#+TITLE: Atomic Orbitals #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org * Introduction The atomic basis set is defined as a list of shells. Each shell $s$ is centered on a nucleus $A$, possesses a given angular momentum $l$ and a radial function $R_s$. The radial function is a linear combination of /primitive/ functions that can be of type Slater ($p=1$) or Gaussian ($p=2$): \[ R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks} \exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). \] In the case of Gaussian functions, $n_s$ is always zero. The normalization factor $\mathcal{N}_s$ ensures that all the functions of the shell are normalized (integrate) to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, $f_{ks}$, need also to be provided. Atomic orbitals (AOs) are defined as \[ \chi_i (\mathbf{r}) = \mathcal{M}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \] where $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen and $P$ are the generating functions of the given angular momentum $\eta(i)$. Here, the parameter $\mathcal{M}_i$ is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example. In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values, gradients and Laplacian of the atomic basis functions. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_func) #ifndef QMCKL_AO_HPF #define QMCKL_AO_HPF #include "qmckl_blas_private_type.h" #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_AO_HPT #define QMCKL_AO_HPT #include #include #include "qmckl_blas_private_type.h" #+end_src #+begin_src f90 :tangle (eval f) :noweb yes #ifdef HAVE_CONFIG_H #include "config.h" #endif #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include "assert.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "chbrclf.h" #include "qmckl_ao_private_func.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_blas_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_ao_private_type.h" #include "qmckl_ao_private_func.h" #+end_src #+NAME:fortran_cutoff #+begin_src fortran cutoff = qmckl_get_numprec_precision(context) cutoff = dlog(2.d0**(cutoff-2)) #+end_src * Context ** Constant data The following arrays are stored in the context, and need to be set when initializing the library: #+NAME: constant_data |---------------------------+-----------------------+----------------------------------------------------------------------| | Variable | Type | Description | |---------------------------+-----------------------+----------------------------------------------------------------------| | ~type~ | ~char~ | Gaussian (~'G'~) or Slater (~'S'~) | | ~shell_num~ | ~int64_t~ | Number of shells | | ~prim_num~ | ~int64_t~ | Total number of primitives | | ~nucleus_index~ | ~int64_t[nucl_num]~ | Index of the first shell of each nucleus | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | Number of shells per nucleus | | ~shell_ang_mom~ | ~int32_t[shell_num]~ | Angular momentum of each shell | | ~shell_prim_num~ | ~int64_t[shell_num]~ | Number of primitives in each shell | | ~shell_prim_index~ | ~int64_t[shell_num]~ | Address of the first primitive of each shell in the ~EXPONENT~ array | | ~shell_factor~ | ~double[shell_num]~ | Normalization factor for each shell | | ~exponent~ | ~double[prim_num]~ | Array of exponents | | ~coefficient~ | ~double[prim_num]~ | Array of coefficients | | ~prim_factor~ | ~double[prim_num]~ | Normalization factors of the primtives | | ~ao_num~ | ~int64_t~ | Number of AOs | | ~ao_cartesian~ | ~bool~ | If true, use polynomials. Otherwise, use spherical harmonics | | ~ao_factor~ | ~double[ao_num]~ | Normalization factor of the AO | |---------------------------+-----------------------+----------------------------------------------------------------------| The following data is computed when the basis is finalized: |---------------------------+-----------------------+-------------------------------------------------------------------------------------------------| | Variable | Type | Description | |---------------------------+-----------------------+-------------------------------------------------------------------------------------------------| | ~nucleus_prim_index~ | ~int64_t[nucl_num+1]~ | Index of the first primitive of each nucleus | | ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | Maximum angular momentum of each nucleus | | ~coefficient_normalized~~ | ~double[prim_num]~ | Normalized array of coefficients | | ~ao_ang_mom~ | ~int32_t[ao_num]~ | Angular momentum of the shell to which the AO belongs | | ~ao_nucl~ | ~int64_t[ao_num]~ | Nucleus on which the AO is centered | | ~nucleus_range~ | ~double[nucl_num]~ | Used to compute the distance beyond which all Gaussian AOs are zero, depending on the precision | |---------------------------+-----------------------+-------------------------------------------------------------------------------------------------| For H_2 with the following basis set, #+NAME: basis #+BEGIN_EXAMPLE HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000 #+END_EXAMPLE we have: #+NAME: params #+BEGIN_EXAMPLE type = 'G' shell_num = 12 prim_num = 20 ao_num = 30 nucleus_index = [0 , 6] shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2] shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0] prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00 ] #+END_EXAMPLE A scalar variable ~$V$~ present in this table can be set or get by calling the functions: #+NAME: template_scalar_c #+begin_src C :tangle no qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context, const $type_of_V$ $V$); qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context, $type_of_V$ const $V$); #+end_src #+begin_src f90 :tangle no interface integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, $V$) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(in) , value :: $V$ end function qmckl_set_ao_basis_$V$ end interface interface integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, $V$) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(out) :: $V$ end function qmckl_get_ao_basis_$V$ end interface #+end_src For array variables, use the rule: #+NAME: template_array_c #+begin_src C :tangle no qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context, const $type_of_V$ $V$, const int64_t size_max); qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context, $type_of_V$ const $V$, const int64_t size_max); #+end_src #+begin_src f90 :tangle no interface integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, & $V$, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(in) , value :: $V$ integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_$V$ end interface interface integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, & $V$, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(out) :: $V$ integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_$V$ end interface #+end_src *** Data structure :noexport: #+begin_src c :comments org :tangle (eval h_private_type) :noweb yes typedef struct qmckl_ao_basis_struct { int64_t shell_num; int64_t prim_num; int64_t ao_num; int64_t * restrict nucleus_index; int64_t * restrict nucleus_shell_num; int32_t * restrict shell_ang_mom; int64_t * restrict shell_prim_num; int64_t * restrict shell_prim_index; double * restrict shell_factor; double * restrict exponent; double * restrict coefficient; double * restrict prim_factor; double * restrict ao_factor; int64_t * restrict ao_nucl; int32_t * restrict ao_ang_mom; int64_t * restrict nucleus_prim_index; double * restrict coefficient_normalized; int32_t * restrict nucleus_max_ang_mom; double * restrict nucleus_range; double * restrict primitive_vgl; uint64_t primitive_vgl_date; double * restrict shell_vgl; uint64_t shell_vgl_date; double * restrict ao_vgl; uint64_t ao_vgl_date; double * restrict ao_value; uint64_t ao_value_date; int32_t uninitialized; bool provided; bool ao_cartesian; char type; #ifdef HAVE_HPC <> #endif } qmckl_ao_basis_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_private_func) qmckl_exit_code qmckl_init_ao_basis(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_init_ao_basis", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); ctx->ao_basis.uninitialized = (1 << 14) - 1; /* Default values */ ctx->ao_basis.ao_cartesian = true; return QMCKL_SUCCESS; } #+end_src *** Initialization functions ~size_max~ is the dimension of the input array, which should be equal of larger than the value given in the table of section [[Context]]. **** C interface #+NAME:pre2 #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_NULL_CONTEXT, "qmckl_set_ao_*", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; if (mask != 0 && !(ctx->ao_basis.uninitialized & mask)) { return qmckl_failwith( context, QMCKL_ALREADY_SET, "qmckl_set_ao_*", NULL); } #+end_src #+NAME:post2 #+begin_src c :exports none ctx->ao_basis.uninitialized &= ~mask; ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0); if (ctx->ao_basis.provided) { qmckl_exit_code rc_ = qmckl_finalize_basis(context); if (rc_ != QMCKL_SUCCESS) return rc_; } return QMCKL_SUCCESS; #+end_src To set the basis set, all the following functions need to be called. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_type (qmckl_context context, const char basis_type); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_type(qmckl_context context, const char basis_type) { int32_t mask = 1; <> if (basis_type != 'G' && basis_type != 'S') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_type", NULL); } ctx->ao_basis.type = basis_type; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num) { int32_t mask = 1 << 1; <> if (shell_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "shell_num <= 0"); } const int64_t prim_num = ctx->ao_basis.prim_num; if (0L < prim_num && prim_num < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "shell_num > prim_num"); } ctx->ao_basis.shell_num = shell_num; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num) { int32_t mask = 1 << 2; <> if (prim_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "prim_num must be positive"); } const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_num", "shell_num is not set"); } if (prim_num < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "prim_num < shell_num"); } ctx->ao_basis.prim_num = prim_num; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_nucleus_shell_num (qmckl_context context, const int64_t* nucleus_shell_num, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_nucleus_shell_num (qmckl_context context, const int64_t* nucleus_shell_num, const int64_t size_max) { int32_t mask = 1 << 3; <> const int64_t nucl_num = ctx->nucleus.num; if (nucl_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_nucleus_shell_num", "shell_num is not set"); } if (size_max < nucl_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_nucleus_shell_num", "input array too small"); } if (ctx->ao_basis.nucleus_shell_num != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.nucleus_shell_num); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_nucleus_shell_num", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = nucl_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_nucleus_shell_num", NULL); } memcpy(new_array, nucleus_shell_num, mem_info.size); ctx->ao_basis.nucleus_shell_num = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_nucleus_index (qmckl_context context, const int64_t* nucleus_index, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_nucleus_index (qmckl_context context, const int64_t* nucleus_index, const int64_t size_max) { int32_t mask = 1 << 4; <> const int64_t nucl_num = ctx->nucleus.num; if (nucl_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_nucleus_index", "nucl_num is not set"); } if (size_max < nucl_num) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_nucleus_index", "input array too small"); } if (ctx->ao_basis.nucleus_index != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.nucleus_index); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_nucleus_index", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = nucl_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_nucleus_index", NULL); } memcpy(new_array, nucleus_index, mem_info.size); ctx->ao_basis.nucleus_index = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const int32_t* shell_ang_mom, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const int32_t* shell_ang_mom, const int64_t size_max) { int32_t mask = 1 << 5; <> const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_ang_mom", "shell_num is not set"); } if (size_max < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_shell_ang_mom", "input array too small"); } if (ctx->ao_basis.shell_ang_mom != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_ang_mom); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_ang_mom", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int32_t); int32_t * new_array = (int32_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_ang_mom", NULL); } memcpy(new_array, shell_ang_mom, mem_info.size); ctx->ao_basis.shell_ang_mom = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t* shell_prim_num, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t* shell_prim_num, const int64_t size_max) { int32_t mask = 1 << 6; <> const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_prim_num", "shell_num is not set"); } if (size_max < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_shell_prim_num", "input array too small"); } if (ctx->ao_basis.shell_prim_num != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_num); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_prim_num", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_prim_num", NULL); } memcpy(new_array, shell_prim_num, mem_info.size); ctx->ao_basis.shell_prim_num = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t* shell_prim_index, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t* shell_prim_index, const int64_t size_max) { int32_t mask = 1 << 7; <> const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_prim_index", "shell_num is not set"); } if (size_max < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_shell_prim_index", "input array too small"); } if (ctx->ao_basis.shell_prim_index != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_index); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_prim_index", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_prim_index", NULL); } memcpy(new_array, shell_prim_index, mem_info.size); ctx->ao_basis.shell_prim_index = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double* shell_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double* shell_factor, const int64_t size_max) { int32_t mask = 1 << 8; <> const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_shell_factor", "shell_num is not set"); } if (size_max < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_shell_factor", "input array too small"); } if (ctx->ao_basis.shell_factor != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_factor); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_shell_factor", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = shell_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_shell_factor", NULL); } memcpy(new_array, shell_factor, mem_info.size); ctx->ao_basis.shell_factor = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double* exponent, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double* exponent, const int64_t size_max) { int32_t mask = 1 << 9; <> const int64_t prim_num = ctx->ao_basis.prim_num; if (prim_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_exponent", "prim_num is not set"); } if (size_max < prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_exponent", "input array too small"); } if (ctx->ao_basis.exponent != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.exponent); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_exponent", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = prim_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_exponent", NULL); } memcpy(new_array, exponent, mem_info.size); ctx->ao_basis.exponent = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double* coefficient, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double* coefficient, const int64_t size_max) { int32_t mask = 1 << 10; <> const int64_t prim_num = ctx->ao_basis.prim_num; if (prim_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_coefficient", "prim_num is not set"); } if (size_max < prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_coefficient", "input array too small"); } if (ctx->ao_basis.coefficient != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.coefficient); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_coefficient", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = prim_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_coefficient", NULL); } memcpy(new_array, coefficient, mem_info.size); ctx->ao_basis.coefficient = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_prim_factor (qmckl_context context, const double* prim_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_prim_factor (qmckl_context context, const double* prim_factor, const int64_t size_max) { int32_t mask = 1 << 11; <> const int64_t prim_num = ctx->ao_basis.prim_num; if (prim_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_prim_factor", "prim_num is not set"); } if (size_max < prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_prim_factor", "input array too small"); } if (ctx->ao_basis.prim_factor != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.prim_factor); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_prim_factor", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = prim_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_prim_factor", NULL); } memcpy(new_array, prim_factor, mem_info.size); ctx->ao_basis.prim_factor = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_ao_num (qmckl_context context, const int64_t ao_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_ao_num (qmckl_context context, const int64_t ao_num) { int32_t mask = 1 << 12; <> if (ao_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "ao_num must be positive"); } const int64_t shell_num = ctx->ao_basis.shell_num; if (shell_num <= 0L) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "shell_num is not set"); } if (ao_num < shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_ao_basis_shell_num", "ao_num < shell_num"); } ctx->ao_basis.ao_num = ao_num; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_ao_factor (qmckl_context context, const double* ao_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_ao_factor (qmckl_context context, const double* ao_factor, const int64_t size_max) { int32_t mask = 1 << 13; <> const int64_t ao_num = ctx->ao_basis.ao_num; if (ao_num <= 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_ao_basis_ao_factor", "ao_num is not set"); } if (size_max < ao_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_ao_basis_ao_factor", "input array too small"); } if (ctx->ao_basis.ao_factor != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.ao_factor); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ao_basis_ao_factor", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ao_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_ao_basis_ao_factor", NULL); } memcpy(new_array, ao_factor, mem_info.size); ctx->ao_basis.ao_factor = new_array; <> } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_ao_basis_cartesian (qmckl_context context, const bool cartesian); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_ao_basis_cartesian (qmckl_context context, const bool cartesian) { int32_t mask = 1; <> ctx->ao_basis.ao_cartesian = cartesian; <> } #+end_src **** Fortran interface #+begin_src f90 :tangle (eval fh_func) :comments org interface integer(c_int32_t) function qmckl_set_ao_basis_type (context, & basis_type) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: basis_type end function qmckl_set_ao_basis_type end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_shell_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_prim_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_prim_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_nucleus_index(context, & idx, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: idx(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_nucleus_index end interface interface integer(c_int32_t) function qmckl_set_ao_basis_nucleus_shell_num(context, & shell_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_nucleus_shell_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_ang_mom(context, & shell_ang_mom, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int32_t) , intent(in) :: shell_ang_mom(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_ang_mom end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_num(context, & shell_prim_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_prim_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_prim_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_index(context, & shell_prim_index, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_prim_index(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_prim_index end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_factor(context, & shell_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: shell_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_factor end interface interface integer(c_int32_t) function qmckl_set_ao_basis_exponent(context, & exponent, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: exponent(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_exponent end interface interface integer(c_int32_t) function qmckl_set_ao_basis_coefficient(context, & coefficient, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: coefficient(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_coefficient end interface interface integer(c_int32_t) function qmckl_set_ao_basis_prim_factor(context, & prim_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: prim_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_prim_factor end interface interface integer(c_int32_t) function qmckl_set_ao_basis_ao_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_ao_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_cartesian(context, & cartesian) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context logical (c_bool) , intent(in) , value :: cartesian end function qmckl_set_ao_basis_cartesian end interface interface integer(c_int32_t) function qmckl_set_ao_basis_ao_factor(context, & ao_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: ao_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_ao_factor end interface #+end_src *** Access functions ~size_max~ is the dimension of the input array, which should be equal of larger than the value given in the table of section [[Context]]. **** C interface #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_type (const qmckl_context context, char* const basis_type); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_type (const qmckl_context context, char* const basis_type) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_type", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_type", NULL); } assert (ctx->ao_basis.type != (char) 0); basis_type[0] = ctx->ao_basis.type; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_shell_num (const qmckl_context context, int64_t* const shell_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_num (const qmckl_context context, int64_t* const shell_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_factor", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_shell_num", NULL); } assert (ctx->ao_basis.shell_num > (int64_t) 0); ,*shell_num = ctx->ao_basis.shell_num; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_prim_num (const qmckl_context context, int64_t* const prim_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_prim_num (const qmckl_context context, int64_t* const prim_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_prim_num", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_prim_num", NULL); } assert (ctx->ao_basis.prim_num > (int64_t) 0); ,*prim_num = ctx->ao_basis.prim_num; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_nucleus_shell_num (const qmckl_context context, int64_t* const nucleus_shell_num, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_nucleus_shell_num (const qmckl_context context, int64_t* const nucleus_shell_num, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_nucleus_shell_num", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 3; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_nucleus_shell_num", NULL); } if (nucleus_shell_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_nucleus_shell_num", "NULL pointer"); } if (size_max < ctx->nucleus.num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_nucleus_shell_num", "Array too small. Expected nucl_num"); } assert (ctx->ao_basis.nucleus_shell_num != NULL); memcpy(nucleus_shell_num, ctx->ao_basis.nucleus_shell_num, (size_t) ctx->nucleus.num * sizeof(int64_t)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_nucleus_index (const qmckl_context context, int64_t* const nucleus_index, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_nucleus_index (const qmckl_context context, int64_t* const nucleus_index, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_nucleus_index", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 4; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_nucleus_index", NULL); } if (nucleus_index == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_nucleus_index", "NULL pointer"); } if (size_max < ctx->nucleus.num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_nucleus_index", "Array too small. Expected shell_num"); } assert (ctx->ao_basis.nucleus_index != NULL); memcpy(nucleus_index, ctx->ao_basis.nucleus_index, (size_t) ctx->nucleus.num * sizeof(int64_t)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context, int32_t* const shell_ang_mom, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context, int32_t* const shell_ang_mom, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_ang_mom", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 5; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_shell_ang_mom", NULL); } if (shell_ang_mom == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_shell_ang_mom", "NULL pointer"); } if (size_max < ctx->ao_basis.shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_shell_ang_mom", "Array too small. Expected shell_num"); } assert (ctx->ao_basis.shell_ang_mom != NULL); memcpy(shell_ang_mom, ctx->ao_basis.shell_ang_mom, (size_t) ctx->ao_basis.shell_num * sizeof(int32_t)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_shell_prim_num (const qmckl_context context, int64_t* const shell_prim_num, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_prim_num (const qmckl_context context, int64_t* const shell_prim_num, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_prim_num", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 6; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_shell_prim_num", NULL); } if (shell_prim_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_shell_prim_num", "NULL pointer"); } if (size_max < ctx->ao_basis.shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_shell_prim_num", "Array too small. Expected shell_num"); } assert (ctx->ao_basis.shell_prim_num != NULL); memcpy(shell_prim_num, ctx->ao_basis.shell_prim_num, (size_t) ctx->ao_basis.shell_num * sizeof(int64_t)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_shell_prim_index (const qmckl_context context, int64_t* const shell_prim_index, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_prim_index (const qmckl_context context, int64_t* const shell_prim_index, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_prim_index", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 7; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_shell_prim_index", NULL); } if (shell_prim_index == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_shell_prim_index", "NULL pointer"); } if (size_max < ctx->ao_basis.shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_shell_prim_index", "Array too small. Expected shell_num"); } assert (ctx->ao_basis.shell_prim_index != NULL); memcpy(shell_prim_index, ctx->ao_basis.shell_prim_index, (size_t) ctx->ao_basis.shell_num * sizeof(int64_t)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_shell_factor (const qmckl_context context, double* const shell_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_factor (const qmckl_context context, double* const shell_factor, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_factor", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 8; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_shell_factor", NULL); } if (shell_factor == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_shell_factor", "NULL pointer"); } if (size_max < ctx->ao_basis.shell_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_shell_factor", "Array too small. Expected shell_num"); } assert (ctx->ao_basis.shell_factor != NULL); memcpy(shell_factor, ctx->ao_basis.shell_factor, (size_t) ctx->ao_basis.shell_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_exponent (const qmckl_context context, double* const exponent, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_exponent (const qmckl_context context, double* const exponent, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_exponent", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 9; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_exponent", NULL); } if (exponent == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_exponent", "NULL pointer"); } if (size_max < ctx->ao_basis.prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_exponent", "Array too small. Expected prim_num"); } assert (ctx->ao_basis.exponent != NULL); memcpy(exponent, ctx->ao_basis.exponent, (size_t) ctx->ao_basis.prim_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_coefficient (const qmckl_context context, double* const coefficient, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_coefficient (const qmckl_context context, double* const coefficient, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_coefficient", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 10; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_coefficient", NULL); } if (coefficient == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_coefficient", "NULL pointer"); } if (size_max < ctx->ao_basis.prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_coefficient", "Array too small. Expected prim_num"); } assert (ctx->ao_basis.coefficient != NULL); memcpy(coefficient, ctx->ao_basis.coefficient, (size_t) ctx->ao_basis.prim_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_prim_factor (const qmckl_context context, double* const prim_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_prim_factor (const qmckl_context context, double* const prim_factor, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_prim_factor", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 11; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_prim_factor", NULL); } if (prim_factor == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_prim_factor", "NULL pointer"); } if (size_max < ctx->ao_basis.prim_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_prim_factor", "Array too small. Expected prim_num"); } assert (ctx->ao_basis.prim_factor != NULL); memcpy(prim_factor, ctx->ao_basis.prim_factor, (size_t) ctx->ao_basis.prim_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_ao_num (const qmckl_context context, int64_t* const ao_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_num (const qmckl_context context, int64_t* const ao_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_num", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 12; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_ao_num", NULL); } assert (ctx->ao_basis.ao_num > (int64_t) 0); *ao_num = ctx->ao_basis.ao_num; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_get_ao_basis_ao_factor (const qmckl_context context, double* const ao_factor, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_factor (const qmckl_context context, double* const ao_factor, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_factor", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 13; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_ao_basis_ao_factor", NULL); } if (ao_factor == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_ao_basis_ao_factor", "NULL pointer"); } if (size_max < ctx->ao_basis.ao_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_ao_factor", "Array too small. Expected ao_num"); } assert (ctx->ao_basis.ao_factor != NULL); memcpy(ao_factor, ctx->ao_basis.ao_factor, ctx->ao_basis.ao_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src When all the data for the AOs have been provided, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_ao_basis_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_ao_basis_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); return ctx->ao_basis.provided; } #+end_src **** Fortran interface #+begin_src f90 :tangle (eval fh_func) :comments org interface integer(c_int32_t) function qmckl_get_ao_basis_type (context, & basis_type) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(out) :: basis_type end function qmckl_get_ao_basis_type end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_shell_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_prim_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_prim_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_nucleus_shell_num(context, & shell_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_nucleus_shell_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_nucleus_index(context, & idx, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: idx(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_nucleus_index end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_ang_mom(context, & shell_ang_mom, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int32_t) , intent(out) :: shell_ang_mom(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_ang_mom end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_num(context, & shell_prim_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_prim_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_prim_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_index(context, & shell_prim_index, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_prim_index(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_prim_index end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_factor(context, & shell_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: shell_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_factor end interface interface integer(c_int32_t) function qmckl_get_ao_basis_exponent(context, & exponent, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: exponent(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_exponent end interface interface integer(c_int32_t) function qmckl_get_ao_basis_coefficient(context, & coefficient, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: coefficient(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_coefficient end interface interface integer(c_int32_t) function qmckl_get_ao_basis_prim_factor(context, & prim_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: prim_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_prim_factor end interface interface integer(c_int32_t) function qmckl_get_ao_basis_ao_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_ao_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_cartesian(context, & cartesian) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context logical (c_bool) , intent(out) :: cartesian end function qmckl_get_ao_basis_cartesian end interface interface integer(c_int32_t) function qmckl_get_ao_basis_ao_factor(context, & ao_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: ao_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_factor end interface #+end_src *** Test :noexport: #+begin_src c :tangle (eval c_test) :exports none :exports none const int64_t nucl_num = chbrclf_nucl_num; const double* nucl_charge = chbrclf_charge; const double* nucl_coord = &(chbrclf_nucl_coord[0][0]); qmckl_exit_code rc; rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]), 3*nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge(context, nucl_charge, nucl_num); assert(rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); const int64_t shell_num = chbrclf_shell_num; const int64_t prim_num = chbrclf_prim_num; const int64_t ao_num = chbrclf_ao_num; const int64_t * nucleus_index = &(chbrclf_basis_nucleus_index[0]); const int64_t * nucleus_shell_num = &(chbrclf_basis_nucleus_shell_num[0]); const int32_t * shell_ang_mom = &(chbrclf_basis_shell_ang_mom[0]); const int64_t * shell_prim_num = &(chbrclf_basis_shell_prim_num[0]); const int64_t * shell_prim_index = &(chbrclf_basis_shell_prim_index[0]); const double * shell_factor = &(chbrclf_basis_shell_factor[0]); const double * exponent = &(chbrclf_basis_exponent[0]); const double * coefficient = &(chbrclf_basis_coefficient[0]); const double * prim_factor = &(chbrclf_basis_prim_factor[0]); const double * ao_factor = &(chbrclf_basis_ao_factor[0]); const char typ = 'G'; assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_type (context, typ); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_num (context, shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_prim_num (context, prim_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index, nucl_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index, nucl_num); assert(rc == QMCKL_ALREADY_SET); rc = qmckl_set_ao_basis_nucleus_shell_num (context, nucleus_shell_num, nucl_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_ang_mom (context, shell_ang_mom, shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_factor (context, shell_factor, shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_num (context, shell_prim_num, shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_index (context, shell_prim_index, shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_exponent (context, exponent, prim_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_coefficient (context, coefficient, prim_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_prim_factor (context, prim_factor, prim_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_ao_basis_ao_num(context, ao_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_ao_basis_ao_factor (context, ao_factor, ao_num); assert(rc == QMCKL_SUCCESS); assert(qmckl_ao_basis_provided(context)); int64_t shell_num_test ; int64_t prim_num_test ; int64_t ao_num_test ; int64_t * nucleus_index_test ; int64_t * nucleus_shell_num_test; int32_t * shell_ang_mom_test ; int64_t * shell_prim_num_test ; int64_t * shell_prim_index_test ; double * shell_factor_test ; double * exponent_test ; double * coefficient_test ; double * prim_factor_test ; double * ao_factor_test ; char typ_test ; rc = qmckl_get_ao_basis_type (context, &typ_test); assert (rc == QMCKL_SUCCESS); assert(typ == typ_test); rc = qmckl_get_ao_basis_shell_num (context, &shell_num_test); assert (rc == QMCKL_SUCCESS); assert(shell_num == shell_num_test); rc = qmckl_get_ao_basis_prim_num (context, &prim_num_test); assert (rc == QMCKL_SUCCESS); assert(prim_num == prim_num_test); nucleus_index_test = (int64_t*) malloc (nucl_num * sizeof(int64_t)); rc = qmckl_get_ao_basis_nucleus_index (context, nucleus_index_test, nucl_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < nucl_num ; ++i) { assert(nucleus_index_test[i] == nucleus_index[i]); } free(nucleus_index_test); nucleus_shell_num_test = (int64_t*) malloc ( nucl_num * sizeof(int64_t)); rc = qmckl_get_ao_basis_nucleus_shell_num (context, nucleus_shell_num_test, nucl_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < nucl_num ; ++i) { assert(nucleus_shell_num_test[i] == nucleus_shell_num[i]); } free(nucleus_shell_num_test); shell_ang_mom_test = (int32_t*) malloc ( shell_num * sizeof(int32_t)); rc = qmckl_get_ao_basis_shell_ang_mom (context, shell_ang_mom_test, shell_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < shell_num ; ++i) { assert(shell_ang_mom_test[i] == shell_ang_mom[i]); } free(shell_ang_mom_test); shell_factor_test = (double*) malloc ( shell_num * sizeof(double)); rc = qmckl_get_ao_basis_shell_factor (context, shell_factor_test, shell_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < shell_num ; ++i) { assert(shell_factor_test[i] == shell_factor[i]); } free(shell_factor_test); shell_prim_num_test = (int64_t*) malloc ( shell_num * sizeof(int64_t)); rc = qmckl_get_ao_basis_shell_prim_num (context, shell_prim_num_test, shell_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < shell_num ; ++i) { assert(shell_prim_num_test[i] == shell_prim_num[i]); } free(shell_prim_num_test); shell_prim_index_test = (int64_t*) malloc ( shell_num * sizeof(int64_t)); rc = qmckl_get_ao_basis_shell_prim_index (context, shell_prim_index_test, shell_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < shell_num ; ++i) { assert(shell_prim_index_test[i] == shell_prim_index[i]); } free(shell_prim_index_test); exponent_test = (double*) malloc ( prim_num * sizeof(double)); rc = qmckl_get_ao_basis_exponent(context, exponent_test, prim_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < prim_num ; ++i) { assert(exponent_test[i] == exponent[i]); } free(exponent_test); coefficient_test = (double*) malloc ( prim_num * sizeof(double)); rc = qmckl_get_ao_basis_coefficient(context, coefficient_test, prim_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < prim_num ; ++i) { assert(coefficient_test[i] == coefficient[i]); } free(coefficient_test); prim_factor_test = (double*) malloc ( prim_num * sizeof(double)); rc = qmckl_get_ao_basis_prim_factor (context, prim_factor_test, prim_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < prim_num ; ++i) { assert(prim_factor_test[i] == prim_factor[i]); } free(prim_factor_test); rc = qmckl_get_ao_basis_ao_num(context, &ao_num_test); assert(ao_num == ao_num_test); ao_factor_test = (double*) malloc ( ao_num * sizeof(double)); rc = qmckl_get_ao_basis_ao_factor (context, ao_factor_test, ao_num); assert (rc == QMCKL_SUCCESS); for (int64_t i=0 ; i < ao_num ; ++i) { assert(ao_factor_test[i] == ao_factor[i]); } free(ao_factor_test); #+end_src ** Computed data The following data is computed as described in the next sections: |----------------------+-----------------------------------+----------------------------------------------------------------------------------------------| | Variable | Type | Description | |----------------------+-----------------------------------+----------------------------------------------------------------------------------------------| | ~primitive_vgl~ | ~double[point_num][5][prim_num]~ | Value, gradients, Laplacian of the primitives at current positions | | ~primitive_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the primitives at current positions | | ~shell_vgl~ | ~double[point_num][5][shell_num]~ | Value, gradients, Laplacian of the primitives at current positions | | ~shell_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the AOs at current positions | | ~ao_vgl~ | ~double[point_num][5][ao_num]~ | Value, gradients, Laplacian of the AOs at current positions | | ~ao_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the AOs at current positions | | ~ao_value~ | ~double[point_num][ao_num]~ | Values of the the AOs at current positions | | ~ao_value_date~ | ~uint64_t~ | Last modification date of the values of the AOs at current positions | |----------------------+-----------------------------------+----------------------------------------------------------------------------------------------| *** After initialization When the basis set is completely entered, extra data structures may be computed to accelerate the calculations. The primitives within each contraction are sorted in ascending order of their exponents, such that as soon as a primitive is zero all the following functions vanish. Also, it is possible to compute a nuclear radius beyond which all the primitives are zero up to the numerical accuracy defined in the context. #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_finalize_basis (qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_finalize_basis(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_finalize_basis", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t nucl_num = 0; qmckl_exit_code rc = qmckl_get_nucleus_num(context, &nucl_num); if (rc != QMCKL_SUCCESS) return rc; /* nucleus_prim_index */ { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (ctx->nucleus.num + (int64_t) 1) * sizeof(int64_t); ctx->ao_basis.nucleus_prim_index = (int64_t*) qmckl_malloc(context, mem_info); if (ctx->ao_basis.nucleus_prim_index == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.nucleus_prim_index", NULL); } for (int64_t i=0 ; iao_basis.nucleus_index[i]; ctx->ao_basis.nucleus_prim_index[i] = ctx->ao_basis.shell_prim_index[shell_idx]; } ctx->ao_basis.nucleus_prim_index[nucl_num] = ctx->ao_basis.prim_num; } /* ao_ang_mom */ { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.ao_num * sizeof(int32_t); ctx->ao_basis.ao_ang_mom = (int32_t*) qmckl_malloc(context, mem_info); if (ctx->ao_basis.ao_ang_mom == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.ao_ang_mom", NULL); } mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.ao_num * sizeof(int64_t); ctx->ao_basis.ao_nucl = (int64_t*) qmckl_malloc(context, mem_info); if (ctx->ao_basis.ao_nucl == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.ao_nucl", NULL); } int64_t lstart[32]; for (int32_t l=0 ; l<32 ; ++l) { lstart[l] = l*(l+1)*(l+2)/6; } int64_t ao_idx = 0; for (int64_t inucl=0 ; inuclao_basis.nucleus_index[inucl]; const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl]; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { const int l = ctx->ao_basis.shell_ang_mom[ishell]; assert (l<32); for (int m=lstart[l] ; m < lstart[l+1]; m++) { ctx->ao_basis.ao_ang_mom[ao_idx] = l; ctx->ao_basis.ao_nucl[ao_idx] = inucl; ++ao_idx; } } } assert( ao_idx == ctx->ao_basis.ao_num ); } /* Normalize coefficients */ { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.prim_num * sizeof(double); ctx->ao_basis.coefficient_normalized = (double *) qmckl_malloc(context, mem_info); if (ctx->ao_basis.coefficient_normalized == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.coefficient_normalized", NULL); } for (int64_t ishell=0 ; ishell < ctx->ao_basis.shell_num ; ++ishell) { for (int64_t iprim=ctx->ao_basis.shell_prim_index[ishell] ; iprim < ctx->ao_basis.shell_prim_index[ishell]+ctx->ao_basis.shell_prim_num[ishell] ; ++iprim) { ctx->ao_basis.coefficient_normalized[iprim] = ctx->ao_basis.coefficient[iprim] * ctx->ao_basis.prim_factor[iprim] * ctx->ao_basis.shell_factor[ishell]; } } } /* Find max angular momentum on each nucleus */ { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->nucleus.num * sizeof(int32_t); ctx->ao_basis.nucleus_max_ang_mom = (int32_t *) qmckl_malloc(context, mem_info); if (ctx->ao_basis.nucleus_max_ang_mom == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.nucleus_max_ang_mom", NULL); } for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) { ctx->ao_basis.nucleus_max_ang_mom[inucl] = 0; for (int64_t ishell=ctx->ao_basis.nucleus_index[inucl] ; ishell < ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl] ; ++ishell) { ctx->ao_basis.nucleus_max_ang_mom[inucl] = ctx->ao_basis.nucleus_max_ang_mom[inucl] > ctx->ao_basis.shell_ang_mom[ishell] ? ctx->ao_basis.nucleus_max_ang_mom[inucl] : ctx->ao_basis.shell_ang_mom[ishell] ; } } } /* // Find distance beyond which all AOs are zero using computed Gaussians. { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->nucleus.num * 53 * sizeof(double); ctx->ao_basis.nucleus_range = (double *) qmckl_malloc(context, mem_info); if (ctx->ao_basis.nucleus_range == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.nucleus_range", NULL); } for (int64_t i=0 ; inucleus.num * 53 ; ++i) { ctx->ao_basis.nucleus_range[i] = 50.; } if (ctx->ao_basis.type == 'G') { rc = qmckl_compute_nucleus_range_gaussian(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->ao_basis.prim_num, nucl_num, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_prim_index, ctx->ao_basis.shell_prim_num, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.exponent, ctx->ao_basis.coefficient_normalized, ctx->ao_basis.nucleus_range); } } */ /* Find distance beyond which all AOs are zero. The distance is obtained by sqrt(-log(epsilon)*range) */ { if (ctx->ao_basis.type == 'G') { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->nucleus.num * sizeof(double); ctx->ao_basis.nucleus_range = (double *) qmckl_malloc(context, mem_info); if (ctx->ao_basis.nucleus_range == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "ao_basis.nucleus_range", NULL); } for (int64_t inucl=0 ; inucl < ctx->nucleus.num ; ++inucl) { ctx->ao_basis.nucleus_range[inucl] = 0.; for (int64_t ishell=ctx->ao_basis.nucleus_index[inucl] ; ishell < ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl] ; ++ishell) { for (int64_t iprim=ctx->ao_basis.shell_prim_index[ishell] ; iprim < ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell] ; ++iprim) { double range = 1./ctx->ao_basis.exponent[iprim]; ctx->ao_basis.nucleus_range[inucl] = ctx->ao_basis.nucleus_range[inucl] > range ? ctx->ao_basis.nucleus_range[inucl] : range; } } } } } #ifdef HAVE_HPC rc = qmckl_finalize_basis_hpc(context); if (rc != QMCKL_SUCCESS) return rc; #endif return qmckl_context_touch(context); } #+end_src *** TODO HPC-specific data structures For faster access, we provide extra arrays for the shell information as: - $C_{psa}$ = =coef_per_nucleus[inucl][ishell][iprim]= - $\gamma_{pa}$ =expo_per_nucleus[inucl][iprim]= such that the computation of the radial parts can be vectorized. Exponents are sorted in increasing order to exit loops quickly, and only unique exponents are kept. This also allows to pack the exponents to enable vectorization of exponentials. The computation of the radial part is made as \[ R_{sa} = \sum_p C_{psa} \gamma_{pa} \] which is a matrix-vector product. #+NAME:HPC_struct #+begin_src c :comments org :exports none /* HPC specific data structures */ int32_t* restrict prim_num_per_nucleus; qmckl_tensor coef_per_nucleus; qmckl_matrix expo_per_nucleus; #+end_src #+begin_src c :comments org :tangle (eval h_private_func) :exports none #ifdef HAVE_HPC qmckl_exit_code qmckl_finalize_basis_hpc (qmckl_context context); #endif #+end_src #+begin_src c :comments org :tangle (eval c) :exports none /* Data structure for sorting */ struct combined { double expo; int64_t index; }; /* Comparison function */ int compare_basis( const void * l, const void * r ) { const struct combined * restrict _l= (const struct combined *)l; const struct combined * restrict _r= (const struct combined *)r; if( _l->expo > _r->expo ) return 1; if( _l->expo < _r->expo ) return -1; return 0; } #ifdef HAVE_HPC qmckl_exit_code qmckl_finalize_basis_hpc (qmckl_context context) { qmckl_context_struct* const ctx = (qmckl_context_struct*) context; qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->nucleus.num * sizeof(int32_t); ctx->ao_basis.prim_num_per_nucleus = (int32_t*) qmckl_malloc(context, mem_info); /* Find max number of primitives per nucleus */ int64_t shell_max = 0; int64_t prim_max = 0; int64_t nucl_num = ctx->nucleus.num; for (int inucl=0 ; inucl < nucl_num ; ++inucl) { shell_max = ctx->ao_basis.nucleus_shell_num[inucl] > shell_max ? ctx->ao_basis.nucleus_shell_num[inucl] : shell_max; int64_t prim_num = 0; const int64_t ishell_start = ctx->ao_basis.nucleus_index[inucl]; const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl]; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { prim_num += ctx->ao_basis.shell_prim_num[ishell]; } prim_max = prim_num > prim_max ? prim_num : prim_max; ctx->ao_basis.prim_num_per_nucleus[inucl] = prim_num; } int64_t size[3] = { prim_max, shell_max, nucl_num }; ctx->ao_basis.coef_per_nucleus = qmckl_tensor_alloc( context, 3, size ); ctx->ao_basis.coef_per_nucleus = qmckl_tensor_set(ctx->ao_basis.coef_per_nucleus, 0.); ctx->ao_basis.expo_per_nucleus = qmckl_matrix_alloc( context, prim_max, nucl_num ); ctx->ao_basis.expo_per_nucleus = qmckl_matrix_set(ctx->ao_basis.expo_per_nucleus, 0.); struct combined expo[prim_max]; double coef[shell_max][prim_max]; double newcoef[prim_max]; for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) { memset(expo, 0, sizeof(expo)); memset(coef, 0, sizeof(expo)); int64_t idx = 0; const int64_t ishell_start = ctx->ao_basis.nucleus_index[inucl]; const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl]; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { const int64_t iprim_start = ctx->ao_basis.shell_prim_index[ishell]; const int64_t iprim_end = ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell]; for (int64_t iprim = iprim_start ; iprim < iprim_end ; ++iprim) { expo[idx].expo = ctx->ao_basis.exponent[iprim]; expo[idx].index = idx; idx += 1; } } /* Sort exponents */ qsort( expo, (size_t) idx, sizeof(struct combined), compare_basis ); idx = 0; int64_t idx2 = 0; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { memset(newcoef, 0, sizeof(newcoef)); const int64_t iprim_start = ctx->ao_basis.shell_prim_index[ishell]; const int64_t iprim_end = ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell]; for (int64_t iprim = iprim_start ; iprim < iprim_end ; ++iprim) { newcoef[idx] = ctx->ao_basis.coefficient_normalized[iprim]; idx += 1; } for (int32_t i=0 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { idx2 = expo[i].index; coef[ishell - ishell_start][i] = newcoef[idx2]; } } /* Apply ordering to coefficients */ /* Remove duplicates */ int64_t newidx[prim_max]; int64_t idxmax = 0; idx = 0; newidx[0] = 0; for (int32_t i=1 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { if (expo[i].expo != expo[i-1].expo) { idx += 1; } newidx[i] = idx; } idxmax = idx; for (int32_t j=0 ; jao_basis.prim_num_per_nucleus[inucl] ; ++i) { newcoef[newidx[i]] += coef[j][i]; } for (int32_t i=0 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { coef[j][i] = newcoef[i]; } } for (int32_t i=0 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { expo[newidx[i]].expo = expo[i].expo; } ctx->ao_basis.prim_num_per_nucleus[inucl] = idxmax+1; for (int32_t i=0 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { qmckl_mat( ctx->ao_basis.expo_per_nucleus, i, inucl ) = expo[i].expo; } for (int32_t j=0 ; jao_basis.prim_num_per_nucleus[inucl] ; ++i) { qmckl_ten3( ctx->ao_basis.coef_per_nucleus, i, j, inucl ) = coef[j][i]; } } /* for (int32_t i=0 ; iao_basis.prim_num_per_nucleus[inucl] ; ++i) { printf("%4ld %4ld %15.5e | ", inucl, i, qmckl_mat( ctx->ao_basis.expo_per_nucleus, i, inucl )); for (int64_t j=0 ; jao_basis.coef_per_nucleus, i, j, inucl )); } printf("\n"); } printf("\n"); */ } return QMCKL_SUCCESS; } #endif #+end_src *** Access functions #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_primitive_vgl (qmckl_context context, double* const primitive_vgl, const int64_t size_max); #+end_src Returns the array of values, gradients an Laplacian of primitive basis functions evaluated at the current coordinates. See section [[Computation of primitives]]. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_primitive_vgl (qmckl_context context, double* const primitive_vgl, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_primitive_vgl", NULL); } if (size_max <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_primitive_vgl", "size_max <= 0"); } qmckl_exit_code rc; rc = qmckl_provide_ao_basis_primitive_vgl(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.prim_num * 5 * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_primitive_vgl", "input array too small"); } memcpy(primitive_vgl, ctx->ao_basis.primitive_vgl, (size_t) sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_primitive_vgl & (context, primitive_vgl, size_max) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double), intent(out) :: primitive_vgl(*) integer (c_int64_t) , intent(in) , value :: size_max end function end interface #+end_src #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_shell_vgl (qmckl_context context, double* const shell_vgl, const int64_t size_max); #+end_src Returns the array of values, gradients an Laplacian of contracted shells evaluated at the current coordinates. See section [[Computation of shells]]. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_shell_vgl (qmckl_context context, double* const shell_vgl, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_shell_vgl", NULL); } qmckl_exit_code rc; rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.shell_num * 5 * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_shell_vgl", "input array too small"); } memcpy(shell_vgl, ctx->ao_basis.shell_vgl, (size_t)sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_shell_vgl & (context, shell_vgl, size_max) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double), intent(out) :: shell_vgl(*) integer (c_int64_t) , intent(in) , value :: size_max end function end interface #+end_src #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_ao_vgl (qmckl_context context, double* const ao_vgl, const int64_t size_max); #+end_src Returns the array of values, gradients an Laplacian of the atomic orbitals evaluated at the current coordinates. See section [[Combining radial and polynomial parts]]. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_vgl (qmckl_context context, double* const ao_vgl, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_vgl", NULL); } qmckl_exit_code rc; rc = qmckl_provide_ao_basis_ao_vgl(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.ao_num * 5 * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_ao_vgl", "input array too small"); } memcpy(ao_vgl, ctx->ao_basis.ao_vgl, (size_t) sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_ao_vgl (context, & ao_vgl, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double), intent(out) :: ao_vgl(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_vgl end interface #+end_src Uses the given array to compute the VGL. #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_ao_vgl_inplace (qmckl_context context, double* const ao_vgl, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_vgl_inplace (qmckl_context context, double* const ao_vgl, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_vgl", NULL); } qmckl_exit_code rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.ao_num * 5 * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_ao_vgl", "input array too small"); } rc = qmckl_context_touch(context); if (rc != QMCKL_SUCCESS) return rc; double* old_array = ctx->ao_basis.ao_vgl; ctx->ao_basis.ao_vgl = ao_vgl; rc = qmckl_provide_ao_basis_ao_vgl(context); if (rc != QMCKL_SUCCESS) return rc; ctx->ao_basis.ao_vgl = old_array; return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_ao_vgl_inplace (context, & ao_vgl, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double), intent(out) :: ao_vgl(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_vgl_inplace end interface #+end_src #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_ao_value (qmckl_context context, double* const ao_value, const int64_t size_max); #+end_src Returns the array of values of the atomic orbitals evaluated at the current coordinates. See section [[Combining radial and polynomial parts]]. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_value (qmckl_context context, double* const ao_value, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_value", NULL); } qmckl_exit_code rc; rc = qmckl_provide_ao_basis_ao_value(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.ao_num * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_ao_value", "input array too small"); } memcpy(ao_value, ctx->ao_basis.ao_value, (size_t) sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_ao_value (context, & ao_value, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double) , intent(out) :: ao_value(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_value end interface #+end_src Uses the given array to compute the value. #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_ao_basis_ao_value_inplace (qmckl_context context, double* const ao_value, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_ao_basis_ao_value_inplace (qmckl_context context, double* const ao_value, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_ao_basis_ao_value", NULL); } qmckl_exit_code rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->ao_basis.ao_num * ctx->point.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_ao_basis_ao_value", "input array too small"); } rc = qmckl_context_touch(context); if (rc != QMCKL_SUCCESS) return rc; double* old_array = ctx->ao_basis.ao_value; ctx->ao_basis.ao_value = ao_value; rc = qmckl_provide_ao_basis_ao_value(context); if (rc != QMCKL_SUCCESS) return rc; ctx->ao_basis.ao_value = old_array; return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_ao_basis_ao_value_inplace (context, & ao_value, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real(c_double) , intent(out) :: ao_value(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_value_inplace end interface #+end_src * Radial part ** General functions for Gaussian basis functions ~qmckl_ao_gaussian_vgl~ computes the values, gradients and Laplacians at a given point of ~n~ Gaussian functions centered at the same point: \[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \] |--------------+------------------+------------------------------------------------------| | Variable | Type | Description | |--------------+------------------+------------------------------------------------------| | ~context~ | ~qmckl_context~ | Global state | | ~X(3)~ | ~double[3]~ | Array containing the coordinates of the points | | ~R(3)~ | ~double[3]~ | Array containing the x,y,z coordinates of the center | | ~n~ | ~int64_t~ | Number of computed Gaussians | | ~A(n)~ | ~double[n]~ | Exponents of the Gaussians | | ~VGL(ldv,5)~ | ~double[5][ldv]~ | Value, gradients and Laplacian of the Gaussians | | ~ldv~ | ~int64_t~ | Leading dimension of array ~VGL~ | |--------------+------------------+------------------------------------------------------| Requirements: - ~context~ \ne 0 - ~n~ > 0 - ~ldv~ >= 5 - ~A(i)~ > 0 for all ~i~ - ~X~ is allocated with at least $3 \times 8$ bytes - ~R~ is allocated with at least $3 \times 8$ bytes - ~A~ is allocated with at least $n \times 8$ bytes - ~VGL~ is allocated with at least $n \times 5 \times 8$ bytes #+begin_src c :tangle (eval h_func) qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv); #+end_src #+begin_src f90 :tangle (eval f) function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context) , intent(in) , value :: context real (c_double) , intent(in) :: X(3), R(3) integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: ldv real (c_double) , intent(in) :: A(n) real (c_double) , intent(out) :: VGL(ldv,5) integer (qmckl_exit_code) :: info integer*8 :: i,j double precision :: Y(3), r2, t, u, v info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldv < n) then info = QMCKL_INVALID_ARG_7 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl #+end_src #+begin_src f90 :tangle (eval fh_func) :exports none interface function qmckl_ao_gaussian_vgl(context, & X, R, n, A, VGL, ldv) bind(C) result(info) use qmckl_constants integer (qmckl_context) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ldv integer (c_int64_t) , intent(in) , value :: n real (c_double) , intent(in) :: X(3), R(3), A(n) real (c_double) , intent(out) :: VGL(ldv,5) integer(qmckl_exit_code) :: info end function qmckl_ao_gaussian_vgl end interface #+end_src *** Test :noexport: #+begin_src f90 :tangle (eval f_test) function test_qmckl_ao_gaussian_vgl(context) bind(C) use qmckl implicit none integer(qmckl_context), intent(in), value :: context integer(qmckl_exit_code) :: test_qmckl_ao_gaussian_vgl integer*8 :: n, ldv, j, i double precision :: X(3), R(3), Y(3), r2, z double precision, allocatable :: VGL(:,:), A(:) double precision :: epsilon epsilon = 3.d0 * qmckl_get_numprec_epsilon(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) r2 = Y(1)**2 + Y(2)**2 + Y(3)**2 n = 10; ldv = 100; allocate (A(n), VGL(ldv,5)) do i=1,n A(i) = 0.0013 * dble(ishft(1,i)) end do test_qmckl_ao_gaussian_vgl = & qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) if (test_qmckl_ao_gaussian_vgl /= 0) return test_qmckl_ao_gaussian_vgl = -1 do i=1,n test_qmckl_ao_gaussian_vgl = -11 z = dabs(1.d0 - VGL(i,1) / (dexp(-A(i) * r2)) ) if ( z > epsilon ) then print *, z, epsilon return end if test_qmckl_ao_gaussian_vgl = -12 z = dabs(1.d0 - VGL(i,2) / (& -2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) )) if ( z > epsilon ) then print *, z, epsilon return end if test_qmckl_ao_gaussian_vgl = -13 z = dabs(1.d0 - VGL(i,3) / (& -2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) )) if ( z > epsilon ) then print *, z, epsilon return end if test_qmckl_ao_gaussian_vgl = -14 z = dabs(1.d0 - VGL(i,4) / (& -2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) )) if ( z > epsilon ) then print *, z, epsilon return end if test_qmckl_ao_gaussian_vgl = -15 z = dabs(1.d0 - VGL(i,5) / (& A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) )) if ( z > epsilon ) then print *, z, epsilon return end if end do test_qmckl_ao_gaussian_vgl = 0 deallocate(VGL) end function test_qmckl_ao_gaussian_vgl #+end_src #+begin_src c :tangle (eval c_test) :exports none int test_qmckl_ao_gaussian_vgl(qmckl_context context); assert(0 == test_qmckl_ao_gaussian_vgl(context)); #+end_src ** TODO General functions for Slater basis functions :noexport: ** TODO General functions for Radial functions on a grid :noexport: ** Computation of primitives :PROPERTIES: :Name: qmckl_compute_ao_basis_primitive_gaussian_vgl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ao_basis_primitive_gaussian_vgl_args | Variable | Type | In/Out | Description | |----------------------+----------------------------------+--------+--------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~prim_num~ | ~int64_t~ | in | Number of primitives | | ~point_num~ | ~int64_t~ | in | Number of points considered | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~nucleus_prim_index~ | ~int64_t[nucl_num+1]~ | in | Index of the 1st primitive of each nucleus | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~expo~ | ~double[prim_num]~ | in | Exponents of the primitives | | ~primitive_vgl~ | ~double[point_num][5][prim_num]~ | out | Value, gradients and Laplacian of the primitives | #+CALL: generate_c_header(table=qmckl_ao_basis_primitive_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_basis_primitive_gaussian_vgl")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_ao_basis_primitive_gaussian_vgl ( const qmckl_context context, const int64_t prim_num, const int64_t point_num, const int64_t nucl_num, const int64_t* nucleus_prim_index, const double* coord, const double* nucl_coord, const double* expo, double* const primitive_vgl ); #+end_src #+begin_src f90 :comments org :tangle (eval f) :noweb yes function qmckl_compute_ao_basis_primitive_gaussian_vgl & (context, prim_num, point_num, nucl_num, nucleus_prim_index, coord, nucl_coord, expo, primitive_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: prim_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) :: nucleus_prim_index(nucl_num+1) real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) real (c_double ) , intent(in) :: expo(prim_num) real (c_double ) , intent(out) :: primitive_vgl(prim_num,5,point_num) integer(qmckl_exit_code) :: info integer*8 :: inucl, iprim, ipoint double precision :: x, y, z, two_a, ar2, r2, v, cutoff info = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. <> do inucl=1,nucl_num ! C is zero-based, so shift bounds by one do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1) do ipoint = 1, point_num x = coord(ipoint,1) - nucl_coord(inucl,1) y = coord(ipoint,2) - nucl_coord(inucl,2) z = coord(ipoint,3) - nucl_coord(inucl,3) r2 = x*x + y*y + z*z ar2 = expo(iprim)*r2 if (ar2 > cutoff) cycle v = dexp(-ar2) two_a = -2.d0 * expo(iprim) * v primitive_vgl(iprim, 1, ipoint) = v primitive_vgl(iprim, 2, ipoint) = two_a * x primitive_vgl(iprim, 3, ipoint) = two_a * y primitive_vgl(iprim, 4, ipoint) = two_a * z primitive_vgl(iprim, 5, ipoint) = two_a * (3.d0 - 2.d0*ar2) end do end do end do end function qmckl_compute_ao_basis_primitive_gaussian_vgl #+end_src *** Provide :noexport: #+CALL: write_provider_header( group="ao_basis", data="primitive_vgl" ) #+RESULTS: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none qmckl_exit_code qmckl_provide_ao_basis_primitive_vgl(qmckl_context context); #+end_src #+CALL: write_provider_pre( group="ao_basis", data="primitive_vgl", dimension="ctx->ao_basis.prim_num * 5 * ctx->point.num") #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none qmckl_exit_code qmckl_provide_ao_basis_primitive_vgl(qmckl_context context) { qmckl_exit_code rc = QMCKL_SUCCESS; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_provide_ao_basis_primitive_vgl", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!ctx->ao_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_ao_basis_primitive_vgl", NULL); } /* Compute if necessary */ if (ctx->point.date > ctx->ao_basis.primitive_vgl_date) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.prim_num * 5 * ctx->point.num * sizeof(double); if (ctx->ao_basis.primitive_vgl != NULL) { qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero; rc = qmckl_get_malloc_info(context, ctx->ao_basis.primitive_vgl, &mem_info_test); /* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the memory was not allocated with qmckl_malloc */ if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) { rc = qmckl_free(context, ctx->ao_basis.primitive_vgl); assert (rc == QMCKL_SUCCESS); ctx->ao_basis.primitive_vgl = NULL; } } /* Allocate array */ if (ctx->ao_basis.primitive_vgl == NULL) { double* primitive_vgl = (double*) qmckl_malloc(context, mem_info); if (primitive_vgl == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ao_basis_primitive_vgl", NULL); } ctx->ao_basis.primitive_vgl = primitive_vgl; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none if (ctx->ao_basis.type == 'G') { rc = qmckl_compute_ao_basis_primitive_gaussian_vgl(context, ctx->ao_basis.prim_num, ctx->point.num, ctx->nucleus.num, ctx->ao_basis.nucleus_prim_index, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.exponent, ctx->ao_basis.primitive_vgl); } else { return qmckl_failwith( context, QMCKL_FAILURE, "compute_ao_basis_primitive_vgl", "Not yet implemented"); } #+end_src #+CALL: write_provider_post( group="ao_basis", data="shell_vgl" ) #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none if (rc != QMCKL_SUCCESS) { return rc; } ctx->ao_basis.shell_vgl_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Test :noexport: #+begin_src python :results output :exports none :exports none import numpy as np def f(a,x,y): return np.exp( -a*(np.linalg.norm(x-y))**2 ) def df(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0) def d2f(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2 def lf(a,x,y): return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3) elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] ) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) #double prim_vgl[prim_num][5][elec_num]; a = 0.9059; x = elec_26_w1 ; y = nucl_1 print ( "[7][0][26] : %e"% f(a,x,y)) print ( "[7][1][26] : %e"% df(a,x,y,1)) print ( "[7][2][26] : %e"% df(a,x,y,2)) print ( "[7][3][26] : %e"% df(a,x,y,3)) print ( "[7][4][26] : %e"% lf(a,x,y)) #+end_src #+RESULTS: : [7][0][26] : 1.050157e-03 : [7][1][26] : -7.501497e-04 : [7][2][26] : -3.825069e-03 : [7][3][26] : 3.495056e-03 : [7][4][26] : 2.040013e-02 #+begin_src c :tangle (eval c_test) :exports none { #define walk_num 1 // chbrclf_walk_num #define elec_num chbrclf_elec_num #define prim_num chbrclf_prim_num int64_t elec_up_num = chbrclf_elec_up_num; int64_t elec_dn_num = chbrclf_elec_dn_num; double* elec_coord = &(chbrclf_elec_coord[0][0][0]); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert (rc == QMCKL_SUCCESS); assert(qmckl_electron_provided(context)); int64_t point_num = elec_num; rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3); assert(rc == QMCKL_SUCCESS); double prim_vgl[point_num][5][prim_num]; rc = qmckl_get_ao_basis_primitive_vgl(context, &(prim_vgl[0][0][0]), (int64_t) 5*point_num*prim_num ); assert (rc == QMCKL_SUCCESS); printf("prim_vgl[26][0][7] = %e\n",prim_vgl[26][0][7]); assert( fabs(prim_vgl[26][0][7] - ( 1.0501570432064878E-003)) < 1.e-14 ); printf("prim_vgl[26][1][7] = %e\n",prim_vgl[26][1][7]); assert( fabs(prim_vgl[26][1][7] - (-7.5014974095310560E-004)) < 1.e-14 ); printf("prim_vgl[26][2][7] = %e\n",prim_vgl[26][2][7]); assert( fabs(prim_vgl[26][2][7] - (-3.8250692897610380E-003)) < 1.e-14 ); printf("prim_vgl[26][3][7] = %e\n",prim_vgl[26][3][7]); assert( fabs(prim_vgl[26][3][7] - ( 3.4950559194080275E-003)) < 1.e-14 ); printf("prim_vgl[26][4][7] = %e\n",prim_vgl[26][4][7]); assert( fabs(prim_vgl[26][4][7] - ( 2.0392163767356572E-002)) < 1.e-14 ); } #+end_src ** Computation of shells :PROPERTIES: :Name: qmckl_compute_ao_basis_shell_gaussian_vgl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ao_basis_shell_gaussian_vgl_args | Variable | Type | In/Out | Description | |---------------------+-----------------------------------+--------+----------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~prim_num~ | ~int64_t~ | in | Number of primitives | | ~shell_num~ | ~int64_t~ | in | Number of shells | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells for each nucleus | | ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus | | ~nucleus_range~ | ~double[nucl_num]~ | in | Range of the nucleus | | ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell | | ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~expo~ | ~double[prim_num]~ | in | Exponents of the primitives | | ~coef_normalized~ | ~double[prim_num]~ | in | Coefficients of the primitives | | ~shell_vgl~ | ~double[point_num][5][shell_num]~ | out | Value, gradients and Laplacian of the shells | #+CALL: generate_c_header(table=qmckl_ao_basis_shell_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_basis_shell_gaussian_vgl")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_ao_basis_shell_gaussian_vgl ( const qmckl_context context, const int64_t prim_num, const int64_t shell_num, const int64_t point_num, const int64_t nucl_num, const int64_t* nucleus_shell_num, const int64_t* nucleus_index, const double* nucleus_range, const int64_t* shell_prim_index, const int64_t* shell_prim_num, const double* coord, const double* nucl_coord, const double* expo, const double* coef_normalized, double* const shell_vgl ); #+end_src #+begin_src f90 :comments org :tangle (eval f) :noweb yes function qmckl_compute_ao_basis_shell_gaussian_vgl( & context, prim_num, shell_num, point_num, nucl_num, & nucleus_shell_num, nucleus_index, nucleus_range, & shell_prim_index, shell_prim_num, coord, nucl_coord, & expo, coef_normalized, shell_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: prim_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num) integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num) real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) real (c_double ) , intent(in) :: expo(prim_num) real (c_double ) , intent(in) :: coef_normalized(prim_num) real (c_double ) , intent(out) :: shell_vgl(shell_num,5,point_num) integer(qmckl_exit_code) :: info integer*8 :: inucl, iprim, ipoint, ishell integer*8 :: ishell_start, ishell_end integer*8 :: iprim_start , iprim_end double precision :: x, y, z, two_a, ar2, r2, v, cutoff info = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. <> do ipoint = 1, point_num do inucl=1,nucl_num x = coord(ipoint,1) - nucl_coord(inucl,1) y = coord(ipoint,2) - nucl_coord(inucl,2) z = coord(ipoint,3) - nucl_coord(inucl,3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! C is zero-based, so shift bounds by one ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell=ishell_start, ishell_end shell_vgl(ishell, 1, ipoint) = 0.d0 shell_vgl(ishell, 2, ipoint) = 0.d0 shell_vgl(ishell, 3, ipoint) = 0.d0 shell_vgl(ishell, 4, ipoint) = 0.d0 shell_vgl(ishell, 5, ipoint) = 0.d0 iprim_start = shell_prim_index(ishell) + 1 iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell) do iprim = iprim_start, iprim_end ar2 = expo(iprim)*r2 if (ar2 > cutoff) then cycle end if v = coef_normalized(iprim) * dexp(-ar2) two_a = -2.d0 * expo(iprim) * v shell_vgl(ishell, 1, ipoint) = & shell_vgl(ishell, 1, ipoint) + v shell_vgl(ishell, 2, ipoint) = & shell_vgl(ishell, 2, ipoint) + two_a * x shell_vgl(ishell, 3, ipoint) = & shell_vgl(ishell, 3, ipoint) + two_a * y shell_vgl(ishell, 4, ipoint) = & shell_vgl(ishell, 4, ipoint) + two_a * z shell_vgl(ishell, 5, ipoint) = & shell_vgl(ishell, 5, ipoint) + two_a * (3.d0 - 2.d0*ar2) end do end do end do end do end function qmckl_compute_ao_basis_shell_gaussian_vgl #+end_src *** Provide :noexport: #+CALL: write_provider_header( group="ao_basis", data="shell_vgl" ) #+RESULTS: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context); #+end_src #+CALL: write_provider_pre( group="ao_basis", data="shell_vgl", dimension="ctx->ao_basis.shell_num * 5 * ctx->point.num") #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context) { qmckl_exit_code rc = QMCKL_SUCCESS; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_provide_ao_basis_shell_vgl", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!ctx->ao_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_ao_basis_shell_vgl", NULL); } /* Compute if necessary */ if (ctx->point.date > ctx->ao_basis.shell_vgl_date) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.shell_num * 5 * ctx->point.num * sizeof(double); if (ctx->ao_basis.shell_vgl != NULL) { qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero; rc = qmckl_get_malloc_info(context, ctx->ao_basis.shell_vgl, &mem_info_test); /* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the memory was not allocated with qmckl_malloc */ if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) { rc = qmckl_free(context, ctx->ao_basis.shell_vgl); assert (rc == QMCKL_SUCCESS); ctx->ao_basis.shell_vgl = NULL; } } /* Allocate array */ if (ctx->ao_basis.shell_vgl == NULL) { double* shell_vgl = (double*) qmckl_malloc(context, mem_info); if (shell_vgl == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ao_basis_shell_vgl", NULL); } ctx->ao_basis.shell_vgl = shell_vgl; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none if (ctx->ao_basis.type == 'G') { rc = qmckl_compute_ao_basis_shell_gaussian_vgl(context, ctx->ao_basis.prim_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_range, ctx->ao_basis.shell_prim_index, ctx->ao_basis.shell_prim_num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.exponent, ctx->ao_basis.coefficient_normalized, ctx->ao_basis.shell_vgl); } else { return qmckl_failwith( context, QMCKL_FAILURE, "compute_ao_basis_shell_vgl", "Not yet implemented"); } #+end_src #+CALL: write_provider_post( group="ao_basis", data="shell_vgl" ) #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none if (rc != QMCKL_SUCCESS) { return rc; } ctx->ao_basis.shell_vgl_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Test :noexport: #+begin_src python :results output :exports none import numpy as np def f(a,x,y): return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) def df(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0) def d2f(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2 def lf(a,x,y): return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3) elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] ) elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] ) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) #double prim_vgl[prim_num][5][point_num]; x = elec_26_w1 ; y = nucl_1 a = [( 8.236000E+03, -1.130000E-04 * 6.1616545431994848e+02 ), ( 1.235000E+03, -8.780000E-04 * 1.4847738511079908e+02 ), ( 2.808000E+02, -4.540000E-03 * 4.8888635917437597e+01 ), ( 7.927000E+01, -1.813300E-02 * 1.8933972232608955e+01 ), ( 2.559000E+01, -5.576000E-02 * 8.1089160941724145e+00 ), ( 8.997000E+00, -1.268950E-01 * 3.7024003863155635e+00 ), ( 3.319000E+00, -1.703520E-01 * 1.7525302846177560e+00 ), ( 9.059000E-01, 1.403820E-01 * 6.6179013183966806e-01 ), ( 3.643000E-01, 5.986840E-01 * 3.3419848027174592e-01 ), ( 1.285000E-01, 3.953890E-01 * 1.5296336817449557e-01 )] print ( "[1][0][26] : %25.15e"% f(a,x,y)) print ( "[1][1][26] : %25.15e"% df(a,x,y,1)) print ( "[1][2][26] : %25.15e"% df(a,x,y,2)) print ( "[1][3][26] : %25.15e"% df(a,x,y,3)) print ( "[1][4][26] : %25.15e"% lf(a,x,y)) #+end_src #+RESULTS: : [1][0][26] : 3.564393437193867e-02 : [1][1][26] : -6.030177988891605e-03 : [1][2][26] : -3.074832579871845e-02 : [1][3][26] : 2.809546963133958e-02 : [1][4][26] : 1.903338597841753e-02 #+begin_src c :tangle (eval c_test) :exports none { #define shell_num chbrclf_shell_num double* elec_coord = &(chbrclf_elec_coord[0][0][0]); assert(qmckl_electron_provided(context)); int64_t point_num = elec_num; rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3); assert(rc == QMCKL_SUCCESS); double shell_vgl[point_num][5][shell_num]; rc = qmckl_get_ao_basis_shell_vgl(context, &(shell_vgl[0][0][0]), (int64_t) 5*point_num*shell_num); assert (rc == QMCKL_SUCCESS); printf(" shell_vgl[26][0][1] %25.15e\n", shell_vgl[26][0][1]); printf(" shell_vgl[26][1][1] %25.15e\n", shell_vgl[26][1][1]); printf(" shell_vgl[26][2][1] %25.15e\n", shell_vgl[26][2][1]); printf(" shell_vgl[26][3][1] %25.15e\n", shell_vgl[26][3][1]); printf(" shell_vgl[26][4][1] %25.15e\n", shell_vgl[26][4][1]); assert( fabs(shell_vgl[26][0][1] - ( 3.564393437193868e-02)) < 1.e-14 ); assert( fabs(shell_vgl[26][1][1] - (-6.030177987072189e-03)) < 1.e-14 ); assert( fabs(shell_vgl[26][2][1] - (-3.074832579537582e-02)) < 1.e-14 ); assert( fabs(shell_vgl[26][3][1] - ( 2.809546963519935e-02)) < 1.e-14 ); assert( fabs(shell_vgl[26][4][1] - ( 1.896046117183968e-02)) < 1.e-14 ); } #+end_src * Polynomial part Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number ($-l \le m \le l$), and in the case of polynomials we choose the canonical ordering, i.e \begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray} ** General functions for Powers of $x-X_i$ :PROPERTIES: :Name: qmckl_ao_power :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: The ~qmckl_ao_power~ function computes all the powers of the ~n~ input data up to the given maximum value given in input for each of the $n$ points: \[ P_{ik} = X_i^k \] #+NAME: qmckl_ao_power_args | Variable | Type | In/Out | Description | |-----------+-----------------+--------+---------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~n~ | int64_t | in | Number of values | | ~X~ | double[n] | in | Array containing the input values | | ~LMAX~ | int32_t[n] | in | Array containing the maximum power for each value | | ~P~ | double[n][ldp] | out | Array containing all the powers of ~X~ | | ~ldp~ | int64_t | in | Leading dimension of array ~P~ | Requirements: - ~context~ is not ~QMCKL_NULL_CONTEXT~ - ~n~ > 0 - ~X~ is allocated with at least $n \times 8$ bytes - ~LMAX~ is allocated with at least $n \times 4$ bytes - ~P~ is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytes - ~LDP~ >= $\max_i$ ~LMAX[i]~ #+CALL: generate_c_header(table=qmckl_ao_power_args,rettyp=get_value("CRetType"),fname="qmckl_ao_power") #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_power ( const qmckl_context context, const int64_t n, const double* X, const int32_t* LMAX, double* const P, const int64_t ldp ); #+end_src #+begin_src f90 :tangle (eval f) function qmckl_ao_power(context, n, X, LMAX, P, ldp) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: ldp real (c_double ) , intent(in) :: X(n) integer (c_int32_t) , intent(in) :: LMAX(n) real (c_double ) , intent(out) :: P(ldp,n) integer(qmckl_exit_code) :: info integer(c_int64_t) :: i,k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= ldp) then info = QMCKL_INVALID_ARG_2 return endif k = MAXVAL(LMAX) if (LDP < k) then info = QMCKL_INVALID_ARG_6 return endif if (k <= 0) then info = QMCKL_INVALID_ARG_4 return endif do i=1,n P(1,i) = X(i) do k=2,LMAX(i) P(k,i) = P(k-1,i) * X(i) end do end do end function qmckl_ao_power #+end_src #+CALL: generate_f_interface(table=qmckl_ao_power_args,rettyp=get_value("CRetType"),fname="qmckl_ao_power") #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(qmckl_exit_code) function qmckl_ao_power & (context, n, X, LMAX, P, ldp) & bind(C) use :: qmckl_constants import implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: ldp real (c_double ) , intent(in) :: X(n) integer (c_int32_t) , intent(in) :: LMAX(n) real (c_double ) , intent(out) :: P(ldp,n) end function qmckl_ao_power end interface #+end_src *** Test :noexport: #+begin_src f90 :tangle (eval f_test) function test_qmckl_ao_power(context) bind(C) use qmckl implicit none integer(qmckl_context), intent(in), value :: context integer(qmckl_exit_code) :: test_qmckl_ao_power integer*8 :: n, LDP integer, allocatable :: LMAX(:) double precision, allocatable :: X(:), P(:,:) integer*8 :: i,j double precision :: epsilon epsilon = qmckl_get_numprec_precision(context) n = 100; LDP = 10; allocate(X(n), P(LDP,n), LMAX(n)) do j=1,n X(j) = -5.d0 + 0.1d0 * dble(j) LMAX(j) = 1 + int(mod(j, 5),4) end do test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP) if (test_qmckl_ao_power /= QMCKL_SUCCESS) return test_qmckl_ao_power = QMCKL_FAILURE do j=1,n do i=1,LMAX(j) if ( X(j)**i == 0.d0 ) then if ( P(i,j) /= 0.d0) return else if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return end if end do end do test_qmckl_ao_power = QMCKL_SUCCESS deallocate(X,P,LMAX) end function test_qmckl_ao_power #+end_src #+begin_src c :tangle (eval c_test) :exports none int test_qmckl_ao_power(qmckl_context context); assert(0 == test_qmckl_ao_power(context)); #+end_src ** General functions for Value, Gradient and Laplacian of a polynomial :PROPERTIES: :Name: qmckl_ao_polynomial_vgl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: A polynomial is centered on a nucleus $\mathbf{R}_i$ \[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \] The gradients with respect to electron coordinates are \begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*} and the Laplacian is \begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-2} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-2}. \end{eqnarray*} ~qmckl_ao_polynomial_vgl~ computes the values, gradients and Laplacians at a given point in space, of all polynomials with an angular momentum up to ~lmax~. #+NAME: qmckl_ao_polynomial_vgl_args | Variable | Type | In/Out | Description | |-----------+-------------------+--------+------------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~X~ | ~double[3]~ | in | Array containing the coordinates of the points | | ~R~ | ~double[3]~ | in | Array containing the x,y,z coordinates of the center | | ~lmax~ | ~int32_t~ | in | Maximum angular momentum | | ~n~ | ~int64_t~ | inout | Number of computed polynomials | | ~L~ | ~int32_t[n][ldl]~ | out | Contains a,b,c for all ~n~ results | | ~ldl~ | ~int64_t~ | in | Leading dimension of ~L~ | | ~VGL~ | ~double[n][ldv]~ | out | Value, gradients and Laplacian of the polynomials | | ~ldv~ | ~int64_t~ | in | Leading dimension of array ~VGL~ | Requirements: - ~context~ \ne ~QMCKL_NULL_CONTEXT~ - ~n~ > 0 - ~lmax~ >= 0 - ~ldl~ >= 3 - ~ldv~ >= 5 - ~X~ is allocated with at least $3 \times 8$ bytes - ~R~ is allocated with at least $3 \times 8$ bytes - ~n~ >= ~(lmax+1)(lmax+2)(lmax+3)/6~ - ~L~ is allocated with at least $3 \times n \times 4$ bytes - ~VGL~ is allocated with at least $5 \times n \times 8$ bytes - On output, ~n~ should be equal to ~(lmax+1)(lmax+2)(lmax+3)/6~ - On output, the powers are given in the following order (l=a+b+c): - Increasing values of ~l~ - Within a given value of ~l~, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz" #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_polynomial_vgl ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ); #+end_src #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_vgl_doc") #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_polynomial_vgl_doc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ); #+end_src #+begin_src c :tangle (eval c) :comments org qmckl_exit_code qmckl_ao_polynomial_vgl (const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ) { #ifdef HAVE_HPC //return qmckl_ao_polynomial_vgl_hpc (context, X, R, lmax, n, L, ldl, VGL, ldv); return qmckl_ao_polynomial_vgl_doc #else return qmckl_ao_polynomial_vgl_doc #endif (context, X, R, lmax, n, L, ldl, VGL, ldv); } #+end_src #+begin_src f90 :tangle (eval f) function qmckl_ao_polynomial_vgl_doc (context, & X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) real (c_double ) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer(qmckl_exit_code) :: info integer*8 :: i,j integer :: a,b,c,d double precision :: Y(3) double precision :: pows(-2:lmax,3) double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax < 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < 5) then info = QMCKL_INVALID_ARG_9 return endif ! The shift below is such that polynomials will not make the AO equal to zero at the nodes of the orbitals do i=1,3 Y(i) = (X(i) - R(i)) + 1.d-20 end do if (lmax == 0) then VGL(1,1) = 1.d0 VGL(2,1) = 0.d0 VGL(3,1) = 0.d0 VGL(4,1) = 0.d0 VGL(5,1) = 0.d0 l(1,1) = 0 l(2,1) = 0 l(3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 VGL(1,1) = 1.d0 VGL(1,2) = pows(1,1) VGL(2,2) = 1.d0 VGL(1,3) = pows(1,2) VGL(3,3) = 1.d0 VGL(1,4) = pows(1,3) VGL(4,4) = 1.d0 l (1:3,1:4) = 0 l (1,2) = 1 l (2,3) = 1 l (3,4) = 1 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) VGL(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz VGL(2,n) = pows(a-1,1) * yz VGL(3,n) = pows(b-1,2) * xz VGL(4,n) = pows(c-1,3) * xy VGL(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_vgl_doc #+end_src #+CALL: generate_f_interface(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("FRetType"),fname="qmckl_ao_polynomial_vgl_doc" ) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(qmckl_exit_code) function qmckl_ao_polynomial_vgl_doc & (context, X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) use qmckl_constants import implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,n) real (c_double ) , intent(out) :: VGL(ldv,n) end function qmckl_ao_polynomial_vgl_doc end interface #+end_src #+CALL: generate_f_interface(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("FRetType"),fname="qmckl_ao_polynomial_vgl" ) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(qmckl_exit_code) function qmckl_ao_polynomial_vgl & (context, X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) use qmckl_constants import implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,n) real (c_double ) , intent(out) :: VGL(ldv,n) end function qmckl_ao_polynomial_vgl end interface #+end_src #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl") #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_polynomial_transp_vgl ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ); #+end_src #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl_doc") #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_polynomial_transp_vgl_doc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ); #+end_src # #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl_hpc") #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ); #+end_src #+begin_src c :tangle (eval c) :comments org qmckl_exit_code qmckl_ao_polynomial_transp_vgl (const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ) { #ifdef HAVE_HPC return qmckl_ao_polynomial_transp_vgl_hpc #else return qmckl_ao_polynomial_transp_vgl_doc #endif (context, X, R, lmax, n, L, ldl, VGL, ldv); } #+end_src #+begin_src f90 :tangle (eval f) function qmckl_ao_polynomial_transp_vgl_doc (context, & X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) real (c_double ) , intent(out) :: VGL(ldv,5) integer(qmckl_exit_code) :: info integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) real*8 :: pows(-2:21,3) ! lmax < 22 double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax < 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < (lmax+1)*(lmax+2)*(lmax+3)/6) then info = QMCKL_INVALID_ARG_9 return endif if (lmax > 0) then do i=1,3 Y(i) = X(i) - R(i) end do pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do l (1:3,1:4) = 0 VGL(1:4,1:5) = 0.d0 VGL(1 ,1 ) = 1.d0 l (1,2) = 1 VGL(2,1) = Y(1) VGL(2,2) = 1.d0 l (2,3) = 1 VGL(3,1) = Y(2) VGL(3,3) = 1.d0 l (3,4) = 1 VGL(4,1) = Y(3) VGL(4,4) = 1.d0 n=4 else VGL(1,1) = 1.d0 VGL(1,2:5) = 0.d0 l(1:3,1) = 0 n=1 return endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) l(1,n) = a l(2,n) = b l(3,n) = c VGL(n,1) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz VGL(n,2) = pows(a-1,1) * yz VGL(n,3) = pows(b-1,2) * xz VGL(n,4) = pows(c-1,3) * xy VGL(n,5) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_transp_vgl_doc #+end_src #+begin_src c :tangle (eval c) :comments org static inline qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc_inline (const qmckl_context context, const double* restrict X, const double* restrict R, const int32_t lmax, int64_t* n, int32_t* restrict const L, const int64_t ldl, double* restrict const VGL, const int64_t ldv ) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; assert (ctx != NULL && X != NULL && R != NULL && n != NULL && L != NULL && VGL != NULL); if (lmax < 0) return QMCKL_INVALID_ARG_4; if (ldl < 3) return QMCKL_INVALID_ARG_7; int32_t m; const double shift=1.e-20; switch (lmax) { case 0: { if (ldv < 1) return QMCKL_INVALID_ARG_9; L[0] = 0; L[1] = 0; L[2] = 0; VGL[0 ] = 1.0; VGL[ldv ] = 0.0; VGL[ldv<<1 ] = 0.0; VGL[(ldv<<1)+ldv] = 0.0; VGL[ldv<<2 ] = 0.0; m=1; break; } case 1: { if (ldv < 4) return QMCKL_INVALID_ARG_9; if (ldl == 3) { const int32_t ltmp[12] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}; for (int i=0 ; i<12 ; ++i) L[i] = ltmp[i]; } else { int32_t* restrict const l[4] = {L, L+ldl, L+(ldl<<1), L+ldl+(ldl<<1)}; l[0][0] = 0; l[0][1] = 0; l[0][2] = 0; l[1][0] = 1; l[1][1] = 0; l[1][2] = 0; l[2][0] = 0; l[2][1] = 1; l[2][2] = 0; l[3][0] = 0; l[3][1] = 0; l[3][2] = 1; } if (ldv == 4) { const double tmp[20] = {1.0, (X[0]-R[0])+shift, (X[1]-R[1])+shift, (X[2]-R[2])+shift, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}; for (int i=0 ; i<20 ; ++i) VGL[i] = tmp[i]; } else { double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv << 1); double* restrict const vgl4 = VGL + ldv + (ldv << 1); double* restrict const vgl5 = VGL + (ldv << 2); for (int32_t k=0 ; k<4 ; ++k) { vgl2[k] = 0.0; vgl3[k] = 0.0; vgl4[k] = 0.0; vgl5[k] = 0.0; } vgl1[0] = 1.0; vgl1[1] = (X[0]-R[0])+shift; vgl1[2] = (X[1]-R[1])+shift; vgl1[3] = (X[2]-R[2])+shift; vgl2[1] = 1.0; vgl3[2] = 1.0; vgl4[3] = 1.0; } m=4; break; } case 2: { if (ldv < 10) return QMCKL_INVALID_ARG_9; if (ldl == 3) { const int32_t ltmp[30] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 2}; for (int i=0 ; i<30 ; ++i) L[i] = ltmp[i]; } else { int32_t* restrict l[10]; for (int32_t i=0 ; i<10 ; ++i) { l[i] = L + i*ldl; } l[0][0] = 0; l[0][1] = 0; l[0][2] = 0; l[1][0] = 1; l[1][1] = 0; l[1][2] = 0; l[2][0] = 0; l[2][1] = 1; l[2][2] = 0; l[3][0] = 0; l[3][1] = 0; l[3][2] = 1; l[4][0] = 2; l[4][1] = 0; l[4][2] = 0; l[5][0] = 1; l[5][1] = 1; l[5][2] = 0; l[6][0] = 1; l[6][1] = 0; l[6][2] = 1; l[7][0] = 0; l[7][1] = 2; l[7][2] = 0; l[8][0] = 0; l[8][1] = 1; l[8][2] = 1; l[9][0] = 0; l[9][1] = 0; l[9][2] = 2; } const double Y[3] = { X[0]-R[0], X[1]-R[1], X[2]-R[2] }; if (ldv == 50) { const double tmp[50] = { 1.0, Y[0]+shift, Y[1]+shift, Y[2]+shift, Y[0] * Y[0]+shift, Y[0] * Y[1]+shift, Y[0] * Y[2]+shift, Y[1] * Y[1]+shift, Y[1] * Y[2]+shift, Y[2] * Y[2]+shift, 0.0, 1.0, 0.0, 0.0, Y[0] + Y[0], Y[1], Y[2], 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, Y[0], 0.0, Y[1] + Y[1], Y[2], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, Y[0], 0.0, Y[1], Y[2] + Y[2], 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0., 2.0 }; for (int i=0 ; i<50 ; ++i) VGL[i] = tmp[i]; } else { double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv << 1); double* restrict const vgl4 = VGL + 3*ldv; double* restrict const vgl5 = VGL + (ldv << 2); vgl1[0] = 1.0 ; vgl1[1] = Y[0]+shift ; vgl1[2] = Y[1]+shift; vgl1[3] = Y[2]+shift ; vgl1[4] = Y[0]*Y[0]+shift; vgl1[5] = Y[0]*Y[1]+shift; vgl1[6] = Y[0]*Y[2]+shift; vgl1[7] = Y[1]*Y[1]+shift; vgl1[8] = Y[1]*Y[2]+shift; vgl1[9] = Y[2]*Y[2]+shift; vgl2[0] = 0.0 ; vgl2[1] = 1.0 ; vgl2[2] = 0.0 ; vgl2[3] = 0.0 ; vgl2[4] = Y[0]+Y[0]; vgl2[5] = Y[1]; vgl2[6] = Y[2]; vgl2[7] = 0.0 ; vgl2[8] = 0.0 ; vgl2[9] = 0.0 ; vgl3[0] = 0.0; vgl3[1] = 0.0 ; vgl3[2] = 1.0 ; vgl3[3] = 0.0; vgl3[4] = 0.0 ; vgl3[5] = Y[0]; vgl3[6] = 0.0; vgl3[7] = Y[1]+Y[1]; vgl3[8] = Y[2]; vgl3[9] = 0.0; vgl4[0] = 0.0 ; vgl4[1] = 0.0; vgl4[2] = 0.0 ; vgl4[3] = 1.0 ; vgl4[4] = 0.0; vgl4[5] = 0.0 ; vgl4[6] = Y[0] ; vgl4[7] = 0.0; vgl4[8] = Y[1]; vgl4[9] = Y[2]+Y[2]; vgl5[0] = 0.0; vgl5[1] = 0.0; vgl5[2] = 0.0; vgl5[3] = 0.0; vgl5[4] = 2.0; vgl5[5] = 0.0; vgl5[6] = 0.0; vgl5[7] = 2.0; vgl5[8] = 0.0; vgl5[9] = 2.0; } m=10; break; } default: { const int32_t size_max = (lmax+1)*(lmax+2)*(lmax+3)/6; if (ldv < size_max) return QMCKL_INVALID_ARG_9; double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv<<1); double* restrict const vgl4 = VGL + ldv + (ldv<<1); double* restrict const vgl5 = VGL + (ldv<<2); const double Y[3] = { X[0]-R[0], X[1]-R[1], X[2]-R[2]}; assert(size_max > lmax+3); double pows[3][size_max]; for (int32_t i=0 ; i<3 ; ++i) { pows[0][i] = 1.0; pows[1][i] = 1.0; pows[2][i] = 1.0; } for (int32_t i=3 ; i<=lmax+2 ; ++i) { pows[0][i] = pows[0][i-1] * Y[0]; pows[1][i] = pows[1][i-1] * Y[1]; pows[2][i] = pows[2][i-1] * Y[2]; } int32_t* l[size_max]; for (int32_t i=0 ; i=0 ; --a) { double db = dd-da; for (int32_t b=d-a ; b>=0 ; --b) { const int32_t c = d - a - b; const double dc = dd - da - db; double xy = pows[0][a+2] * pows[1][b+2]; double yz = pows[1][b+2] * pows[2][c+2]; double xz = pows[0][a+2] * pows[2][c+2]; l[m][0] = a; l[m][1] = b; l[m][2] = c; vgl1[m] = xy * pows[2][c+2]+shift; xy *= dc; xz *= db; yz *= da; vgl2[m] = pows[0][a+1] * yz; vgl3[m] = pows[1][b+1] * xz; vgl4[m] = pows[2][c+1] * xy; vgl5[m] = (da-1.) * pows[0][a] * yz + (db-1.) * pows[1][b] * xz + (dc-1.) * pows[2][c] * xy; db -= 1.0; ++m; } da -= 1.0; } dd += 1.0; } } } ,*n = m; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc (const qmckl_context context, const double* restrict X, const double* restrict R, const int32_t lmax, int64_t* n, int32_t* restrict const L, const int64_t ldl, double* restrict const VGL, const int64_t ldv ) { return qmckl_ao_polynomial_transp_vgl_hpc_inline (context, X, R, lmax, n, L, ldl, VGL, ldv ); } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(qmckl_exit_code) function qmckl_ao_polynomial_transp_vgl & (context, X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) use qmckl_constants import implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,n) real (c_double ) , intent(out) :: VGL(ldv,5) end function qmckl_ao_polynomial_transp_vgl end interface #+end_src *** Test :noexport: #+begin_src f90 :tangle (eval f_test) function test_qmckl_ao_polynomial_vgl(context) bind(C) use qmckl implicit none integer(qmckl_context), intent(in), value :: context integer :: lmax, d, i integer, allocatable :: L(:,:) integer*8 :: n, ldl, ldv, j double precision :: X(3), R(3), Y(3) double precision, allocatable :: VGL(:,:) double precision :: w double precision :: epsilon integer(qmckl_exit_code) :: test_qmckl_ao_polynomial_vgl epsilon = qmckl_get_numprec_precision(context) X = (/ 1.1 , 2.2 , 3.3 /) R = (/ 0.1 , 1.2 , -2.3 /) Y(:) = X(:) - R(:) lmax = 4; ldl = 3; ldv = 100; d = (lmax+1)*(lmax+2)*(lmax+3)/6 allocate (L(ldl,d), VGL(ldv,d)) test_qmckl_ao_polynomial_vgl = & qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return if (n /= d) return do j=1,n test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE do i=1,3 if (L(i,j) < 0) return end do test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (dabs(1.d0 - VGL(1,j) / (& Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(1,j) < 1) then if (VGL(2,j) /= 0.d0) return else if (dabs(1.d0 - VGL(2,j) / (& L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(2,j) < 1) then if (VGL(3,j) /= 0.d0) return else if (dabs(1.d0 - VGL(3,j) / (& L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE if (L(3,j) < 1) then if (VGL(4,j) /= 0.d0) return else if (dabs(1.d0 - VGL(4,j) / (& L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) & )) > epsilon ) return end if test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE w = 0.d0 if (L(1,j) > 1) then w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j) end if if (L(2,j) > 1) then w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j) end if if (L(3,j) > 1) then w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2) end if if (w /= 0.d0) then if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return endif end do test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS deallocate(L,VGL) end function test_qmckl_ao_polynomial_vgl #+end_src #+begin_src c :tangle (eval c_test) int test_qmckl_ao_polynomial_vgl(qmckl_context context); assert(0 == test_qmckl_ao_polynomial_vgl(context)); double X[3] = { 1.1, 2.2, 3.3 }; double R[3] = { 0.2, 1.1, 3.0 }; int32_t ldv[8] = {1, 4, 10, 20, 35, 56, 84, 120}; for (int32_t ldl=3 ; ldl<=5 ; ++ldl) { int64_t n; int32_t L0[200][ldl]; int32_t L1[200][ldl]; printf("ldl=%d\n", ldl); for (int32_t lmax=0 ; lmax<=7 ; lmax++) { double VGL0[5][ldv[lmax]]; double VGL1[5][ldv[lmax]]; memset(&L0[0][0], 0, sizeof(L0)); memset(&L1[0][0], 0, sizeof(L1)); memset(&VGL0[0][0], 0, sizeof(VGL0)); memset(&VGL1[0][0], 0, sizeof(VGL1)); rc = qmckl_ao_polynomial_transp_vgl_doc (context, X, R, lmax, &n, &(L0[0][0]), ldl, &(VGL0[0][0]), ldv[lmax]); assert (rc == QMCKL_SUCCESS); rc = qmckl_ao_polynomial_transp_vgl_hpc (context, X, R, lmax, &n, &(L1[0][0]), ldl, &(VGL1[0][0]), ldv[lmax]); assert (rc == QMCKL_SUCCESS); printf("lmax=%d\n", lmax); for (int32_t l=0 ; l 0.d0) ) x = x - .1d0 vmax = 0.d0 e_coord(1) = x r2 = x*x ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end shell_vgl(1) = 0.d0 shell_vgl(2) = 0.d0 shell_vgl(3) = 0.d0 iprim_start = shell_prim_index(ishell) + 1 iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell) do iprim = iprim_start, iprim_end ar2 = expo(iprim)*r2 v = coef_normalized(iprim) * dexp(-ar2) two_a = -2.d0 * expo(iprim) * v shell_vgl(1) = shell_vgl(1) + v shell_vgl(2) = shell_vgl(2) + two_a * x shell_vgl(3) = shell_vgl(3) + two_a * (3.d0 - 2.d0*ar2) end do k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 vmax = max(vmax, poly_vgl(1,il) * shell_vgl(1) * ao_factor(k)) vmax = max(vmax, ( poly_vgl(2,il) * shell_vgl(1) + poly_vgl(1,il) * shell_vgl(2) ) * ao_factor(k)) vmax = max(vmax, ( poly_vgl(5,il) * shell_vgl(3) + poly_vgl(1,il) * shell_vgl(3) + & 2.d0 * (poly_vgl(2,il) * shell_vgl(2) ) ) * ao_factor(k) ) k = k+1 end do end do end do nucleus_range(inucl,iprecision) = x end do end do deallocate(poly_vgl, powers) end function qmckl_compute_nucleus_range_gaussian #+end_src ** Values only :PROPERTIES: :Name: qmckl_compute_ao_value :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: *** Unoptimized version #+NAME: qmckl_ao_value_args_doc | Variable | Type | In/Out | Description | |-----------------------+-----------------------------------+--------+----------------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~ao_num~ | ~int64_t~ | in | Number of AOs | | ~shell_num~ | ~int64_t~ | in | Number of shells | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus | | ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero | | ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus | | ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell | | ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs | | ~shell_vgl~ | ~double[point_num][5][shell_num]~ | in | Value, gradients and Laplacian of the shells | | ~ao_value~ | ~double[point_num][ao_num]~ | out | Values of the AOs | #+begin_src f90 :comments org :tangle (eval f) :noweb yes function qmckl_compute_ao_value_doc(context, & ao_num, shell_num, point_num, nucl_num, & coord, nucl_coord, nucleus_index, nucleus_shell_num, & nucleus_range, nucleus_max_ang_mom, shell_ang_mom, & ao_factor, shell_vgl, ao_value) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num) integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num) real (c_double ) , intent(in) :: ao_factor(ao_num) real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num) real (c_double ) , intent(out) :: ao_value(ao_num,point_num) integer(qmckl_exit_code) :: info double precision :: e_coord(3), n_coord(3) integer*8 :: n_poly integer :: l, il, k integer*8 :: ipoint, inucl, ishell integer*8 :: ishell_start, ishell_end integer :: lstart(0:20) double precision :: x, y, z, r2 double precision :: cutoff double precision, allocatable :: poly_vgl(:,:) integer , allocatable :: powers(:,:), ao_index(:) allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num)) ! Pre-computed data do l=0,20 lstart(l) = l*(l+1)*(l+2)/6 +1 end do k=1 do inucl=1,nucl_num ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end l = shell_ang_mom(ishell) ao_index(ishell) = k k = k + lstart(l+1) - lstart(l) end do end do info = QMCKL_SUCCESS ! Don't compute polynomials when the radial part is zero. <> do ipoint = 1, point_num e_coord(1) = coord(ipoint,1) e_coord(2) = coord(ipoint,2) e_coord(3) = coord(ipoint,3) ao_value(:,ipoint) = 0.d0 do inucl=1,nucl_num n_coord(1) = nucl_coord(inucl,1) n_coord(2) = nucl_coord(inucl,2) n_coord(3) = nucl_coord(inucl,3) ! Test if the point is in the range of the nucleus x = e_coord(1) - n_coord(1) y = e_coord(2) - n_coord(2) z = e_coord(3) - n_coord(3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 ! Value ao_value(k,ipoint) = & poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k) k = k+1 end do end do end do end do deallocate(poly_vgl, powers) end function qmckl_compute_ao_value_doc #+end_src *** HPC version #+NAME: qmckl_ao_value_args_hpc_gaussian | Variable | Type | In/Out | Description | |-----------------------+-----------------------------+--------+----------------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~ao_num~ | ~int64_t~ | in | Number of AOs | | ~shell_num~ | ~int64_t~ | in | Number of shells | | ~prim_num~ | ~int64_t~ | in | Number of primitives | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus | | ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero | | ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus | | ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell | | ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell | | ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell | | ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs | | ~ao_expo~ | ~double[prim_num]~ | in | Value, gradients and Laplacian of the shells | | ~coef_normalized~ | ~double[prim_num]~ | in | Value, gradients and Laplacian of the shells | | ~ao_value~ | ~double[point_num][ao_num]~ | out | Values of the AOs | #+NAME:ao_value_constants #+begin_src c :exports none int32_t lstart[32] __attribute__((aligned(64))); for (int32_t l=0 ; l<32 ; ++l) { lstart[l] = l*(l+1)*(l+2)/6; } int64_t ao_index[shell_num+1] __attribute__((aligned(64))); int64_t size_max = 0; int64_t prim_max = 0; int64_t shell_max = 0; { int64_t k=0; for (int inucl=0 ; inucl < nucl_num ; ++inucl) { prim_max = prim_num_per_nucleus[inucl] > prim_max ? prim_num_per_nucleus[inucl] : prim_max; shell_max = nucleus_shell_num[inucl] > shell_max ? nucleus_shell_num[inucl] : shell_max; const int64_t ishell_start = nucleus_index[inucl]; const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl]; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { const int l = shell_ang_mom[ishell]; ao_index[ishell] = k; k += lstart[l+1] - lstart[l]; size_max = size_max < lstart[l+1] ? lstart[l+1] : size_max; } } ao_index[shell_num] = ao_num+1; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Don't compute polynomials when the radial part is zero. */ const int precision = ctx->numprec.precision; const double cutoff = log( (double) ( ((uint64_t) 1) << (precision-2) ) ); const bool double_precision = precision > 22; #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none #ifdef HAVE_HPC qmckl_exit_code qmckl_compute_ao_value_hpc_gaussian (const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int32_t* restrict prim_num_per_nucleus, const int64_t point_num, const int64_t nucl_num, const double* restrict coord, const double* restrict nucl_coord, const int64_t* restrict nucleus_index, const int64_t* restrict nucleus_shell_num, const double* nucleus_range, const int32_t* restrict nucleus_max_ang_mom, const int32_t* restrict shell_ang_mom, const double* restrict ao_factor, const qmckl_matrix expo_per_nucleus, const qmckl_tensor coef_per_nucleus, double* restrict const ao_value ) { <> #ifdef HAVE_OPENMP #pragma omp parallel if (point_num > 16) #endif { qmckl_exit_code rc; double ar2[prim_max] __attribute__((aligned(64))); float ar2_sp[prim_max] __attribute__((aligned(64))); int32_t powers[3*size_max] __attribute__((aligned(64))); double poly_vgl[5*size_max] __attribute__((aligned(64))); double exp_mat[prim_max] __attribute__((aligned(64))); float exp_mat_sp[prim_max] __attribute__((aligned(64))); double ce_mat[shell_max] __attribute__((aligned(64))); int32_t (*coef_mat_sparse_idx)[shell_max][prim_max+1] __attribute__((aligned(64))) = malloc(nucl_num * sizeof (*coef_mat_sparse_idx)); double (*coef_mat_sparse)[shell_max][prim_max+1] __attribute__((aligned(64))) = malloc(nucl_num * sizeof (*coef_mat_sparse)); for (int i=0 ; i cutoff * nucleus_range[inucl]) { continue; } int64_t n_poly; switch (nucleus_max_ang_mom[inucl]) { case 0: break; case 1: poly_vgl[0] = 1.; poly_vgl[1] = x; poly_vgl[2] = y; poly_vgl[3] = z; break; case 2: poly_vgl[0] = 1.; poly_vgl[1] = x+shift; poly_vgl[2] = y+shift; poly_vgl[3] = z+shift; poly_vgl[4] = x2; poly_vgl[5] = x*y; poly_vgl[6] = x*z; poly_vgl[7] = y2; poly_vgl[8] = y*z; poly_vgl[9] = z2; break; default: rc = qmckl_ao_polynomial_transp_vgl_hpc_inline(context, e_coord, n_coord, nucleus_max_ang_mom[inucl], &n_poly, powers, (int64_t) 3, poly_vgl, size_max); assert (rc == QMCKL_SUCCESS); break; } /* Compute all exponents */ int64_t nidx = 0; if (double_precision) { for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) { const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2; if (v <= cutoff) { ar2[iprim] = v; ++nidx; } else { break; } } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat[iprim] = exp(-ar2[iprim]); } } else { for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) { const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2; if (v <= cutoff) { ar2_sp[iprim] = (float) v; ++nidx; } else { break; } } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat_sp[iprim] = expf(-ar2_sp[iprim]); } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat[iprim] = exp_mat_sp[iprim]; } } for (int i=0 ; i= nidx) break; ce_mat[i] = ce_mat[i] + v[l] * exp_mat[k]; } } const int64_t ishell_start = nucleus_index[inucl]; const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl]; const int64_t ipoint_ao_num = ipoint*ao_num; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { const double s1 = ce_mat[ishell-ishell_start]; if (s1 == 0.0) { continue; } const int64_t k = ao_index[ishell]; double* restrict const ao_value_1 = ao_value + ipoint_ao_num + k; const int32_t l = shell_ang_mom[ishell]; const int32_t n = lstart[l+1]-lstart[l]; double* restrict poly_vgl_1 = NULL; if (nidx > 0) { const double* restrict f = ao_factor + k; const int64_t idx = lstart[l]; poly_vgl_1 = &(poly_vgl[idx]); switch (n) { case 1: ao_value_1[0] = s1 * f[0]; break; case 3: #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; il<3 ; ++il) { ao_value_1[il] = poly_vgl_1[il] * s1 * f[il]; } break; case(6): #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; il<6 ; ++il) { ao_value_1[il] = poly_vgl_1[il] * s1 * f[il]; } break; default: #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; ilao_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_ao_basis_ao_value", NULL); } /* Compute if necessary */ if (ctx->point.date > ctx->ao_basis.ao_value_date) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.ao_num * ctx->point.num * sizeof(double); if (ctx->ao_basis.ao_value != NULL) { qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero; rc = qmckl_get_malloc_info(context, ctx->ao_basis.ao_value, &mem_info_test); /* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the memory was not allocated with qmckl_malloc */ if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) { rc = qmckl_free(context, ctx->ao_basis.ao_value); assert (rc == QMCKL_SUCCESS); ctx->ao_basis.ao_value = NULL; } } /* Allocate array */ if (ctx->ao_basis.ao_value == NULL) { double* ao_value = (double*) qmckl_malloc(context, mem_info); if (ao_value == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ao_basis_ao_value", NULL); } ctx->ao_basis.ao_value = ao_value; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none if (ctx->ao_basis.ao_vgl_date == ctx->point.date) { // ao_vgl has been computed at this step: Just copy the data. double * v = &(ctx->ao_basis.ao_value[0]); double * vgl = &(ctx->ao_basis.ao_vgl[0]); for (int i=0 ; ipoint.num ; ++i) { for (int k=0 ; kao_basis.ao_num ; ++k) { v[k] = vgl[k]; } v += ctx->ao_basis.ao_num; vgl += ctx->ao_basis.ao_num * 5; } } else { #ifdef HAVE_HPC if (ctx->ao_basis.type == 'G') { rc = qmckl_compute_ao_value_hpc_gaussian(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->ao_basis.prim_num_per_nucleus, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.expo_per_nucleus, ctx->ao_basis.coef_per_nucleus, ctx->ao_basis.ao_value); /* } else if (ctx->ao_basis.type == 'S') { rc = qmck_compute_ao_value_hpc_slater(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->ao_basis.prim_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.shell_prim_index, ctx->ao_basis.shell_prim_num, ctx->ao_basis.ao_factor, ctx->ao_basis.exponent, ctx->ao_basis.coefficient_normalized, ctx->ao_basis.ao_value); ,*/ } else { /* Provide required data */ rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL); } rc = qmckl_compute_ao_value_doc(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.shell_vgl, ctx->ao_basis.ao_value); } #else /* Provide required data */ rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL); } rc = qmckl_compute_ao_value_doc(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.shell_vgl, ctx->ao_basis.ao_value); #endif } #+end_src #+CALL: write_provider_post( group="ao_basis", data="ao_value" ) #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none if (rc != QMCKL_SUCCESS) { return rc; } ctx->ao_basis.ao_value_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src **** Test :noexport: #+begin_src python :results output :exports none import numpy as np from math import sqrt h0 = 1.e-4 def f(a,x,y): return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] ) elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] ) nucl_1 = np.array( [ -2.302574592081335e+00, -3.542027060505035e-01, -5.334129934317614e-02] ) #double ao_value[prim_num][5][elec_num]; x = elec_26_w1 ; y = nucl_1 a = [( 4.0382999999999998e+02, 1.4732000000000000e-03 * 5.9876577632594533e+04), ( 1.2117000000000000e+02, 1.2672500000000000e-02 * 7.2836806319891484e+03), ( 4.6344999999999999e+01, 5.8045100000000002e-02 * 1.3549226646722386e+03), ( 1.9721000000000000e+01, 1.7051030000000000e-01 * 3.0376315094739988e+02), ( 8.8623999999999992e+00, 3.1859579999999998e-01 * 7.4924579607137730e+01), ( 3.9962000000000000e+00, 3.8450230000000002e-01 * 1.8590543353806009e+01), ( 1.7636000000000001e+00, 2.7377370000000001e-01 * 4.4423176930919421e+00), ( 7.0618999999999998e-01, 7.4396699999999996e-02 * 8.9541051939952665e-01)] norm = sqrt(3.) # x^2 * g(r) print ( "[26][0][219] : %25.15e"%(fx(a,x,y)) ) print ( "[26][1][219] : %25.15e"%(df(a,x,y,1)) ) print ( "[26][2][219] : %25.15e"%(df(a,x,y,2)) ) print ( "[26][3][219] : %25.15e"%(df(a,x,y,3)) ) print ( "[26][4][219] : %25.15e"%(lf(a,x,y)) ) print ( "[26][0][220] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[1] - y[1]) )) print ( "[26][1][220] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[1] - y[1]) + norm*f(a,x,y) * (x[1] - y[1])) ) print ( "[26][0][221] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[2] - y[2])) ) print ( "[26][1][221] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[2] - y[2]) + norm*f(a,x,y) * (x[2] - y[2])) ) print ( "[26][0][222] : %25.15e"%(f(a,x,y) * (x[1] - y[1]) * (x[1] - y[1])) ) print ( "[26][1][222] : %25.15e"%(df(a,x,y,1)* (x[1] - y[1]) * (x[1] - y[1])) ) print ( "[26][0][223] : %25.15e"%(norm*f(a,x,y) * (x[1] - y[1]) * (x[2] - y[2])) ) print ( "[26][1][223] : %25.15e"%(norm*df(a,x,y,1)* (x[1] - y[1]) * (x[2] - y[2])) ) print ( "[26][0][224] : %25.15e"%(f(a,x,y) * (x[2] - y[2]) * (x[2] - y[2])) ) print ( "[26][1][224] : %25.15e"%(df(a,x,y,1)* (x[2] - y[2]) * (x[2] - y[2])) ) #+end_src #+RESULTS: #+begin_src c :tangle (eval c_test) :exports none { #define shell_num chbrclf_shell_num #define ao_num chbrclf_ao_num double* elec_coord = &(chbrclf_elec_coord[0][0][0]); assert(qmckl_electron_provided(context)); int64_t point_num = elec_num; rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3); assert(rc == QMCKL_SUCCESS); double ao_value[point_num][ao_num]; rc = qmckl_get_ao_basis_ao_value(context, &(ao_value[0][0]), (int64_t) point_num*ao_num); assert (rc == QMCKL_SUCCESS); printf("\n"); printf(" ao_value ao_value[26][219] %25.15e\n", ao_value[26][219]); printf(" ao_value ao_value[26][220] %25.15e\n", ao_value[26][220]); printf(" ao_value ao_value[26][221] %25.15e\n", ao_value[26][221]); printf(" ao_value ao_value[26][222] %25.15e\n", ao_value[26][222]); printf(" ao_value ao_value[26][223] %25.15e\n", ao_value[26][223]); printf(" ao_value ao_value[26][224] %25.15e\n", ao_value[26][224]); printf("\n"); printf("%e %e\n", ao_value[26][219], 1.020298798341620e-08); assert( fabs(ao_value[26][219] - ( 1.020298798341620e-08)) < 1.e-14 ); assert( fabs(ao_value[26][220] - ( 1.516643537739178e-08)) < 1.e-14 ); assert( fabs(ao_value[26][221] - ( -4.686370882518819e-09)) < 1.e-14 ); assert( fabs(ao_value[26][222] - ( 7.514816980753531e-09)) < 1.e-14 ); assert( fabs(ao_value[26][223] - ( -4.021908374204471e-09)) < 1.e-14 ); assert( fabs(ao_value[26][224] - ( 7.175045873560788e-10)) < 1.e-14 ); } #+end_src ** Value, gradients, Laplacian :PROPERTIES: :Name: qmckl_compute_ao_vgl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: *** Reference version #+NAME: qmckl_ao_vgl_args_doc | Variable | Type | In/Out | Description | |-----------------------+-----------------------------------+--------+----------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~ao_num~ | ~int64_t~ | in | Number of AOs | | ~shell_num~ | ~int64_t~ | in | Number of shells | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus | | ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero | | ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus | | ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell | | ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs | | ~shell_vgl~ | ~double[point_num][5][shell_num]~ | in | Value, gradients and Laplacian of the shells | | ~ao_vgl~ | ~double[point_num][5][ao_num]~ | out | Value, gradients and Laplacian of the AOs | #+begin_src f90 :comments org :tangle (eval f) :noweb yes function qmckl_compute_ao_vgl_doc(context, & ao_num, shell_num, point_num, nucl_num, & coord, nucl_coord, nucleus_index, nucleus_shell_num, & nucleus_range, nucleus_max_ang_mom, shell_ang_mom, & ao_factor, shell_vgl, ao_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only : qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num) integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num) real (c_double ) , intent(in) :: ao_factor(ao_num) real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num) real (c_double ) , intent(out) :: ao_vgl(ao_num,5,point_num) integer(qmckl_exit_code) :: info double precision :: e_coord(3), n_coord(3) integer*8 :: n_poly integer :: l, il, k integer*8 :: ipoint, inucl, ishell integer*8 :: ishell_start, ishell_end integer :: lstart(0:20) double precision :: x, y, z, r2 double precision :: cutoff double precision, allocatable :: poly_vgl(:,:) integer , allocatable :: powers(:,:), ao_index(:) allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num)) ! Pre-computed data do l=0,20 lstart(l) = l*(l+1)*(l+2)/6 +1 end do k=1 do inucl=1,nucl_num ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end l = shell_ang_mom(ishell) ao_index(ishell) = k k = k + lstart(l+1) - lstart(l) end do end do info = QMCKL_SUCCESS ! Don't compute polynomials when the radial part is zero. <> do ipoint = 1, point_num e_coord(1) = coord(ipoint,1) e_coord(2) = coord(ipoint,2) e_coord(3) = coord(ipoint,3) ao_vgl(:,:,ipoint) = 0.d0 do inucl=1,nucl_num n_coord(1) = nucl_coord(inucl,1) n_coord(2) = nucl_coord(inucl,2) n_coord(3) = nucl_coord(inucl,3) ! Test if the point is in the range of the nucleus x = e_coord(1) - n_coord(1) y = e_coord(2) - n_coord(2) z = e_coord(3) - n_coord(3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 ! Value ao_vgl(k,1,ipoint) = & poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k) ! Grad_x ao_vgl(k,2,ipoint) = ( & poly_vgl(2,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,2,ipoint) & ) * ao_factor(k) ! Grad_y ao_vgl(k,3,ipoint) = ( & poly_vgl(3,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,3,ipoint) & ) * ao_factor(k) ! Grad_z ao_vgl(k,4,ipoint) = ( & poly_vgl(4,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,4,ipoint) & ) * ao_factor(k) ! Lapl_z ao_vgl(k,5,ipoint) = ( & poly_vgl(5,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,5,ipoint) + & 2.d0 * ( & poly_vgl(2,il) * shell_vgl(ishell,2,ipoint) + & poly_vgl(3,il) * shell_vgl(ishell,3,ipoint) + & poly_vgl(4,il) * shell_vgl(ishell,4,ipoint) ) & ) * ao_factor(k) k = k+1 end do end do end do end do deallocate(poly_vgl, powers) end function qmckl_compute_ao_vgl_doc #+end_src *** HPC version #+NAME: qmckl_ao_vgl_args_hpc_gaussian | Variable | Type | In/Out | Description | |-----------------------+--------------------------------+--------+-------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~ao_num~ | ~int64_t~ | in | Number of AOs | | ~shell_num~ | ~int64_t~ | in | Number of shells | | ~prim_num~ | ~int64_t~ | in | Number of primitives | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~coord~ | ~double[3][point_num]~ | in | Coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus | | ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus | | ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero | | ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus | | ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell | | ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell | | ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell | | ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs | | ~ao_expo~ | ~double[prim_num]~ | in | Exponents of the primitives | | ~coef_normalized~ | ~double[prim_num]~ | in | Normalized coefficients of the primitives | | ~ao_vgl~ | ~double[point_num][5][ao_num]~ | out | Value, gradients and Laplacian of the AOs | #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none #ifdef HAVE_HPC qmckl_exit_code qmckl_compute_ao_vgl_hpc_gaussian ( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int32_t* restrict prim_num_per_nucleus, const int64_t point_num, const int64_t nucl_num, const double* restrict coord, const double* restrict nucl_coord, const int64_t* restrict nucleus_index, const int64_t* restrict nucleus_shell_num, const double* nucleus_range, const int32_t* restrict nucleus_max_ang_mom, const int32_t* restrict shell_ang_mom, const double* restrict ao_factor, const qmckl_matrix expo_per_nucleus, const qmckl_tensor coef_per_nucleus, double* restrict const ao_vgl ) { <> #ifdef HAVE_OPENMP #pragma omp parallel if (point_num > 16) #endif { qmckl_exit_code rc; double ar2[prim_max] __attribute__((aligned(64))); float ar2_sp[prim_max] __attribute__((aligned(64))); int32_t powers[3*size_max] __attribute__((aligned(64))); double exp_mat[prim_max][8] __attribute__((aligned(64))) ; float exp_mat_sp[prim_max] __attribute__((aligned(64))); double ce_mat[shell_max][8] __attribute__((aligned(64))) ; int32_t (*coef_mat_sparse_idx)[shell_max][prim_max+1] __attribute__((aligned(64))) = malloc(nucl_num * sizeof (*coef_mat_sparse_idx)); double (*coef_mat_sparse)[shell_max][prim_max+1] __attribute__((aligned(64))) = malloc(nucl_num * sizeof (*coef_mat_sparse)); for (int i=0 ; i cutoff * nucleus_range[inucl]) { continue; } int64_t n_poly; switch (nucleus_max_ang_mom[inucl]) { case 0: break; case 1: poly_vgl_l1[0][1] = x+shift; poly_vgl_l1[0][2] = y+shift; poly_vgl_l1[0][3] = z+shift; break; case 2: poly_vgl_l2[0][1] = x+shift; poly_vgl_l2[0][2] = y+shift; poly_vgl_l2[0][3] = z+shift; poly_vgl_l2[0][4] = x2+shift; poly_vgl_l2[0][5] = x*y+shift; poly_vgl_l2[0][6] = x*z+shift; poly_vgl_l2[0][7] = y2+shift; poly_vgl_l2[0][8] = y*z+shift; poly_vgl_l2[0][9] = z2+shift; poly_vgl_l2[1][4] = x+x; poly_vgl_l2[1][5] = y; poly_vgl_l2[1][6] = z; poly_vgl_l2[2][5] = x; poly_vgl_l2[2][7] = y+y; poly_vgl_l2[2][8] = z; poly_vgl_l2[3][6] = x; poly_vgl_l2[3][8] = y; poly_vgl_l2[3][9] = z+z; break; default: rc = qmckl_ao_polynomial_transp_vgl_hpc_inline(context, e_coord, n_coord, nucleus_max_ang_mom[inucl], &n_poly, powers, (int64_t) 3, &(poly_vgl[0][0]), size_max); assert (rc == QMCKL_SUCCESS); break; } /* Compute all exponents */ int64_t nidx = 0; if (double_precision) { for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) { const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2; if (v <= cutoff) { ar2[iprim] = v; ++nidx; } else { break; } } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat[iprim][0] = exp(-ar2[iprim]); } } else { for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) { const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2; if (v <= cutoff) { ar2[iprim] = v; ar2_sp[iprim] = (float) v; ++nidx; } else { break; } } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat_sp[iprim] = expf(-ar2_sp[iprim]); } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { exp_mat[iprim][0] = exp_mat_sp[iprim]; } } #ifdef HAVE_OPENMP #pragma omp simd #endif for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) { double f = qmckl_mat(expo_per_nucleus, iprim, inucl) * exp_mat[iprim][0]; f = -f-f; exp_mat[iprim][1] = f * x; exp_mat[iprim][2] = f * y; exp_mat[iprim][3] = f * z; exp_mat[iprim][4] = f * (3.0 - 2.0 * ar2[iprim]); } /* --- */ // if (do_sparse) { for (int i=0 ; i= nidx) break; #ifdef HAVE_OPENMP #pragma omp simd #endif for (int j=0 ; j<8 ; ++j) { ce_mat[i][j] = ce_mat[i][j] + v[l] * exp_mat[k][j]; } } } const int64_t ishell_start = nucleus_index[inucl]; const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl]; const int64_t ipoint_5_ao_num = ipoint*5*ao_num; for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) { const double s1 = ce_mat[ishell-ishell_start][0]; const int64_t k = ao_index[ishell]; double* restrict const ao_vgl_1 = ao_vgl + ipoint_5_ao_num + k; const int32_t l = shell_ang_mom[ishell]; const int32_t n = lstart[l+1]-lstart[l]; double* restrict const ao_vgl_2 = ao_vgl_1 + ao_num; double* restrict const ao_vgl_3 = ao_vgl_1 + (ao_num<<1); double* restrict const ao_vgl_4 = ao_vgl_1 + (ao_num<<1) + ao_num; double* restrict const ao_vgl_5 = ao_vgl_1 + (ao_num<<2); if (s1 == 0.0) { /* for (int64_t il=0 ; il 0) { const double* restrict f = ao_factor + k; const int64_t idx = lstart[l]; switch (nucleus_max_ang_mom[inucl]) { case 0: break; case 1: poly_vgl_1 = &(poly_vgl_l1[0][idx]); poly_vgl_2 = &(poly_vgl_l1[1][idx]); poly_vgl_3 = &(poly_vgl_l1[2][idx]); poly_vgl_4 = &(poly_vgl_l1[3][idx]); break; case 2: poly_vgl_1 = &(poly_vgl_l2[0][idx]); poly_vgl_2 = &(poly_vgl_l2[1][idx]); poly_vgl_3 = &(poly_vgl_l2[2][idx]); poly_vgl_4 = &(poly_vgl_l2[3][idx]); poly_vgl_5 = &(poly_vgl_l2[4][idx]); break; default: poly_vgl_1 = &(poly_vgl[0][idx]); poly_vgl_2 = &(poly_vgl[1][idx]); poly_vgl_3 = &(poly_vgl[2][idx]); poly_vgl_4 = &(poly_vgl[3][idx]); poly_vgl_5 = &(poly_vgl[4][idx]); } switch (n) { case 1: ao_vgl_1[0] = s1 * f[0]; ao_vgl_2[0] = s2 * f[0]; ao_vgl_3[0] = s3 * f[0]; ao_vgl_4[0] = s4 * f[0]; ao_vgl_5[0] = s5 * f[0]; break; case 3: #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; il<3 ; ++il) { ao_vgl_1[il] = poly_vgl_1[il] * s1 * f[il]; ao_vgl_2[il] = (poly_vgl_2[il] * s1 + poly_vgl_1[il] * s2) * f[il]; ao_vgl_3[il] = (poly_vgl_3[il] * s1 + poly_vgl_1[il] * s3) * f[il]; ao_vgl_4[il] = (poly_vgl_4[il] * s1 + poly_vgl_1[il] * s4) * f[il]; ao_vgl_5[il] = (poly_vgl_1[il] * s5 + 2.0*(poly_vgl_2[il] * s2 + poly_vgl_3[il] * s3 + poly_vgl_4[il] * s4 )) * f[il]; } break; case 6: #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; il<6 ; ++il) { ao_vgl_1[il] = poly_vgl_1[il] * s1 * f[il]; ao_vgl_2[il] = (poly_vgl_2[il] * s1 + poly_vgl_1[il] * s2) * f[il]; ao_vgl_3[il] = (poly_vgl_3[il] * s1 + poly_vgl_1[il] * s3) * f[il]; ao_vgl_4[il] = (poly_vgl_4[il] * s1 + poly_vgl_1[il] * s4) * f[il]; ao_vgl_5[il] = (poly_vgl_5[il] * s1 + poly_vgl_1[il] * s5 + 2.0*(poly_vgl_2[il] * s2 + poly_vgl_3[il] * s3 + poly_vgl_4[il] * s4 )) * f[il]; } break; default: #ifdef HAVE_OPENMP #pragma omp simd #endif for (int il=0 ; ilao_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_ao_basis_ao_vgl", NULL); } /* Compute if necessary */ if (ctx->point.date > ctx->ao_basis.ao_vgl_date) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.ao_num * 5 * ctx->point.num * sizeof(double); if (ctx->ao_basis.ao_vgl != NULL) { qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero; rc = qmckl_get_malloc_info(context, ctx->ao_basis.ao_vgl, &mem_info_test); /* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the memory was not allocated with qmckl_malloc */ if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) { rc = qmckl_free(context, ctx->ao_basis.ao_vgl); assert (rc == QMCKL_SUCCESS); ctx->ao_basis.ao_vgl = NULL; } } /* Allocate array */ if (ctx->ao_basis.ao_vgl == NULL) { double* ao_vgl = (double*) qmckl_malloc(context, mem_info); if (ao_vgl == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ao_basis_ao_vgl", NULL); } ctx->ao_basis.ao_vgl = ao_vgl; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none #ifdef HAVE_HPC if (ctx->ao_basis.type == 'G') { rc = qmckl_compute_ao_vgl_hpc_gaussian(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->ao_basis.prim_num_per_nucleus, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.expo_per_nucleus, ctx->ao_basis.coef_per_nucleus, ctx->ao_basis.ao_vgl); /* DEBUG rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL); } int64_t K= ctx->ao_basis.ao_num * 5 * ctx->point.num; double* check = malloc(K*sizeof(double)); rc = qmckl_compute_ao_vgl_doc(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.shell_vgl, check); for (int64_t i=0 ; iao_basis.ao_vgl[i]) > 1.e-10) { int a, b, c; a = i/(ctx->ao_basis.ao_num*5); b = (i-a*ctx->ao_basis.ao_num*5)/ctx->ao_basis.ao_num; c = (i-a*ctx->ao_basis.ao_num*5 -b*ctx->ao_basis.ao_num); printf("%d: %d, %d, %d, %e %e\n", i, a, b, c, check[i], ctx->ao_basis.ao_vgl[i]); } } ,*/ /* } else if (ctx->ao_basis.type == 'S') { rc = qmck_compute_ao_vgl_hpc_slater(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->ao_basis.prim_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.shell_prim_index, ctx->ao_basis.shell_prim_num, ctx->ao_basis.ao_factor, ctx->ao_basis.exponent, ctx->ao_basis.coefficient_normalized, ctx->ao_basis.ao_vgl); ,*/ } else { /* Provide required data */ rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL); } rc = qmckl_compute_ao_vgl_doc(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.shell_vgl, ctx->ao_basis.ao_vgl); } #else rc = qmckl_provide_ao_basis_shell_vgl(context); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL); } rc = qmckl_compute_ao_vgl_doc(context, ctx->ao_basis.ao_num, ctx->ao_basis.shell_num, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->ao_basis.nucleus_index, ctx->ao_basis.nucleus_shell_num, ctx->ao_basis.nucleus_range, ctx->ao_basis.nucleus_max_ang_mom, ctx->ao_basis.shell_ang_mom, ctx->ao_basis.ao_factor, ctx->ao_basis.shell_vgl, ctx->ao_basis.ao_vgl); #endif #+end_src #+CALL: write_provider_post( group="ao_basis", data="ao_vgl" ) #+RESULTS: #+begin_src c :comments org :tangle (eval c) :noweb yes :export none if (rc != QMCKL_SUCCESS) { return rc; } ctx->ao_basis.ao_vgl_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src **** Test :noexport: #+begin_src python :results output :exports none import numpy as np from math import sqrt h0 = 1.e-4 def f(a,x,y): return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) def fx(a,x,y): return f(a,x,y) * (x[0] - y[0])**2 def df(a,x,y,n): if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( fx(a,x+h,y) - fx(a,x-h,y) ) / (2.*h0) # return np.sum( [-2.*b * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) * (x-y)[n-1] def d2f(a,x,y,n): if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( fx(a,x+h,y) - 2.*fx(a,x,y) + fx(a,x-h,y) ) / h0**2 # return np.sum( [( (2.*b*(x-y)[n-1])**2 -2.*b ) * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) def lf(a,x,y): # return np.sum( [( (2.*b*np.linalg.norm(x-y))**2 -6.*b ) * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3) elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] ) elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] ) nucl_1 = np.array( [ -2.302574592081335e+00, -3.542027060505035e-01, -5.334129934317614e-02] ) #double ao_vgl[prim_num][5][elec_num]; x = elec_26_w1 ; y = nucl_1 a = [( 4.0382999999999998e+02, 1.4732000000000000e-03 * 5.9876577632594533e+04), ( 1.2117000000000000e+02, 1.2672500000000000e-02 * 7.2836806319891484e+03), ( 4.6344999999999999e+01, 5.8045100000000002e-02 * 1.3549226646722386e+03), ( 1.9721000000000000e+01, 1.7051030000000000e-01 * 3.0376315094739988e+02), ( 8.8623999999999992e+00, 3.1859579999999998e-01 * 7.4924579607137730e+01), ( 3.9962000000000000e+00, 3.8450230000000002e-01 * 1.8590543353806009e+01), ( 1.7636000000000001e+00, 2.7377370000000001e-01 * 4.4423176930919421e+00), ( 7.0618999999999998e-01, 7.4396699999999996e-02 * 8.9541051939952665e-01)] norm = sqrt(3.) # x^2 * g(r) print ( "[26][0][219] : %25.15e"%(fx(a,x,y)) ) print ( "[26][1][219] : %25.15e"%(df(a,x,y,1)) ) print ( "[26][2][219] : %25.15e"%(df(a,x,y,2)) ) print ( "[26][3][219] : %25.15e"%(df(a,x,y,3)) ) print ( "[26][4][219] : %25.15e"%(lf(a,x,y)) ) print ( "[26][0][220] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[1] - y[1]) )) print ( "[26][1][220] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[1] - y[1]) + norm*f(a,x,y) * (x[1] - y[1])) ) print ( "[26][0][221] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[2] - y[2])) ) print ( "[26][1][221] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[2] - y[2]) + norm*f(a,x,y) * (x[2] - y[2])) ) print ( "[26][0][222] : %25.15e"%(f(a,x,y) * (x[1] - y[1]) * (x[1] - y[1])) ) print ( "[26][1][222] : %25.15e"%(df(a,x,y,1)* (x[1] - y[1]) * (x[1] - y[1])) ) print ( "[26][0][223] : %25.15e"%(norm*f(a,x,y) * (x[1] - y[1]) * (x[2] - y[2])) ) print ( "[26][1][223] : %25.15e"%(norm*df(a,x,y,1)* (x[1] - y[1]) * (x[2] - y[2])) ) print ( "[26][0][224] : %25.15e"%(f(a,x,y) * (x[2] - y[2]) * (x[2] - y[2])) ) print ( "[26][1][224] : %25.15e"%(df(a,x,y,1)* (x[2] - y[2]) * (x[2] - y[2])) ) #+end_src #+RESULTS: #+begin_src c :tangle (eval c_test) :exports none { #define shell_num chbrclf_shell_num #define ao_num chbrclf_ao_num double* elec_coord = &(chbrclf_elec_coord[0][0][0]); assert(qmckl_electron_provided(context)); int64_t point_num = elec_num; rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3); assert(rc == QMCKL_SUCCESS); double ao_vgl[point_num][5][ao_num]; rc = qmckl_get_ao_basis_ao_vgl(context, &(ao_vgl[0][0][0]), (int64_t) 5*point_num*ao_num); assert (rc == QMCKL_SUCCESS); printf("\n"); printf(" ao_vgl ao_vgl[26][0][219] %25.15e\n", ao_vgl[26][0][219]); printf(" ao_vgl ao_vgl[26][1][219] %25.15e\n", ao_vgl[26][1][219]); printf(" ao_vgl ao_vgl[26][2][219] %25.15e\n", ao_vgl[26][2][219]); printf(" ao_vgl ao_vgl[26][3][219] %25.15e\n", ao_vgl[26][3][219]); printf(" ao_vgl ao_vgl[26][4][219] %25.15e\n", ao_vgl[26][4][219]); printf(" ao_vgl ao_vgl[26][0][220] %25.15e\n", ao_vgl[26][0][220]); printf(" ao_vgl ao_vgl[26][1][220] %25.15e\n", ao_vgl[26][1][220]); printf(" ao_vgl ao_vgl[26][2][220] %25.15e\n", ao_vgl[26][2][220]); printf(" ao_vgl ao_vgl[26][3][220] %25.15e\n", ao_vgl[26][3][220]); printf(" ao_vgl ao_vgl[26][4][220] %25.15e\n", ao_vgl[26][4][220]); printf(" ao_vgl ao_vgl[26][0][221] %25.15e\n", ao_vgl[26][0][221]); printf(" ao_vgl ao_vgl[26][1][221] %25.15e\n", ao_vgl[26][1][221]); printf(" ao_vgl ao_vgl[26][2][221] %25.15e\n", ao_vgl[26][2][221]); printf(" ao_vgl ao_vgl[26][3][221] %25.15e\n", ao_vgl[26][3][221]); printf(" ao_vgl ao_vgl[26][4][221] %25.15e\n", ao_vgl[26][4][221]); printf(" ao_vgl ao_vgl[26][0][222] %25.15e\n", ao_vgl[26][0][222]); printf(" ao_vgl ao_vgl[26][1][222] %25.15e\n", ao_vgl[26][1][222]); printf(" ao_vgl ao_vgl[26][2][222] %25.15e\n", ao_vgl[26][2][222]); printf(" ao_vgl ao_vgl[26][3][222] %25.15e\n", ao_vgl[26][3][222]); printf(" ao_vgl ao_vgl[26][4][222] %25.15e\n", ao_vgl[26][4][222]); printf(" ao_vgl ao_vgl[26][0][223] %25.15e\n", ao_vgl[26][0][223]); printf(" ao_vgl ao_vgl[26][1][223] %25.15e\n", ao_vgl[26][1][223]); printf(" ao_vgl ao_vgl[26][2][223] %25.15e\n", ao_vgl[26][2][223]); printf(" ao_vgl ao_vgl[26][3][223] %25.15e\n", ao_vgl[26][3][223]); printf(" ao_vgl ao_vgl[26][4][223] %25.15e\n", ao_vgl[26][4][223]); printf(" ao_vgl ao_vgl[26][0][224] %25.15e\n", ao_vgl[26][0][224]); printf(" ao_vgl ao_vgl[26][1][224] %25.15e\n", ao_vgl[26][1][224]); printf(" ao_vgl ao_vgl[26][2][224] %25.15e\n", ao_vgl[26][2][224]); printf(" ao_vgl ao_vgl[26][3][224] %25.15e\n", ao_vgl[26][3][224]); printf(" ao_vgl ao_vgl[26][4][224] %25.15e\n", ao_vgl[26][4][224]); printf("\n"); assert( fabs(ao_vgl[26][0][219] - ( 1.020298798341620e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][219] - ( -4.928035238010602e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][219] - ( -4.691009312035986e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][219] - ( 1.449504046436699e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][219] - ( 4.296442111843973e-07)) < 1.e-14 ); assert( fabs(ao_vgl[26][0][220] - ( 1.516643537739178e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][220] - ( -7.725221462603871e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][220] - ( -6.507140835104833e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][220] - ( 2.154644255710413e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][220] - ( 6.365449359656352e-07)) < 1.e-14 ); assert( fabs(ao_vgl[26][0][221] - ( -4.686370882518819e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][221] - ( 2.387064067626827e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][221] - ( 2.154644255710412e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][221] - ( -1.998731863512374e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][221] - ( -1.966899656441993e-07)) < 1.e-14 ); assert( fabs(ao_vgl[26][0][222] - ( 7.514816980753531e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][222] - ( -4.025889138635182e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][222] - ( -2.993372555126361e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][222] - ( 1.067604670272904e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][222] - ( 3.168199650002648e-07)) < 1.e-14 ); assert( fabs(ao_vgl[26][0][223] - ( -4.021908374204471e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][223] - ( 2.154644255710413e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][223] - ( 1.725594944732276e-08)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][223] - ( -1.715339357718333e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][223] - ( -1.688020516893476e-07)) < 1.e-14 ); assert( fabs(ao_vgl[26][0][224] - ( 7.175045873560788e-10)) < 1.e-14 ); assert( fabs(ao_vgl[26][1][224] - ( -3.843864637762753e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][2][224] - ( -3.298857850451910e-09)) < 1.e-14 ); assert( fabs(ao_vgl[26][3][224] - ( -4.073047518790881e-10)) < 1.e-14 ); assert( fabs(ao_vgl[26][4][224] - ( 3.153244195820293e-08)) < 1.e-14 ); } #+end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src #+begin_src c :tangle (eval h_private_func) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) rc = qmckl_context_destroy(context); assert (rc == QMCKL_SUCCESS); return 0; } #+end_src *** Compute file names #+begin_src emacs-lisp ; The following is required to compute the file names (setq pwd (file-name-directory buffer-file-name)) (setq name (file-name-nondirectory (substring buffer-file-name 0 -4))) (setq f (concat pwd name "_f.f90")) (setq fh (concat pwd name "_fh.f90")) (setq c (concat pwd name ".c")) (setq h (concat name ".h")) (setq h_private (concat name "_private.h")) (setq c_test (concat pwd "test_" name ".c")) (setq f_test (concat pwd "test_" name "_f.f90")) ; Minted (require 'ox-latex) (setq org-latex-listings 'minted) (add-to-list 'org-latex-packages-alist '("" "listings")) (add-to-list 'org-latex-packages-alist '("" "color")) #+end_src #+RESULTS: | | color | | | listings | # -*- mode: org -*- # vim: syntax=c * TODO [0/1] Missing features :noexport: - [ ] Error messages to tell what is missing when initializing