#+TITLE: Molecular Orbitals #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org The molecular orbitals (MOs) are defined in the basis of AOs along with a AO to MO coefficient matrix \[C\]. Using these coefficients (e.g. from Hartree Fock SCF method) the MOs are defined as follows: \[ \phi_i(\mathbf{r}) = C_i * \chi_i (\mathbf{r}) \] In this section we demonstrate how to use the QMCkl specific DGEMM function to calculate the MOs. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_func) #ifndef QMCKL_MO_HPF #define QMCKL_MO_HPF #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_MO_HPT #define QMCKL_MO_HPT #include #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include "assert.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "chbrclf.h" #include "qmckl_ao_private_func.h" #include "qmckl_mo_private_func.h" int main() { qmckl_context context; context = qmckl_context_create(); qmckl_exit_code rc; #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_ao_private_type.h" #include "qmckl_ao_private_func.h" #include "qmckl_mo_private_type.h" #include "qmckl_mo_private_func.h" #+end_src * Context The following arrays are stored in the context: |---------------+--------------------+----------------------| | ~mo_num~ | | Number of MOs | | ~coefficient~ | ~[mo_num][ao_num]~ | Orbital coefficients | Computed data: |---------------+-------------------------+----------------------------------------------------------------------------------------| |---------------+-------------------------+----------------------------------------------------------------------------------------| | ~mo_vgl~ | ~[5][elec_num][mo_num]~ | Value, gradients, Laplacian of the MOs at electron positions | | ~mo_vgl_date~ | ~uint64_t~ | Late modification date of Value, gradients, Laplacian of the MOs at electron positions | |---------------+-------------------------+----------------------------------------------------------------------------------------| ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_mo_basis_struct { int64_t mo_num; double * coefficient; double * mo_vgl; int64_t mo_vgl_date; int32_t uninitialized; bool provided; } qmckl_mo_basis_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_private_func) qmckl_exit_code qmckl_init_mo_basis(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_mo_basis(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); ctx->mo_basis.uninitialized = (1 << 2) - 1; return QMCKL_SUCCESS; } #+end_src ** Access functions #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_mo_basis_mo_num (const qmckl_context context, int64_t* mo_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_mo_basis_mo_num (const qmckl_context context, int64_t* mo_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_mo_basis_mo_num", NULL); return (int64_t) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1; if ( (ctx->mo_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_mo_basis_mo_num", NULL); } assert (ctx->mo_basis.mo_num > (int64_t) 0); ,*mo_num = ctx->mo_basis.mo_num; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_mo_basis_coefficient (const qmckl_context context, double* const coefficient, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :exports none qmckl_exit_code qmckl_get_mo_basis_coefficient (const qmckl_context context, double* const coefficient, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return qmckl_failwith( context, QMCKL_INVALID_CONTEXT, "qmckl_get_mo_basis_coefficient", NULL); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->ao_basis.uninitialized & mask) != 0) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_mo_basis_coefficient", NULL); } if (coefficient == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_mo_basis_coefficient", "NULL pointer"); } if (size_max < ctx->ao_basis.ao_num * ctx->mo_basis.mo_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_mo_basis_coefficient", "Array too small. Expected mo_num * ao_num"); } assert (ctx->mo_basis.coefficient != NULL); memcpy(coefficient, ctx->mo_basis.coefficient, ctx->ao_basis.ao_num * ctx->mo_basis.mo_num * sizeof(double)); return QMCKL_SUCCESS; } #+end_src When all the data for the AOs have been provided, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_mo_basis_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :exports none bool qmckl_mo_basis_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->mo_basis.provided; } #+end_src ** Initialization functions To set the basis set, all the following functions need to be called. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_mo_basis_mo_num (qmckl_context context, const int64_t mo_num); qmckl_exit_code qmckl_set_mo_basis_coefficient (qmckl_context context, const double * coefficient); #+end_src #+NAME:pre #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; #+end_src #+NAME:post #+begin_src c :exports none ctx->mo_basis.uninitialized &= ~mask; ctx->mo_basis.provided = (ctx->mo_basis.uninitialized == 0); if (ctx->mo_basis.provided) { qmckl_exit_code rc_ = qmckl_finalize_mo_basis(context); if (rc_ != QMCKL_SUCCESS) return rc_; } return QMCKL_SUCCESS; #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_mo_basis_mo_num(qmckl_context context, const int64_t mo_num) { <
>

  if (mo_num <= 0) {
    return qmckl_failwith( context,
                           QMCKL_INVALID_ARG_2,
                           "qmckl_set_mo_basis_mo_num",
                           "mo_num <= 0");
  }

  int32_t mask = 1 ;
  ctx->mo_basis.mo_num = mo_num;

  <>
}

qmckl_exit_code  qmckl_set_mo_basis_coefficient(qmckl_context context, const double* coefficient) {
  <
>

  int32_t mask = 1 << 1;

  if (ctx->mo_basis.coefficient != NULL) {
    qmckl_exit_code rc = qmckl_free(context, ctx->mo_basis.coefficient);
    if (rc != QMCKL_SUCCESS) {
      return qmckl_failwith( context, rc,
                             "qmckl_set_mo_basis_coefficient",
                             NULL);
    }
  }

  qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
  mem_info.size = ctx->ao_basis.ao_num * ctx->mo_basis.mo_num * sizeof(double);
  double* new_array = (double*) qmckl_malloc(context, mem_info);
  if (new_array == NULL) {
    return qmckl_failwith( context,
                           QMCKL_ALLOCATION_FAILED,
                           "qmckl_set_mo_basis_coefficient",
                           NULL);
  }

  memcpy(new_array, coefficient, mem_info.size);

  ctx->mo_basis.coefficient = new_array;

  <>
}

   #+end_src

 When the basis set is completely entered, other data structures are
 computed to accelerate the calculations.

   #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_mo_basis(qmckl_context context);
   #+end_src

   #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_mo_basis(qmckl_context context) {

  if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
    return qmckl_failwith( context,
                           QMCKL_INVALID_CONTEXT,
                           "qmckl_finalize_mo_basis",
                           NULL);
  }

  qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
  assert (ctx != NULL);

  qmckl_exit_code rc = QMCKL_SUCCESS;
  return rc;
}
   #+end_src

* Computation

** Computation of MOs

*** Get

    #+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_mo_basis_vgl(qmckl_context context, double* const mo_vgl);
    #+end_src

    #+begin_src c :comments org :tangle (eval c) :noweb yes  :exports none
qmckl_exit_code qmckl_get_mo_basis_vgl(qmckl_context context, double* const mo_vgl) {

  if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
    return QMCKL_NULL_CONTEXT;
  }

  qmckl_exit_code rc;

  rc = qmckl_provide_ao_vgl(context);
  if (rc != QMCKL_SUCCESS) return rc;

  rc = qmckl_provide_mo_vgl(context);
  if (rc != QMCKL_SUCCESS) return rc;

  qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
  assert (ctx != NULL);

  size_t sze = 5 * ctx->electron.num * ctx->mo_basis.mo_num;
  memcpy(mo_vgl, ctx->mo_basis.mo_vgl, sze * sizeof(double));

  return QMCKL_SUCCESS;
}
    #+end_src

    #+begin_src f90 :tangle (eval fh_func) :comments org :exports none
    interface
      integer(c_int32_t) function qmckl_get_mo_basis_vgl (context, mo_vgl) &
          bind(C)
        use, intrinsic :: iso_c_binding
        import
        implicit none

        integer (c_int64_t) , intent(in)  , value :: context
        double precision,     intent(out)         :: mo_vgl(*)
      end function
    end interface
    #+end_src

*** Provide

    #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_mo_vgl(qmckl_context context);
    #+end_src

    #+begin_src c :comments org :tangle (eval c) :noweb yes  :exports none
qmckl_exit_code qmckl_provide_mo_vgl(qmckl_context context)
{

  qmckl_exit_code rc;
  if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
    return QMCKL_NULL_CONTEXT;
  }

  qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
  assert (ctx != NULL);

  if (!ctx->ao_basis.provided) {
    return qmckl_failwith( context,
                           QMCKL_NOT_PROVIDED,
                           "qmckl_ao_basis",
                           NULL);
  }

  rc = qmckl_provide_ao_vgl(context);
  if (rc != QMCKL_SUCCESS) {
    return qmckl_failwith( context,
                           QMCKL_NOT_PROVIDED,
                           "qmckl_ao_basis",
                           NULL);
  }

  if(!(ctx->electron.provided)) {
    return qmckl_failwith( context,
                           QMCKL_NOT_PROVIDED,
                           "qmckl_electron",
                           NULL);
  }

  if (!ctx->mo_basis.provided) {
    return qmckl_failwith( context,
                           QMCKL_NOT_PROVIDED,
                           "qmckl_mo_basis",
                           NULL);
  }

  /* Compute if necessary */
  if (ctx->electron.coord_new_date > ctx->mo_basis.mo_vgl_date) {

    /* Allocate array */
    if (ctx->mo_basis.mo_vgl == NULL) {

      qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
      mem_info.size = 5 * ctx->electron.num * ctx->mo_basis.mo_num * sizeof(double);
      double* mo_vgl = (double*) qmckl_malloc(context, mem_info);

      if (mo_vgl == NULL) {
        return qmckl_failwith( context,
                               QMCKL_ALLOCATION_FAILED,
                               "qmckl_mo_basis_vgl",
                               NULL);
      }
      ctx->mo_basis.mo_vgl = mo_vgl;
    }

    rc = qmckl_compute_mo_basis_vgl(context,
                                    ctx->ao_basis.ao_num,
                                    ctx->mo_basis.mo_num,
                                    ctx->electron.num,
                                    ctx->mo_basis.coefficient,
                                    ctx->ao_basis.ao_vgl,
                                    ctx->mo_basis.mo_vgl);
    if (rc != QMCKL_SUCCESS) {
      return rc;
    }

    ctx->mo_basis.mo_vgl_date = ctx->date;
  }

  return QMCKL_SUCCESS;
}
    #+end_src

*** Compute
   :PROPERTIES:
   :Name:     qmckl_compute_mo_basis_vgl
   :CRetType: qmckl_exit_code
   :FRetType: qmckl_exit_code
   :END:

    #+NAME: qmckl_mo_basis_vgl_args
   | ~qmckl_context~ | ~context~                         | in  | Global state                              |
   | ~int64_t~       | ~ao_num~                          | in  | Number of AOs                             |
   | ~int64_t~       | ~mo_num~                          | in  | Number of MOs                             |
   | ~int64_t~       | ~elec_num~                        | in  | Number of electrons                       |
   | ~double~        | ~coef_normalized[mo_num][ao_num]~ | in  | AO to MO transformation matrix            |
   | ~double~        | ~ao_vgl[5][elec_num][ao_num]~     | in  | Value, gradients and Laplacian of the AOs |
   | ~double~        | ~mo_vgl[5][elec_num][mo_num]~     | out | Value, gradients and Laplacian of the MOs |


    #+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_mo_basis_vgl_f(context, &
     ao_num, mo_num, elec_num, &
     coef_normalized, ao_vgl, mo_vgl) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: ao_num, mo_num
  integer*8             , intent(in)  :: elec_num
  double precision      , intent(in)  :: ao_vgl(ao_num,elec_num,5)
  double precision      , intent(in)  :: coef_normalized(ao_num,mo_num)
  double precision      , intent(out) :: mo_vgl(mo_num,elec_num,5)
  character                     :: TransA, TransB
  double precision,dimension(:,:),allocatable    :: mo_vgl_big
  double precision,dimension(:,:),allocatable    :: ao_vgl_big
  !double precision,dimension(:,:),allocatable    :: coef_trans
  !double precision,dimension(:),allocatable    :: coef_all
  double precision              :: alpha, beta
  integer                       :: info_qmckl_dgemm_value
  integer*8                     :: M, N, K, LDA, LDB, LDC, i,j, idx

  integer*8 :: inucl, iprim, iwalk, ielec, ishell
  double precision :: x, y, z, two_a, ar2, r2, v, cutoff

  allocate(mo_vgl_big(mo_num,elec_num*5))
  allocate(ao_vgl_big(ao_num,elec_num*5))
  !allocate(coef_all(mo_num*ao_num))
  !allocate(coef_trans(mo_num,ao_num))

  TransA = 'T'
  TransB = 'N'
  alpha = 1.0d0
  beta  = 0.0d0

  info = QMCKL_SUCCESS
  info_qmckl_dgemm_value = QMCKL_SUCCESS

  ! Don't compute exponentials when the result will be almost zero.
  ! TODO : Use numerical precision here
  cutoff = -dlog(1.d-15)
  M = mo_num
  N = elec_num*5
  K = ao_num * 1_8
  LDA = size(coef_normalized,1)
  idx = 0
  !do j = 1,ao_num
  !do i = 1,mo_num
  !  idx = idx + 1
  !  coef_all(idx) = coef_normalized(i,j)
  !end do
  !end do
  !idx = 0
  !do j = 1,mo_num
  !do i = 1,ao_num
  !  idx = idx + 1
  !  coef_trans(j,i) = coef_all(idx)
  !end do
  !end do

  ao_vgl_big = reshape(ao_vgl(:, :, :),(/ao_num, elec_num*5_8/))
  LDB = size(ao_vgl_big,1)
  LDC = size(mo_vgl_big,1)

  info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha,     &
                                 coef_normalized,size(coef_normalized,1)*1_8,    &
                                 ao_vgl_big, size(ao_vgl_big,1)*1_8, &
                                 beta,                                       &
                                 mo_vgl_big,LDC)
  mo_vgl = reshape(mo_vgl_big,(/mo_num,elec_num,5_8/))

  deallocate(mo_vgl_big)
  deallocate(ao_vgl_big)

end function qmckl_compute_mo_basis_vgl_f
    #+end_src

   #+CALL: generate_c_header(table=qmckl_mo_basis_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_mo_basis_vgl"))

   #+RESULTS:
   #+begin_src c :tangle (eval h_func) :comments org
   qmckl_exit_code qmckl_compute_mo_basis_vgl (
	 const qmckl_context context,
	 const int64_t ao_num,
	 const int64_t mo_num,
	 const int64_t elec_num,
	 const double* coef_normalized,
	 const double* ao_vgl,
	 double* const mo_vgl );
   #+end_src


    #+CALL: generate_c_interface(table=qmckl_mo_basis_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_mo_basis_vgl"))

    #+RESULTS:
    #+begin_src f90 :tangle (eval f) :comments org :exports none
    integer(c_int32_t) function qmckl_compute_mo_basis_vgl &
	(context, ao_num, mo_num, elec_num, coef_normalized, ao_vgl, mo_vgl) &
	bind(C) result(info)

      use, intrinsic :: iso_c_binding
      implicit none

      integer (c_int64_t) , intent(in)  , value :: context
      integer (c_int64_t) , intent(in)  , value :: ao_num
      integer (c_int64_t) , intent(in)  , value :: mo_num
      integer (c_int64_t) , intent(in)  , value :: elec_num
      real    (c_double ) , intent(in)          :: coef_normalized(ao_num,mo_num)
      real    (c_double ) , intent(in)          :: ao_vgl(ao_num,elec_num,5)
      real    (c_double ) , intent(out)         :: mo_vgl(mo_num,elec_num,5)

      integer(c_int32_t), external :: qmckl_compute_mo_basis_vgl_f
      info = qmckl_compute_mo_basis_vgl_f &
	     (context, ao_num, mo_num, elec_num, coef_normalized, ao_vgl, mo_vgl)

    end function qmckl_compute_mo_basis_vgl
    #+end_src

*** Test

    #+begin_src python :results output :exports none
import numpy as np

def f(a,x,y):
    return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )

def df(a,x,y,n):
    h0 = 1.e-6
    if   n == 1: h = np.array([h0,0.,0.])
    elif n == 2: h = np.array([0.,h0,0.])
    elif n == 3: h = np.array([0.,0.,h0])
    return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0)

def d2f(a,x,y,n):
    h0 = 1.e-6
    if   n == 1: h = np.array([h0,0.,0.])
    elif n == 2: h = np.array([0.,h0,0.])
    elif n == 3: h = np.array([0.,0.,h0])
    return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2

def lf(a,x,y):
    return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3)

elec_26_w1 = np.array( [  1.49050402641, 2.90106987953, -1.05920815468  ] )
elec_15_w2 = np.array( [  -2.20180344582,-1.9113150239,  2.2193744778600002 ] )
nucl_1    = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] )
nucl_2    = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] )

#double prim_vgl[prim_num][5][walk_num][elec_num];
x = elec_26_w1 ; y = nucl_1
a = [(  8.236000E+03,  -1.130000E-04 * 6.1616545431994848e+02 ),
     (  1.235000E+03,  -8.780000E-04 * 1.4847738511079908e+02 ),
     (  2.808000E+02,  -4.540000E-03 * 4.8888635917437597e+01 ),
     (  7.927000E+01,  -1.813300E-02 * 1.8933972232608955e+01 ),
     (  2.559000E+01,  -5.576000E-02 * 8.1089160941724145e+00 ),
     (  8.997000E+00,  -1.268950E-01 * 3.7024003863155635e+00 ),
     (  3.319000E+00,  -1.703520E-01 * 1.7525302846177560e+00 ),
     (  9.059000E-01,   1.403820E-01 * 6.6179013183966806e-01 ),
     (  3.643000E-01,   5.986840E-01 * 3.3419848027174592e-01 ),
     (  1.285000E-01,   3.953890E-01 * 1.5296336817449557e-01 )]

print ( "[1][0][0][26]  : %25.15e"% f(a,x,y))
print ( "[1][1][0][26]  : %25.15e"% df(a,x,y,1))
print ( "[1][2][0][26]  : %25.15e"% df(a,x,y,2))
print ( "[1][3][0][26]  : %25.15e"% df(a,x,y,3))
print ( "[1][4][0][26]  : %25.15e"% lf(a,x,y))

x = elec_15_w2 ; y = nucl_2
a = [(3.387000E+01, 6.068000E-03 *1.0006253235944540e+01),
     (5.095000E+00, 4.530800E-02 *2.4169531573445120e+00),
     (1.159000E+00, 2.028220E-01 *7.9610924849766440e-01),
     (3.258000E-01, 5.039030E-01 *3.0734305383061117e-01),
     (1.027000E-01, 3.834210E-01 *1.2929684417481876e-01)]

print ( "[0][1][15][14] : %25.15e"% f(a,x,y))
print ( "[1][1][15][14] : %25.15e"% df(a,x,y,1))
print ( "[2][1][15][14] : %25.15e"% df(a,x,y,2))
print ( "[3][1][15][14] : %25.15e"% df(a,x,y,3))
print ( "[4][1][15][14] : %25.15e"% lf(a,x,y))

    #+end_src

     #+begin_src c :tangle (eval c_test) :exports none
{
#define walk_num chbrclf_walk_num
#define elec_num chbrclf_elec_num
#define shell_num chbrclf_shell_num
#define ao_num chbrclf_ao_num

int64_t elec_up_num   = chbrclf_elec_up_num;
int64_t elec_dn_num   = chbrclf_elec_dn_num;
double* elec_coord    = &(chbrclf_elec_coord[0][0][0]);
const int64_t   nucl_num      = chbrclf_nucl_num;
const double*   nucl_charge   = chbrclf_charge;
const double*   nucl_coord    = &(chbrclf_nucl_coord[0][0]);

rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert (rc == QMCKL_SUCCESS);

rc = qmckl_set_electron_walk_num (context, walk_num);
assert (rc == QMCKL_SUCCESS);

assert(qmckl_electron_provided(context));

rc = qmckl_set_electron_coord (context, 'N', elec_coord, walk_num*elec_num*3);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]));
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_charge(context, nucl_charge);
assert(rc == QMCKL_SUCCESS);

assert(qmckl_nucleus_provided(context));

const int64_t *  nucleus_index     =  &(chbrclf_basis_nucleus_index[0]);
const int64_t *  nucleus_shell_num =  &(chbrclf_basis_nucleus_shell_num[0]);
const int32_t *  shell_ang_mom     =  &(chbrclf_basis_shell_ang_mom[0]);
const int64_t *  shell_prim_num    =  &(chbrclf_basis_shell_prim_num[0]);
const int64_t *  shell_prim_index  =  &(chbrclf_basis_shell_prim_index[0]);
const double  *  shell_factor      =  &(chbrclf_basis_shell_factor[0]);
const double  *  exponent          =  &(chbrclf_basis_exponent[0]);
const double  *  coefficient       =  &(chbrclf_basis_coefficient[0]);
const double  *  prim_factor       =  &(chbrclf_basis_prim_factor[0]);
const double  *  ao_factor         =  &(chbrclf_basis_ao_factor[0]);

const char typ = 'G';

assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_type (context, typ);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_shell_num (context, chbrclf_shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_prim_num (context, chbrclf_prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_nucleus_shell_num (context, nucleus_shell_num, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_shell_ang_mom (context, shell_ang_mom, chbrclf_shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_shell_factor  (context, shell_factor, chbrclf_shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_shell_prim_num (context, shell_prim_num, chbrclf_shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_shell_prim_index (context, shell_prim_index, chbrclf_shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_exponent      (context, exponent, chbrclf_prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_coefficient   (context, coefficient, chbrclf_prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));

rc = qmckl_set_ao_basis_prim_factor (context, prim_factor, chbrclf_prim_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_ao_basis_ao_num(context, chbrclf_ao_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_ao_basis_ao_factor (context, ao_factor, chbrclf_ao_num);
assert(rc == QMCKL_SUCCESS);

assert(qmckl_ao_basis_provided(context));


double ao_vgl[5][walk_num][elec_num][chbrclf_ao_num];

rc = qmckl_get_ao_basis_ao_vgl(context, &(ao_vgl[0][0][0][0]),
     (int64_t) 5*walk_num*elec_num*chbrclf_ao_num);
assert (rc == QMCKL_SUCCESS);

/* Set up MO data */
const int64_t mo_num = chbrclf_mo_num;
rc = qmckl_set_mo_basis_mo_num(context, mo_num);
assert (rc == QMCKL_SUCCESS);

const double  * mo_coefficient          =  &(chbrclf_mo_coef[0]);

rc = qmckl_set_mo_basis_coefficient(context, mo_coefficient);
assert (rc == QMCKL_SUCCESS);

assert(qmckl_mo_basis_provided(context));

double mo_vgl[5][elec_num][chbrclf_mo_num];
rc = qmckl_get_mo_basis_vgl(context, &(mo_vgl[0][0][0]));
assert (rc == QMCKL_SUCCESS);

// Test overlap of MO
//double point_x[10];
//double point_y[10];
//double point_z[10];
//int32_t npoints=10;
//// obtain points
//double dr = 20./(npoints-1);
//double dr3 = dr*dr*dr;
//
//for (int i=0;i