vgl [5][walk_num][elec_num][prim_num] Value, gradients, Laplacian of the primitives at electron positions
primitive_vgl_date uint64_t Late modification date of Value, gradients, Laplacian of the primitives at electron positions
shell_vgl [5][walk_num][elec_num][shell_num] Value, gradients, Laplacian of the primitives at electron positions
shell_vgl_date uint64_t Late modification date of Value, gradients, Laplacian of the AOs at electron positions
ao_vgl [5][walk_num][elec_num][ao_num] Value, gradients, Laplacian of the primitives at electron positions
ao_vgl_date uint64_t Late modification date of Value, gradients, Laplacian of the AOs at electron positions
nucl_shell_index [nucl_num] Index of the first shell for each nucleus
exponent_sorted [prim_num] Array of exponents for sorted primitives
coeff_norm_sorted [prim_num] Array of normalized coefficients for sorted primitives
prim_factor_sorted [prim_num] Normalization factors of the sorted primtives

For H2 with the following basis set,

HYDROGEN
S   5
1         3.387000E+01           6.068000E-03
2         5.095000E+00           4.530800E-02
3         1.159000E+00           2.028220E-01
4         3.258000E-01           5.039030E-01
5         1.027000E-01           3.834210E-01
S   1
1         3.258000E-01           1.000000E+00
S   1
1         1.027000E-01           1.000000E+00
P   1
1         1.407000E+00           1.000000E+00
P   1
1         3.880000E-01           1.000000E+00
D   1
1         1.057000E+00           1.0000000

we have:

type = 'G'
shell_num = 12
prim_num = 20
ao_num = 38
nucleus_index = [0 , 6]
shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2]
shell_factor  = [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]
shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1]
shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19]
exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
  0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
  0.388, 1.057]
coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
  1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
  1.0, 1.0, 1.0]
prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01
  3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01,
  1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01,
  1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00,
  7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01,
  3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00,
  4.3649547399719840e-01, 1.8135965626177861e+00 ]

1.1 Data structure

typedef struct qmckl_ao_basis_struct {
  int64_t   shell_num;
  int64_t   prim_num;
  int64_t   ao_num;  
  int64_t * nucleus_index;
  int64_t * nucleus_shell_num;
  int32_t * shell_ang_mom;
  int64_t * shell_prim_num;
  int64_t * shell_prim_index;
  double  * shell_factor;
  double  * exponent;
  double  * coefficient;
  double  * prim_factor;
  double  * ao_factor;

  int64_t * nucleus_prim_index;
  double  * coefficient_normalized;
  int32_t * nucleus_max_ang_mom;
  double  * nucleus_range;
  double  * primitive_vgl;
  int64_t   primitive_vgl_date;
  double  * shell_vgl;
  int64_t   shell_vgl_date;
  double  * ao_vgl;
  int64_t   ao_vgl_date;

  int32_t   uninitialized;
  bool      provided;
  bool      ao_cartesian;
  char      type;
} qmckl_ao_basis_struct;

The uninitialized integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and provided == true. Some values are initialized by default, and are not concerned by this mechanism.

qmckl_exit_code qmckl_init_ao_basis(qmckl_context context);
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) {

  if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
    return false;
  }

  qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
  assert (ctx != NULL);

  ctx->ao_basis.uninitialized = (1 << 14) - 1;

  /* Default values */
  ctx->ao_basis.ao_cartesian = true;

  return QMCKL_SUCCESS;
}

1.2 Access functions

When all the data for the AOs have been provided, the following function returns true.

bool      qmckl_ao_basis_provided           (const qmckl_context context);

1.3 Initialization functions

To set the basis set, all the following functions need to be called.

qmckl_exit_code  qmckl_set_ao_basis_type             (qmckl_context context, const char      t);
qmckl_exit_code  qmckl_set_ao_basis_shell_num        (qmckl_context context, const int64_t   shell_num);
qmckl_exit_code  qmckl_set_ao_basis_prim_num         (qmckl_context context, const int64_t   prim_num);
qmckl_exit_code  qmckl_set_ao_basis_ao_num           (qmckl_context context, const int64_t   ao_num);
qmckl_exit_code  qmckl_set_ao_basis_nucleus_index    (qmckl_context context, const int64_t * nucleus_index);
qmckl_exit_code  qmckl_set_ao_basis_nucleus_shell_num(qmckl_context context, const int64_t * nucleus_shell_num);
qmckl_exit_code  qmckl_set_ao_basis_shell_ang_mom    (qmckl_context context, const int32_t * shell_ang_mom);
qmckl_exit_code  qmckl_set_ao_basis_shell_prim_num   (qmckl_context context, const int64_t * shell_prim_num);
qmckl_exit_code  qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t * shell_prim_index);
qmckl_exit_code  qmckl_set_ao_basis_shell_factor     (qmckl_context context, const double  * shell_factor);
qmckl_exit_code  qmckl_set_ao_basis_exponent         (qmckl_context context, const double  * exponent);
qmckl_exit_code  qmckl_set_ao_basis_coefficient      (qmckl_context context, const double  * coefficient);
qmckl_exit_code  qmckl_set_ao_basis_prim_factor      (qmckl_context context, const double  * prim_factor);
qmckl_exit_code  qmckl_set_ao_basis_ao_factor        (qmckl_context context, const double  * ao_factor);
qmckl_exit_code  qmckl_set_ao_basis_cartesian        (qmckl_context context, const bool      cartesian);

When the basis set is completely entered, other data structures are computed to accelerate the calculations. The primitives within each contraction are sorted in ascending order of their exponents, such that as soon as a primitive is zero all the following functions vanish. Also, it is possible to compute a nuclear radius beyond which all the primitives are zero up to the numerical accuracy defined in the context.

1.4 Fortran interfaces

2 Radial part

2.1 TODO Helper functions to accelerate calculations

2.2 General functions for Gaussian basis functions

qmckl_ao_gaussian_vgl computes the values, gradients and Laplacians at a given point of n Gaussian functions centered at the same point:

\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]

context input Global state
X(3) input Array containing the coordinates of the points
R(3) input Array containing the x,y,z coordinates of the center
n input Number of computed Gaussians
A(n) input Exponents of the Gaussians
VGL(ldv,5) output Value, gradients and Laplacian of the Gaussians
ldv input Leading dimension of array VGL

Requirements

  • context is not 0
  • n > 0
  • ldv >= 5
  • A(i) > 0 for all i
  • X is allocated with at least \(3 \times 8\) bytes
  • R is allocated with at least \(3 \times 8\) bytes
  • A is allocated with at least \(n \times 8\) bytes
  • VGL is allocated with at least \(n \times 5 \times 8\) bytes
qmckl_exit_code
qmckl_ao_gaussian_vgl(const qmckl_context context,
                      const double *X,
                      const double *R,
                      const int64_t *n,
                      const int64_t *A,
                      const double *VGL,
                      const int64_t ldv);
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info)
  use qmckl
  implicit none
  integer*8 , intent(in)  :: context
  real*8    , intent(in)  :: X(3), R(3)
  integer*8 , intent(in)  :: n
  real*8    , intent(in)  :: A(n)
  real*8    , intent(out) :: VGL(ldv,5)
  integer*8 , intent(in)  :: ldv

  integer*8         :: i,j
  real*8            :: Y(3), r2, t, u, v

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (n <= 0) then
     info = QMCKL_INVALID_ARG_4
     return
  endif

  if (ldv < n) then
     info = QMCKL_INVALID_ARG_7
     return
  endif


  do i=1,3
     Y(i) = X(i) - R(i)
  end do
  r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)

  do i=1,n
     VGL(i,1) = dexp(-A(i) * r2)
  end do

  do i=1,n
     VGL(i,5) = A(i) * VGL(i,1)
  end do

  t = -2.d0 * ( X(1) - R(1) )
  u = -2.d0 * ( X(2) - R(2) )
  v = -2.d0 * ( X(3) - R(3) )

  do i=1,n
     VGL(i,2) = t * VGL(i,5)
     VGL(i,3) = u * VGL(i,5)
     VGL(i,4) = v * VGL(i,5)
  end do

  t = 4.d0 * r2
  do i=1,n
     VGL(i,5) = (t * A(i) - 6.d0) *  VGL(i,5)
  end do

end function qmckl_ao_gaussian_vgl_f
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C)
  use qmckl
  implicit none

  integer(c_int64_t), intent(in), value :: context

  integer*8                     :: n, ldv, j, i
  double precision              :: X(3), R(3), Y(3), r2
  double precision, allocatable :: VGL(:,:), A(:)
  double precision              :: epsilon

  epsilon = qmckl_get_numprec_epsilon(context)

  X = (/ 1.1 , 2.2 ,  3.3 /)
  R = (/ 0.1 , 1.2 , -2.3 /)
  Y(:) = X(:) - R(:)
  r2 = Y(1)**2 + Y(2)**2 + Y(3)**2

  n = 10;
  ldv = 100;

  allocate (A(n), VGL(ldv,5))
  do i=1,n
     A(i) = 0.0013 * dble(ishft(1,i))
  end do


  test_qmckl_ao_gaussian_vgl = &
       qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
  if (test_qmckl_ao_gaussian_vgl /= 0) return

  test_qmckl_ao_gaussian_vgl = -1

  do i=1,n
     test_qmckl_ao_gaussian_vgl = -11
     if (dabs(1.d0 - VGL(i,1) / (&
          dexp(-A(i) * r2) &
          )) > epsilon ) return

     test_qmckl_ao_gaussian_vgl = -12
     if (dabs(1.d0 - VGL(i,2) / (&
          -2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) &
          )) > epsilon ) return

     test_qmckl_ao_gaussian_vgl = -13
     if (dabs(1.d0 - VGL(i,3) / (&
          -2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) &
          )) > epsilon ) return

     test_qmckl_ao_gaussian_vgl = -14
     if (dabs(1.d0 - VGL(i,4) / (&
          -2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) &
          )) > epsilon ) return

     test_qmckl_ao_gaussian_vgl = -15
     if (dabs(1.d0 - VGL(i,5) / (&
          A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) &
          )) > epsilon ) return
  end do

  test_qmckl_ao_gaussian_vgl = 0

  deallocate(VGL)
end function test_qmckl_ao_gaussian_vgl

2.3 TODO General functions for Slater basis functions

2.4 TODO General functions for Radial functions on a grid

2.5 Computation of primitives

2.5.1 Get

qmckl_exit_code qmckl_get_ao_basis_primitive_vgl(qmckl_context context, double* const primitive_vgl);

2.5.2 Provide

2.5.3 Compute

qmcklcontext context in Global state
int64t primnum in Number of primitives
int64t elecnum in Number of electrons
int64t nuclnum in Number of nuclei
int64t walknum in Number of walkers
int64t nucleusprimindex[nuclnum] in Index of the 1st primitive of each nucleus
double eleccoord[walknum][3][elecnum] in Electron coordinates
double nuclcoord[3][elecnum] in Nuclear coordinates
double expo[primnum] in Exponents of the primitives
double primitivevgl[5][walknum][elecnum][primnum] out Value, gradients and Laplacian of the primitives
integer function qmckl_compute_ao_basis_primitive_gaussian_vgl_f(context, &
     prim_num, elec_num, nucl_num, walk_num, &
     nucleus_prim_index, elec_coord, nucl_coord, expo, primitive_vgl) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: prim_num
  integer*8             , intent(in)  :: nucl_num
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: walk_num
  integer*8             , intent(in)  :: nucleus_prim_index(nucl_num+1)
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  double precision      , intent(in)  :: expo(prim_num)
  double precision      , intent(out) :: primitive_vgl(prim_num,elec_num,walk_num,5)

  integer*8 :: inucl, iprim, iwalk, ielec
  double precision :: x, y, z, two_a, ar2, r2, v, cutoff

  info = QMCKL_SUCCESS

  ! Don't compute exponentials when the result will be almost zero.
  cutoff = -dlog(1.d-15)

  do inucl=1,nucl_num
     ! C is zero-based, so shift bounds by one
     do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1)
        do iwalk = 1, walk_num
           do ielec = 1, elec_num
              x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1) 
              y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2) 
              z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3) 

              r2 = x*x + y*y + z*z
              ar2 = expo(iprim)*r2
              if (ar2 > cutoff) cycle

              v = dexp(-ar2)
              two_a = -2.d0 * expo(iprim) * v

              primitive_vgl(iprim, ielec, iwalk, 1) = v
              primitive_vgl(iprim, ielec, iwalk, 2) = two_a * x 
              primitive_vgl(iprim, ielec, iwalk, 3) = two_a * y
              primitive_vgl(iprim, ielec, iwalk, 4) = two_a * z
              primitive_vgl(iprim, ielec, iwalk, 5) = two_a * (3.d0 - 2.d0*ar2)

           end do
        end do
     end do
  end do

end function qmckl_compute_ao_basis_primitive_gaussian_vgl_f

2.5.4 Test

2.5.5 Ideas for improvement

// m : walkers
// j : electrons
// l : primitives

k=0;
for (m=0 ; m<walk_num ; ++m) {
  for (j=0 ; j<elec_num ; ++j) {
    for (i=0 ; i<nucl_num ; ++i) {

      r2 = nucl_elec_dist[i][j];

      if (r2 < nucl_radius2[i]) {

        for (l=0 ; l<prim_num ; ++l) {
          tmp[k].i   = i;
          tmp[k].j   = j;
          tmp[k].m   = m;
          tmp[k].ar2 = -expo[l] *r2;
          ++k;
        }
      }
    }
  }
 }

// sort(tmp) in increasing ar2;
// Identify first ar2 above numerical accuracy threshold
// Compute vectorized exponentials on significant values

2.6 Computation of shells

2.6.1 Get

qmckl_exit_code qmckl_get_ao_basis_shell_vgl(qmckl_context context, double* const shell_vgl);

2.6.2 Provide

2.6.3 Compute

qmckl_context context in Global state
int64_t prim_num in Number of primitives
int64_t shell_num in Number of shells
int64_t elec_num in Number of electrons
int64_t nucl_num in Number of nuclei
int64_t walk_num in Number of walkers
int64_t nucleus_shell_num[nucl_num] in Number of shells for each nucleus
int64_t nucleus_index[nucl_num] in Index of the 1st shell of each nucleus
int64_t shell_prim_index[shell_num] in Index of the 1st primitive of each shell
int64_t shell_prim_num[shell_num] in Number of primitives per shell
double elec_coord[walk_num][3][elec_num] in Electron coordinates
double nucl_coord[3][elec_num] in Nuclear coordinates
double expo[prim_num] in Exponents of the primitives
double coef_normalized[prim_num] in Coefficients of the primitives
double shell_vgl[5][walk_num][elec_num][shell_num] out Value, gradients and Laplacian of the shells
integer function qmckl_compute_ao_basis_shell_gaussian_vgl_f(context, &
     prim_num, shell_num, elec_num, nucl_num, walk_num, &
     nucleus_shell_num, nucleus_index, shell_prim_index, shell_prim_num, &
     elec_coord, nucl_coord, expo, coef_normalized, shell_vgl) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: prim_num
  integer*8             , intent(in)  :: shell_num
  integer*8             , intent(in)  :: nucl_num
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: walk_num
  integer*8             , intent(in)  :: nucleus_shell_num(nucl_num)
  integer*8             , intent(in)  :: nucleus_index(nucl_num)
  integer*8             , intent(in)  :: shell_prim_index(shell_num)
  integer*8             , intent(in)  :: shell_prim_num(shell_num)
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  double precision      , intent(in)  :: expo(prim_num)
  double precision      , intent(in)  :: coef_normalized(prim_num)
  double precision      , intent(out) :: shell_vgl(shell_num,elec_num,walk_num,5)

  integer*8 :: inucl, iprim, iwalk, ielec, ishell
  double precision :: x, y, z, two_a, ar2, r2, v, cutoff

  info = QMCKL_SUCCESS

  ! Don't compute exponentials when the result will be almost zero.
  ! TODO : Use numerical precision here
  cutoff = -dlog(1.d-15)

  do inucl=1,nucl_num

     do iwalk = 1, walk_num
        do ielec = 1, elec_num

           x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1) 
           y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2) 
           z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3) 

           r2 = x*x + y*y + z*z

           do ishell=nucleus_index(inucl)+1, nucleus_index(inucl)+nucleus_shell_num(inucl)
              ! C is zero-based, so shift bounds by one

              shell_vgl(ishell, ielec, iwalk, 1) = 0.d0
              shell_vgl(ishell, ielec, iwalk, 2) = 0.d0
              shell_vgl(ishell, ielec, iwalk, 3) = 0.d0
              shell_vgl(ishell, ielec, iwalk, 4) = 0.d0
              shell_vgl(ishell, ielec, iwalk, 5) = 0.d0

              do iprim = shell_prim_index(ishell)+1, shell_prim_index(ishell)+shell_prim_num(ishell)

                 ar2 = expo(iprim)*r2
                 if (ar2 > cutoff) then
                    cycle
                 end if

                 v = coef_normalized(iprim) * dexp(-ar2)
                 two_a = -2.d0 * expo(iprim) * v

                 shell_vgl(ishell, ielec, iwalk, 1) = &
                      shell_vgl(ishell, ielec, iwalk, 1) + v

                 shell_vgl(ishell, ielec, iwalk, 2) = &
                      shell_vgl(ishell, ielec, iwalk, 2) + two_a * x 

                 shell_vgl(ishell, ielec, iwalk, 3) = &
                      shell_vgl(ishell, ielec, iwalk, 3) + two_a * y 

                 shell_vgl(ishell, ielec, iwalk, 4) = &
                      shell_vgl(ishell, ielec, iwalk, 4) + two_a * z 

                 shell_vgl(ishell, ielec, iwalk, 5) = &
                      shell_vgl(ishell, ielec, iwalk, 5) + two_a * (3.d0 - 2.d0*ar2)

              end do

           end do
        end do

     end do
  end do

end function qmckl_compute_ao_basis_shell_gaussian_vgl_f
qmckl_exit_code qmckl_compute_ao_basis_shell_gaussian_vgl (
      const qmckl_context context,
      const int64_t prim_num,
      const int64_t shell_num,
      const int64_t elec_num,
      const int64_t nucl_num,
      const int64_t walk_num,
      const int64_t* nucleus_shell_num,
      const int64_t* nucleus_index,
      const int64_t* shell_prim_index,
      const int64_t* shell_prim_num,
      const double* elec_coord,
      const double* nucl_coord,
      const double* expo,
      const double* coef_normalized,
      double* const shell_vgl ); 

2.6.4 Test

3 Polynomial part

Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number (\(-l \le m \le l\)), and in the case of polynomials we choose the canonical ordering, i.e

\begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray}

3.1 General functions for Powers of \(x-X_i\)

The qmckl_ao_power function computes all the powers of the n input data up to the given maximum value given in input for each of the \(n\) points:

\[ P_{ik} = X_i^k \]

qmcklcontext context in Global state
int64t n in Number of values
double X[n] in Array containing the input values
int32t LMAX[n] in Array containing the maximum power for each value
double P[n][ldp] out Array containing all the powers of X
int64t ldp in Leading dimension of array P

3.1.1 Requirements

  • context is not QMCKL_NULL_CONTEXT
  • n > 0
  • X is allocated with at least \(n \times 8\) bytes
  • LMAX is allocated with at least \(n \times 4\) bytes
  • P is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytes
  • LDP >= \(\max_i\) LMAX[i]

3.1.2 C Header

qmckl_exit_code qmckl_ao_power (
      const qmckl_context context,
      const int64_t n,
      const double* X,
      const int32_t* LMAX,
      double* const P,
      const int64_t ldp ); 

3.1.3 Source

integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info)
  use qmckl
  implicit none
  integer*8 , intent(in)  :: context
  integer*8 , intent(in)  :: n
  real*8    , intent(in)  :: X(n)
  integer   , intent(in)  :: LMAX(n)
  real*8    , intent(out) :: P(ldp,n)
  integer*8 , intent(in)  :: ldp

  integer*8  :: i,k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (n <= ldp) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  k = MAXVAL(LMAX)
  if (LDP < k) then
     info = QMCKL_INVALID_ARG_6
     return
  endif

  if (k <= 0) then
     info = QMCKL_INVALID_ARG_4
     return
  endif

  do i=1,n
     P(1,i) = X(i)
     do k=2,LMAX(i)
        P(k,i) = P(k-1,i) * X(i)
     end do
  end do

end function qmckl_ao_power_f

3.1.4 C interface

3.1.5 Fortran interface

3.1.6 Test

integer(c_int32_t) function test_qmckl_ao_power(context) bind(C)
  use qmckl
  implicit none

  integer(qmckl_context), intent(in), value :: context

  integer*8                     :: n, LDP
  integer, allocatable          :: LMAX(:)
  double precision, allocatable :: X(:), P(:,:)
  integer*8                     :: i,j
  double precision              :: epsilon

  epsilon = qmckl_get_numprec_epsilon(context)

  n = 100;
  LDP = 10;

  allocate(X(n), P(LDP,n), LMAX(n))

  do j=1,n
     X(j) = -5.d0 + 0.1d0 * dble(j)
     LMAX(j) = 1 + int(mod(j, 5),4)
  end do

  test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
  if (test_qmckl_ao_power /= QMCKL_SUCCESS) return

  test_qmckl_ao_power = QMCKL_FAILURE

  do j=1,n
     do i=1,LMAX(j)
        if ( X(j)**i == 0.d0 ) then
           if ( P(i,j) /= 0.d0) return
        else
           if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return
        end if
     end do
  end do

  test_qmckl_ao_power = QMCKL_SUCCESS
  deallocate(X,P,LMAX)
end function test_qmckl_ao_power

3.2 General functions for Value, Gradient and Laplacian of a polynomial

A polynomial is centered on a nucleus \(\mathbf{R}_i\)

\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]

The gradients with respect to electron coordinates are

\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}

and the Laplacian is

\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}. \end{eqnarray*}

qmckl_ao_polynomial_vgl computes the values, gradients and Laplacians at a given point in space, of all polynomials with an angular momentum up to lmax.

qmcklcontext context in Global state
double X[3] in Array containing the coordinates of the points
double R[3] in Array containing the x,y,z coordinates of the center
int32t lmax in Maximum angular momentum
int64t n inout Number of computed polynomials
int32t L[n][ldl] out Contains a,b,c for all n results
int64t ldl in Leading dimension of L
double VGL[n][ldv] out Value, gradients and Laplacian of the polynomials
int64t ldv in Leading dimension of array VGL

3.2.1 Requirements

  • context is not QMCKL_NULL_CONTEXT
  • n > 0
  • lmax >= 0
  • ldl >= 3
  • ldv >= 5
  • X is allocated with at least \(3 \times 8\) bytes
  • R is allocated with at least \(3 \times 8\) bytes
  • n >= (lmax+1)(lmax+2)(lmax+3)/6
  • L is allocated with at least \(3 \times n \times 4\) bytes
  • VGL is allocated with at least \(5 \times n \times 8\) bytes
  • On output, n should be equal to (lmax+1)(lmax+2)(lmax+3)/6
  • On output, the powers are given in the following order (l=a+b+c):
    • Increasing values of l
    • Within a given value of l, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"

3.2.2 C Header

qmckl_exit_code qmckl_compute_ao_vgl (
      const qmckl_context context,
      const double* X,
      const double* R,
      const int32_t lmax,
      int64_t* n,
      int32_t* const L,
      const int64_t ldl,
      double* const VGL,
      const int64_t ldv ); 

3.2.3 Source

integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
  use qmckl
  implicit none
  integer*8 , intent(in)  :: context
  real*8    , intent(in)  :: X(3), R(3)
  integer   , intent(in)  :: lmax
  integer*8 , intent(out) :: n
  integer   , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
  integer*8 , intent(in)  :: ldl
  real*8    , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
  integer*8 , intent(in)  :: ldv

  integer*8         :: i,j
  integer           :: a,b,c,d
  real*8            :: Y(3)
  integer           :: lmax_array(3)
  real*8            :: pows(-2:lmax,3)
  double precision  :: xy, yz, xz
  double precision  :: da, db, dc, dd

  info = 0

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (lmax < 0) then
     info = QMCKL_INVALID_ARG_4
     return
  endif

  if (ldl < 3) then
     info = QMCKL_INVALID_ARG_7
     return
  endif

  if (ldv < 5) then
     info = QMCKL_INVALID_ARG_9
     return
  endif


  do i=1,3
     Y(i) = X(i) - R(i)
  end do

  lmax_array(1:3) = lmax
  if (lmax == 0) then
     VGL(1,1) = 1.d0
     vgL(2:5,1) = 0.d0
     l(1:3,1) = 0
     n=1
  else if (lmax > 0) then
     pows(-2:0,1:3) = 1.d0
     do i=1,lmax
        pows(i,1) = pows(i-1,1) * Y(1)
        pows(i,2) = pows(i-1,2) * Y(2)
        pows(i,3) = pows(i-1,3) * Y(3)
     end do

     VGL(1:5,1:4) = 0.d0
     l  (1:3,1:4) = 0

     VGL(1  ,1  ) = 1.d0
     vgl(1:5,2:4) = 0.d0

     l  (1,2) = 1
     vgl(1,2) = pows(1,1)
     vgL(2,2) = 1.d0

     l  (2,3) = 1
     vgl(1,3) = pows(1,2)
     vgL(3,3) = 1.d0

     l  (3,4) = 1
     vgl(1,4) = pows(1,3)
     vgL(4,4) = 1.d0

     n=4
  endif

  ! l>=2
  dd = 2.d0
  do d=2,lmax
     da = dd
     do a=d,0,-1
        db = dd-da
        do b=d-a,0,-1
           c  = d  - a  - b
           dc = dd - da - db
           n = n+1

           l(1,n) = a
           l(2,n) = b
           l(3,n) = c

           xy = pows(a,1) * pows(b,2)
           yz = pows(b,2) * pows(c,3)
           xz = pows(a,1) * pows(c,3)

           vgl(1,n) = xy * pows(c,3)

           xy = dc * xy
           xz = db * xz
           yz = da * yz

           vgl(2,n) = pows(a-1,1) * yz
           vgl(3,n) = pows(b-1,2) * xz
           vgl(4,n) = pows(c-1,3) * xy

           vgl(5,n) = &
                (da-1.d0) * pows(a-2,1) * yz + &
                (db-1.d0) * pows(b-2,2) * xz + &
                (dc-1.d0) * pows(c-2,3) * xy

           db = db - 1.d0
        end do
        da = da - 1.d0
     end do
     dd = dd + 1.d0
  end do

  info = QMCKL_SUCCESS

end function qmckl_ao_polynomial_vgl_f

3.2.4 C interface

3.2.5 Fortran interface

3.2.6 Test

integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C)
  use qmckl
  implicit none

  integer(c_int64_t), intent(in), value :: context

  integer                       :: lmax, d, i
  integer, allocatable          :: L(:,:)
  integer*8                     :: n, ldl, ldv, j
  double precision              :: X(3), R(3), Y(3)
  double precision, allocatable :: VGL(:,:)
  double precision              :: w
  double precision              :: epsilon

  epsilon = qmckl_get_numprec_epsilon(context)

  X = (/ 1.1 , 2.2 ,  3.3 /)
  R = (/ 0.1 , 1.2 , -2.3 /)
  Y(:) = X(:) - R(:)

  lmax = 4;
  ldl = 3;
  ldv = 100;

  d = (lmax+1)*(lmax+2)*(lmax+3)/6

  allocate (L(ldl,d), VGL(ldv,d))

  test_qmckl_ao_polynomial_vgl = &
       qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)

  if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return
  if (n /= d) return

  do j=1,n
     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     do i=1,3
        if (L(i,j) < 0) return
     end do
     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     if (dabs(1.d0 - VGL(1,j) / (&
          Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j)  &
          )) > epsilon ) return

     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     if (L(1,j) < 1) then
        if (VGL(2,j) /= 0.d0) return
     else
        if (dabs(1.d0 - VGL(2,j) / (&
             L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
             )) > epsilon ) return
     end if

     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     if (L(2,j) < 1) then
        if (VGL(3,j) /= 0.d0) return
     else
        if (dabs(1.d0 - VGL(3,j) / (&
             L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
             )) > epsilon ) return
     end if

     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     if (L(3,j) < 1) then
        if (VGL(4,j) /= 0.d0) return
     else
        if (dabs(1.d0 - VGL(4,j) / (&
             L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
             )) > epsilon ) return
     end if

     test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
     w = 0.d0
     if (L(1,j) > 1) then
        w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
     end if
     if (L(2,j) > 1) then
        w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
     end if
     if (L(3,j) > 1) then
        w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
     end if
     if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return
  end do

  test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS

  deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
int  test_qmckl_ao_polynomial_vgl(qmckl_context context);
assert(0 == test_qmckl_ao_polynomial_vgl(context));

4 Combining radial and polynomial parts

4.0.1 Get

qmckl_exit_code qmckl_get_ao_vgl(qmckl_context context, double* const ao_vgl);

4.0.2 Provide

4.0.3 Compute

qmckl_context context in Global state
int64_t ao_num in Number of AOs
int64_t shell_num in Number of shells
int64_t elec_num in Number of electrons
int64_t nucl_num in Number of nuclei
int64_t walk_num in Number of walkers
double elec_coord[walk_num][3][elec_num] in Electron coordinates
double nucl_coord[3][nucl_num] in Nuclear coordinates
int64_t nucleus_index[nucl_num] in Index of the 1st shell of each nucleus
int64_t nucleus_shell_num[nucl_num] in Number of shells per nucleus
double nucleus_range[nucl_num] in Range beyond which all is zero
int32_t nucleus_max_ang_mom[nucl_num] in Maximum angular momentum per nucleus
int32_t shell_ang_mom[shell_num] in Angular momentum of each shell
double ao_factor[ao_num] in Normalization factor of the AOs
double shell_vgl[5][walk_num][elec_num][shell_num] in Value, gradients and Laplacian of the shells
double ao_vgl[5][walk_num][elec_num][ao_num] out Value, gradients and Laplacian of the AOs
integer function qmckl_compute_ao_vgl_f(context, &
     ao_num, shell_num, elec_num, nucl_num, walk_num, &
     elec_coord, nucl_coord, nucleus_index, nucleus_shell_num, &
     nucleus_range, nucleus_max_ang_mom, shell_ang_mom, &
     ao_factor, shell_vgl, ao_vgl) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: ao_num
  integer*8             , intent(in)  :: shell_num
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: nucl_num
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  integer*8             , intent(in)  :: nucleus_index(nucl_num)
  integer*8             , intent(in)  :: nucleus_shell_num(nucl_num)
  double precision      , intent(in)  :: nucleus_range(nucl_num)
  integer               , intent(in)  :: nucleus_max_ang_mom(nucl_num)
  integer               , intent(in)  :: shell_ang_mom(shell_num)
  double precision      , intent(in)  :: ao_factor(ao_num)
  double precision      , intent(in)  :: shell_vgl(shell_num,elec_num,walk_num,5)
  double precision      , intent(out) :: ao_vgl(ao_num,elec_num,walk_num,5)

  double precision  :: e_coord(3), n_coord(3)
  integer*8         :: n_poly
  integer           :: l, il, k
  integer*8         :: ielec, inucl, ishell, iwalk
  integer           :: lstart(0:20)
  double precision  :: x, y, z, r2
  double precision  :: cutoff
  integer, external :: qmckl_ao_polynomial_vgl_f

  double precision, allocatable  :: poly_vgl(:,:)
  integer         , allocatable  :: powers(:,:)

  allocate(poly_vgl(5,ao_num), powers(3,ao_num))

  ! Pre-computed data
  do l=0,20
     lstart(l) = l*(l+1)*(l+2)/6 +1
  end do

  info = QMCKL_SUCCESS

  ! Don't compute polynomials when the radial part is zero.
  ! TODO : Use numerical precision here
  cutoff = -dlog(1.d-15)

  do iwalk = 1,walk_num
     do ielec = 1, elec_num
        e_coord(1) = elec_coord(ielec,1,iwalk)
        e_coord(2) = elec_coord(ielec,2,iwalk)
        e_coord(3) = elec_coord(ielec,3,iwalk)
        k=1
        do inucl=1,nucl_num
           n_coord(1) = nucl_coord(inucl,1)
           n_coord(2) = nucl_coord(inucl,2)
           n_coord(3) = nucl_coord(inucl,3)

           ! Test if the electron is in the range of the nucleus
           x = e_coord(1) - n_coord(1)
           y = e_coord(2) - n_coord(2)
           z = e_coord(3) - n_coord(3)

           r2 = x*x + z*z + z*z

           if (r2 > cutoff*nucleus_range(inucl)) then
              cycle
           end if

           ! Compute polynomials
           info = qmckl_ao_polynomial_vgl_f(context, e_coord, n_coord, &
                nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, &
                poly_vgl, 5_8)

           ! Loop over shells
           do ishell = nucleus_index(inucl)+1, nucleus_index(inucl)+nucleus_shell_num(inucl)
              l = shell_ang_mom(ishell)
              do il = lstart(l), lstart(l+1)-1
                 ! Value
                 ao_vgl(k,ielec,iwalk,1) = &
                      poly_vgl(1,il) * shell_vgl(ishell,ielec,iwalk,1) * ao_factor(k)

                 ! Grad_x
                 ao_vgl(k,ielec,iwalk,2) = ( &
                      poly_vgl(2,il) * shell_vgl(ishell,ielec,iwalk,1) + &
                      poly_vgl(1,il) * shell_vgl(ishell,ielec,iwalk,2) &
                      ) * ao_factor(k)

                 ! Grad_y
                 ao_vgl(k,ielec,iwalk,3) = ( &
                      poly_vgl(3,il) * shell_vgl(ishell,ielec,iwalk,1) + &
                      poly_vgl(1,il) * shell_vgl(ishell,ielec,iwalk,3) &
                      ) * ao_factor(k)

                 ! Grad_z
                 ao_vgl(k,ielec,iwalk,4) = ( &
                      poly_vgl(4,il) * shell_vgl(ishell,ielec,iwalk,1) + &
                      poly_vgl(1,il) * shell_vgl(ishell,ielec,iwalk,4) &
                      ) * ao_factor(k)

                 ! Lapl_z
                 ao_vgl(k,ielec,iwalk,5) = ( &
                      poly_vgl(5,il) * shell_vgl(ishell,ielec,iwalk,1) + &
                      poly_vgl(1,il) * shell_vgl(ishell,ielec,iwalk,5) + &
                      2.d0 * ( &
                      poly_vgl(2,il) * shell_vgl(ishell,ielec,iwalk,2) + &
                      poly_vgl(3,il) * shell_vgl(ishell,ielec,iwalk,3) + &
                      poly_vgl(4,il) * shell_vgl(ishell,ielec,iwalk,4) ) &
                      ) * ao_factor(k)

                 k = k+1
              end do
           end do
        end do
     end do
  end do

  deallocate(poly_vgl, powers)
end function qmckl_compute_ao_vgl_f
qmckl_exit_code qmckl_compute_ao_vgl (
      const qmckl_context context,
      const int64_t ao_num,
      const int64_t shell_num,
      const int64_t elec_num,
      const int64_t nucl_num,
      const int64_t walk_num,
      const double* elec_coord,
      const double* nucl_coord,
      const int64_t* nucleus_index,
      const int64_t* nucleus_shell_num,
      const double* nucleus_range,
      const int32_t* nucleus_max_ang_mom,
      const int32_t* shell_ang_mom,
      const double* ao_factor,
      const double* shell_vgl,
      double* const ao_vgl ); 

4.0.4 Test

Author: TREX CoE

Created: 2021-09-06 Mon 07:49

Validate