UP | HOME

Code examples

Table of Contents

1 Python

1.1 Check numerically that MOs are orthonormal

In this example, we will compute numerically the overlap between the molecular orbitals:

\[ S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r}) \text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k) \phi_j(\mathbf{r}_k) \delta \mathbf{r} \] \[ S_{ij} = \langle \phi_i | \phi_j \rangle \sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle \langle \mathbf{r}_k | \phi_j \rangle \]

import numpy as np
import qmckl

First, we create a context for the QMCkl calculation, and load the wave function stored in h2o_5z.h5 inside it. It is a Hartree-Fock determinant for the water molecule in the cc-pV5Z basis set.

trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5"

context = qmckl.context_create()
qmckl.trexio_read(context, trexio_filename)

We now define the grid points \(\mathbf{r}_k\) as a regular grid around the molecule.

We fetch the nuclear coordinates from the context,

nucl_num = qmckl.get_nucleus_num(context)

nucl_charge = qmckl.get_nucleus_charge(context, nucl_num)

nucl_coord = qmckl.get_nucleus_coord(context, 'N', nucl_num*3)
nucl_coord = np.reshape(nucl_coord, (3, nucl_num))

for i in range(nucl_num):
    print("%d  %+f %+f %+f"%(int(nucl_charge[i]),
                             nucl_coord[i,0],
                             nucl_coord[i,1],
                             nucl_coord[i,2]) )
8  +0.000000 +0.000000 +0.000000
1  -1.430429 +0.000000 -1.107157
1  +1.430429 +0.000000 -1.107157

and compute the coordinates of the grid points:

nx = ( 120, 120, 120 )
shift = np.array([5.,5.,5.])
point_num = nx[0] * nx[1] * nx[2]

rmin  = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) )
rmax  = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) )


linspace = [ None for i in range(3) ]
step     = [ None for i in range(3) ]
for a in range(3):
    linspace[a], step[a] = np.linspace(rmin[a]-shift[a],
                                       rmax[a]+shift[a],
                                       num=nx[a],
                                       retstep=True)

dr = step[0] * step[1] * step[2]

Now the grid is ready, we can create the list of grid points \(\mathbf{r}_k\) on which the MOs \(\phi_i\) will be evaluated, and transfer them to the QMCkl context:

point = []
for x in linspace[0]:
    for y in linspace[1]:
        for z in linspace[2]:
            point += [ [x, y, z] ]

point = np.array(point)
point_num = len(point)
qmckl.set_point(context, 'N', point_num, np.reshape(point, (point_num*3)))

Then, we evaluate all the MOs at the grid points (and time the execution), and thus obtain the matrix \(M_{ki} = \langle \mathbf{r}_k | \phi_i \rangle = \phi_i(\mathbf{r}_k)\).

import time

mo_num = qmckl.get_mo_basis_mo_num(context)

before   = time.time()
mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
after    = time.time()

mo_value = np.reshape( mo_value, (point_num, mo_num) )

print("Number of MOs: ", mo_num)
print("Number of grid points: ", point_num)
print("Execution time : ", (after - before), "seconds")

Number of MOs:  201
Number of grid points:  1728000
Execution time :  3.511528968811035 seconds

and finally we compute the overlap between all the MOs as \(M^\dagger M\).

overlap = mo_value.T @ mo_value * dr
print (overlap)
[[ 9.88693941e-01  2.34719693e-03 -1.50518232e-08 ...  3.12084178e-09
  -5.81064929e-10  3.70130091e-02]
 [ 2.34719693e-03  9.99509628e-01  3.18930040e-09 ... -2.46888958e-10
  -1.06064273e-09 -7.65567973e-03]
 [-1.50518232e-08  3.18930040e-09  9.99995073e-01 ... -5.84882580e-06
  -1.21598117e-06  4.59036468e-08]
 ...
 [ 3.12084178e-09 -2.46888958e-10 -5.84882580e-06 ...  1.00019107e+00
  -2.03342837e-04 -1.36954855e-08]
 [-5.81064929e-10 -1.06064273e-09 -1.21598117e-06 ... -2.03342837e-04
   9.99262427e-01  1.18264754e-09]
 [ 3.70130091e-02 -7.65567973e-03  4.59036468e-08 ... -1.36954855e-08
   1.18264754e-09  8.97215950e-01]]

2 Fortran

2.1 Checking errors

All QMCkl functions return an error code. A convenient way to handle errors is to write an error-checking function that displays the error in text format and exits the program.

subroutine qmckl_check_error(rc, message)
  use qmckl
  implicit none
  integer(qmckl_exit_code), intent(in) :: rc
  character(len=*)        , intent(in) :: message
  character(len=128)                   :: str_buffer
  if (rc /= QMCKL_SUCCESS) then
     print *, message
     call qmckl_string_of_error(rc, str_buffer)
     print *, str_buffer
     call exit(rc)
  end if
end subroutine qmckl_check_error

2.2 Computing an atomic orbital on a grid

The following program, in Fortran, computes the values of an atomic orbital on a regular 3-dimensional grid. The 1003 grid points are automatically defined, such that the molecule fits in a box with 5 atomic units in the borders.

This program uses the qmckl_check_error function defined above.

To use this program, run

$ ao_grid <trexio_file> <AO_id> <point_num>
subroutine qmckl_check_error(rc, message)
  use qmckl
  implicit none
  integer(qmckl_exit_code), intent(in) :: rc
  character(len=*)        , intent(in) :: message
  character(len=128)                   :: str_buffer
  if (rc /= QMCKL_SUCCESS) then
     print *, message
     call qmckl_string_of_error(rc, str_buffer)
     print *, str_buffer
     call exit(rc)
  end if
end subroutine qmckl_check_error

program ao_grid
  use qmckl
  implicit none

  integer(qmckl_context)    :: qmckl_ctx  ! QMCkl context
  integer(qmckl_exit_code)  :: rc         ! Exit code of QMCkl functions

  character(len=128)            :: trexio_filename
  character(len=128)            :: str_buffer
  integer                       :: ao_id
  integer                       :: point_num_x

  integer(c_int64_t)            :: nucl_num
  double precision, allocatable :: nucl_coord(:,:)

  integer(c_int64_t)            :: point_num
  integer(c_int64_t)            :: ao_num
  integer(c_int64_t)            :: ipoint, i, j, k
  double precision              :: x, y, z, dr(3)
  double precision              :: rmin(3), rmax(3)
  double precision, allocatable :: points(:,:)
  double precision, allocatable :: ao_vgl(:,:,:)

Start by fetching the command-line arguments:

if (iargc() /= 3) then
   print *, 'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'
   call exit(-1)
end if
call getarg(1, trexio_filename)
call getarg(2, str_buffer)
read(str_buffer, *) ao_id
call getarg(3, str_buffer)
read(str_buffer, *) point_num_x

if (point_num_x < 0 .or. point_num_x > 300) then
   print *, 'Error: 0 < point_num < 300'
   call exit(-1)
end if

Create the QMCkl context and initialize it with the wave function present in the TREXIO file:

qmckl_ctx = qmckl_context_create()
rc  = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename)))
call qmckl_check_error(rc, 'Read TREXIO')

We need to check that ao_id is in the range, so we get the total number of AOs from QMCkl:

rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
call qmckl_check_error(rc, 'Getting ao_num')

if (ao_id < 0 .or. ao_id > ao_num) then
   print *, 'Error: 0 < ao_id < ', ao_num
   call exit(-1)
end if

Now we will compute the limits of the box in which the molecule fits. For that, we first need to ask QMCkl the coordinates of nuclei.

rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
call qmckl_check_error(rc, 'Get nucleus num')

allocate( nucl_coord(3, nucl_num) )
rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num)
call qmckl_check_error(rc, 'Get nucleus coord')

We now compute the coordinates of opposite points of the box, and the distance between points along the 3 directions:

rmin(1) = minval( nucl_coord(1,:) ) - 5.d0
rmin(2) = minval( nucl_coord(2,:) ) - 5.d0
rmin(3) = minval( nucl_coord(3,:) ) - 5.d0

rmax(1) = maxval( nucl_coord(1,:) ) + 5.d0
rmax(2) = maxval( nucl_coord(2,:) ) + 5.d0
rmax(3) = maxval( nucl_coord(3,:) ) + 5.d0

dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1)

We now produce the list of point coordinates where the AO will be evaluated:

point_num = point_num_x**3
allocate( points(point_num, 3) )
ipoint=0
z = rmin(3)
do k=1,point_num_x
   y = rmin(2)
   do j=1,point_num_x
      x = rmin(1)
      do i=1,point_num_x
         ipoint = ipoint+1
         points(ipoint,1) = x
         points(ipoint,2) = y
         points(ipoint,3) = z
         x = x + dr(1)
      end do
      y = y + dr(2)
   end do
   z = z + dr(3)
end do

We give the points to QMCkl:

rc = qmckl_set_point(qmckl_ctx, 'T', point_num, points, size(points)*1_8 )
call qmckl_check_error(rc, 'Setting points')

We allocate the space required to retrieve the values, gradients and Laplacian of all AOs, and ask to retrieve the values of the AOs computed at the point positions.

allocate( ao_vgl(ao_num, 5, point_num) )
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
call qmckl_check_error(rc, 'Setting points')

We finally print the value and Laplacian of the AO:

do ipoint=1, point_num
   print '(3(F10.6,X),2(E20.10,X))', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint), ao_vgl(ao_id,5,ipoint)
end do
  deallocate( nucl_coord, points, ao_vgl )
end program ao_grid

Author: TREX CoE

Created: 2023-05-24 Wed 23:14

Validate