#+TITLE: Inter-particle distances #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org Functions for the computation of distances between particles. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :comments link :tangle (eval c_test) :noweb yes #include "qmckl.h" #include "assert.h" #include #ifdef HAVE_CONFIG_H #include "config.h" #endif int main() { qmckl_context context; context = qmckl_context_create(); #ifdef VFC_CI qmckl_init_probes(); #endif #+end_src * Squared distance ** ~qmckl_distance_sq~ :PROPERTIES: :Name: qmckl_distance_sq :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: ~qmckl_distance_sq~ computes the matrix of the squared distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \] #+NAME: qmckl_distance_sq_args | Variable | Type | In/Out | Description | |-----------+------------------+--------+-----------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~transa~ | ~char~ | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed | | ~transb~ | ~char~ | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed | | ~m~ | ~int64_t~ | in | Number of points in the first set | | ~n~ | ~int64_t~ | in | Number of points in the second set | | ~A~ | ~double[][lda]~ | in | Array containing the $m \times 3$ matrix $A$ | | ~lda~ | ~int64_t~ | in | Leading dimension of array ~A~ | | ~B~ | ~double[][ldb]~ | in | Array containing the $n \times 3$ matrix $B$ | | ~ldb~ | ~int64_t~ | in | Leading dimension of array ~B~ | | ~C~ | ~double[n][ldc]~ | out | Array containing the $m \times n$ matrix $C$ | | ~ldc~ | ~int64_t~ | in | Leading dimension of array ~C~ | Requirements: - ~context~ is not ~QMCKL_NULL_CONTEXT~ - ~m > 0~ - ~n > 0~ - ~lda >= 3~ if ~transa == 'N'~ - ~lda >= m~ if ~transa == 'T'~ - ~ldb >= 3~ if ~transb == 'N'~ - ~ldb >= n~ if ~transb == 'T'~ - ~ldc >= m~ - ~A~ is allocated with at least $3 \times m \times 8$ bytes - ~B~ is allocated with at least $3 \times n \times 8$ bytes - ~C~ is allocated with at least $m \times n \times 8$ bytes #+CALL: generate_c_header(table=qmckl_distance_sq_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_distance_sq ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc ); #+end_src #+begin_src f90 :tangle (eval f) function qmckl_distance_sq(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC) & bind(C) result(info) use, intrinsic :: iso_c_binding use qmckl_constants implicit none integer (qmckl_context) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc integer(qmckl_exit_code) :: info integer*8 :: i,j real*8 :: x, y, z integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_7 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do end select end function qmckl_distance_sq #+end_src *** Performance This function is more efficient when ~A~ and ~B~ are transposed. #+CALL: generate_f_interface(table=qmckl_distance_sq_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_distance_sq & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc end function qmckl_distance_sq end interface #+end_src *** Test :noexport: #+begin_src f90 :tangle (eval f_test) integer(qmckl_exit_code) function test_qmckl_distance_sq(context) bind(C) use qmckl use qmckl_verificarlo_f use iso_c_binding implicit none integer(qmckl_context), intent(in), value :: context logical(C_BOOL) :: vfc_err double precision, allocatable :: A(:,:), B(:,:), C(:,:) integer*8 :: m, n, LDA, LDB, LDC double precision :: x integer*8 :: i,j m = 5 n = 6 LDA = m LDB = n LDC = 5 allocate( A(LDA,m), B(LDB,n), C(LDC,n) ) do j=1,m do i=1,m A(i,j) = -10.d0 + dble(i+j) end do end do do j=1,n do i=1,n B(i,j) = -1.d0 + dble(i*j) end do end do test_qmckl_distance_sq = & qmckl_distance_sq(context, 'X', 't', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe("distance", "distance_sq_Xt_2_2", C(2,2)) if (test_qmckl_distance_sq == 0) return test_qmckl_distance_sq = & qmckl_distance_sq(context, 't', 'X', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe("distance", "distance_sq_tX_2_2", C(2,2)) if (test_qmckl_distance_sq == 0) return test_qmckl_distance_sq = & qmckl_distance_sq(context, 'T', 't', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_sq_Tt_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_distance_sq == 0) return test_qmckl_distance_sq = QMCKL_FAILURE do j=1,n do i=1,m x = (A(i,1)-B(j,1))**2 + & (A(i,2)-B(j,2))**2 + & (A(i,3)-B(j,3))**2 #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_distance_sq = & qmckl_distance_sq(context, 'n', 'T', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_sq_nT_2_2", C(2,2), 0.d0, 1.d-14) test_qmckl_distance_sq = QMCKL_FAILURE do j=1,n do i=1,m x = (A(1,i)-B(j,1))**2 + & (A(2,i)-B(j,2))**2 + & (A(3,i)-B(j,3))**2 #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_distance_sq = & qmckl_distance_sq(context, 'T', 'n', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_sq_Tn_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_distance_sq == 0) return test_qmckl_distance_sq = QMCKL_FAILURE do j=1,n do i=1,m x = (A(i,1)-B(1,j))**2 + & (A(i,2)-B(2,j))**2 + & (A(i,3)-B(3,j))**2 #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_distance_sq = & qmckl_distance_sq(context, 'n', 'N', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_sq_nN_2_2", C(2,2), 0.d0, 1.d-14) test_qmckl_distance_sq = QMCKL_FAILURE do j=1,n do i=1,m x = (A(1,i)-B(1,j))**2 + & (A(2,i)-B(2,j))**2 + & (A(3,i)-B(3,j))**2 if ( dabs(1.d0 - C(i,j)/x) > 1.d-14 ) return end do end do test_qmckl_distance_sq = QMCKL_SUCCESS deallocate(A,B,C) end function test_qmckl_distance_sq #+end_src #+begin_src c :comments link :tangle (eval c_test) qmckl_exit_code test_qmckl_distance_sq(qmckl_context context); assert(test_qmckl_distance_sq(context) == QMCKL_SUCCESS); #+end_src * Distance ** ~qmckl_distance~ :PROPERTIES: :Name: qmckl_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: ~qmckl_distance~ computes the matrix of the distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \sqrt{\sum_{k=1}^3 (A_{k,i}-B_{k,j})^2} \] If the input array is normal (~'N'~), the xyz coordinates are in the leading dimension: ~[n][3]~ in C and ~(3,n)~ in Fortran. #+NAME: qmckl_distance_args | Variable | Type | In/Out | Description | |-----------+------------------+--------+-----------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~transa~ | ~char~ | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed | | ~transb~ | ~char~ | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed | | ~m~ | ~int64_t~ | in | Number of points in the first set | | ~n~ | ~int64_t~ | in | Number of points in the second set | | ~A~ | ~double[][lda]~ | in | Array containing the $m \times 3$ matrix $A$ | | ~lda~ | ~int64_t~ | in | Leading dimension of array ~A~ | | ~B~ | ~double[][ldb]~ | in | Array containing the $n \times 3$ matrix $B$ | | ~ldb~ | ~int64_t~ | in | Leading dimension of array ~B~ | | ~C~ | ~double[n][ldc]~ | out | Array containing the $m \times n$ matrix $C$ | | ~ldc~ | ~int64_t~ | in | Leading dimension of array ~C~ | *** Requirements - ~context~ is not ~QMCKL_NULL_CONTEXT~ - ~m > 0~ - ~n > 0~ - ~lda >= 3~ if ~transa == 'N'~ - ~lda >= m~ if ~transa == 'T'~ - ~ldb >= 3~ if ~transb == 'N'~ - ~ldb >= n~ if ~transb == 'T'~ - ~ldc >= m~ - ~A~ is allocated with at least $3 \times m \times 8$ bytes - ~B~ is allocated with at least $3 \times n \times 8$ bytes - ~C~ is allocated with at least $m \times n \times 8$ bytes *** C header #+CALL: generate_c_header(table=qmckl_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_distance ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc ); #+end_src *** Source #+begin_src f90 :tangle (eval f) integer function qmckl_distance_f(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC) & result(info) use qmckl implicit none integer(qmckl_context) , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(ldc,*) integer*8 :: i,j real*8 :: x, y, z integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif ! check for LDA if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,1) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,1) == 1 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do end select end function qmckl_distance_f #+end_src *** Performance This function is more efficient when ~A~ and ~B~ are transposed. ** C interface :noexport: #+CALL: generate_c_interface(table=qmckl_distance_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_distance & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc integer(c_int32_t), external :: qmckl_distance_f info = qmckl_distance_f & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc) end function qmckl_distance #+end_src #+CALL: generate_f_interface(table=qmckl_distance_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_distance & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc end function qmckl_distance end interface #+end_src *** Test :noexport: #+begin_src f90 :tangle (eval f_test) integer(qmckl_exit_code) function test_qmckl_dist(context) bind(C) use qmckl use qmckl_verificarlo_f use iso_c_binding implicit none integer(qmckl_context), intent(in), value :: context logical(C_BOOL) :: vfc_err double precision, allocatable :: A(:,:), B(:,:), C(:,:) integer*8 :: m, n, LDA, LDB, LDC double precision :: x integer*8 :: i,j m = 5 n = 6 LDA = m LDB = n LDC = 5 allocate( A(LDA,m), B(LDB,n), C(LDC,n) ) do j=1,m do i=1,m A(i,j) = -10.d0 + dble(i+j) end do end do do j=1,n do i=1,n B(i,j) = -1.d0 + dble(i*j) end do end do test_qmckl_dist = & qmckl_distance(context, 'X', 't', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe("distance", "distance_Xt_2_2", C(2,2)) if (test_qmckl_dist == 0) return test_qmckl_dist = & qmckl_distance(context, 't', 'X', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe("distance", "distance_tX_2_2", C(2,2)) if (test_qmckl_dist == 0) return test_qmckl_dist = & qmckl_distance(context, 'T', 't', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_Tt_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_dist == 0) return test_qmckl_dist = QMCKL_FAILURE do j=1,n do i=1,m x = dsqrt((A(i,1)-B(j,1))**2 + & (A(i,2)-B(j,2))**2 + & (A(i,3)-B(j,3))**2) #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_dist = & qmckl_distance(context, 'n', 'T', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_nT_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_dist == 0) return test_qmckl_dist = QMCKL_FAILURE do j=1,n do i=1,m x = dsqrt((A(1,i)-B(j,1))**2 + & (A(2,i)-B(j,2))**2 + & (A(3,i)-B(j,3))**2) #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_dist = & qmckl_distance(context, 'T', 'n', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_Tn_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_dist == 0) return test_qmckl_dist = QMCKL_FAILURE do j=1,n do i=1,m x = dsqrt((A(i,1)-B(1,j))**2 + & (A(i,2)-B(2,j))**2 + & (A(i,3)-B(3,j))**2) #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_dist = & qmckl_distance(context, 'n', 'N', m, n, A, LDA, B, LDB, C, LDC) vfc_err = qmckl_probe_check("distance", "distance_nN_2_2", C(2,2), 0.d0, 1.d-14) if (test_qmckl_dist == 0) return test_qmckl_dist = QMCKL_FAILURE do j=1,n do i=1,m x = dsqrt((A(1,i)-B(1,j))**2 + & (A(2,i)-B(2,j))**2 + & (A(3,i)-B(3,j))**2) #ifndef VFC_CI if ( dabs(1.d0 - C(i,j)/x) > 1.d-14) return #endif end do end do test_qmckl_dist = QMCKL_SUCCESS deallocate(A,B,C) end function test_qmckl_dist #+end_src #+begin_src c :comments link :tangle (eval c_test) qmckl_exit_code test_qmckl_dist(qmckl_context context); assert(test_qmckl_dist(context) == QMCKL_SUCCESS); #+end_src * Rescaled Distance ** ~qmckl_distance_rescaled~ :PROPERTIES: :Name: qmckl_distance_rescaled :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: ~qmckl_distance_rescaled~ computes the matrix of the rescaled distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \frac{ 1 - e^{-\kappa r_{ij}}}{\kappa} \] If the input array is normal (~'N'~), the xyz coordinates are in the leading dimension: ~[n][3]~ in C and ~(3,n)~ in Fortran. #+NAME: qmckl_distance_rescaled_args | Variable | Type | In/Out | Description | |------------------------+------------------+--------+-----------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~transa~ | ~char~ | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed | | ~transb~ | ~char~ | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed | | ~m~ | ~int64_t~ | in | Number of points in the first set | | ~n~ | ~int64_t~ | in | Number of points in the second set | | ~A~ | ~double[][lda]~ | in | Array containing the $m \times 3$ matrix $A$ | | ~lda~ | ~int64_t~ | in | Leading dimension of array ~A~ | | ~B~ | ~double[][ldb]~ | in | Array containing the $n \times 3$ matrix $B$ | | ~ldb~ | ~int64_t~ | in | Leading dimension of array ~B~ | | ~C~ | ~double[n][ldc]~ | out | Array containing the $m \times n$ matrix $C$ | | ~ldc~ | ~int64_t~ | in | Leading dimension of array ~C~ | | ~rescale_factor_kappa~ | ~double~ | in | Factor for calculating rescaled distances | *** Requirements - ~context~ is not ~QMCKL_NULL_CONTEXT~ - ~m > 0~ - ~n > 0~ - ~lda >= 3~ if ~transa == 'N'~ - ~lda >= m~ if ~transa == 'T'~ - ~ldb >= 3~ if ~transb == 'N'~ - ~ldb >= n~ if ~transb == 'T'~ - ~ldc >= m~ - ~A~ is allocated with at least $3 \times m \times 8$ bytes - ~B~ is allocated with at least $3 \times n \times 8$ bytes - ~C~ is allocated with at least $m \times n \times 8$ bytes *** C header #+CALL: generate_c_header(table=qmckl_distance_rescaled_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_distance_rescaled ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc, const double rescale_factor_kappa ); #+end_src *** Source #+begin_src f90 :tangle (eval f) integer function qmckl_distance_rescaled_f(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC, rescale_factor_kappa) & result(info) use qmckl implicit none integer(qmckl_context) , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(ldc,*) real*8 , intent(in) :: rescale_factor_kappa integer*8 :: i,j real*8 :: x, y, z, dist, rescale_factor_kappa_inv integer :: transab rescale_factor_kappa_inv = 1.0d0/rescale_factor_kappa; info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif ! check for LDA if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do end select end function qmckl_distance_rescaled_f #+end_src *** Performance This function is more efficient when ~A~ and ~B~ are transposed. ** C interface :noexport: #+CALL: generate_c_interface(table=qmckl_distance_rescaled_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_distance_rescaled & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa integer(c_int32_t), external :: qmckl_distance_rescaled_f info = qmckl_distance_rescaled_f & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) end function qmckl_distance_rescaled #+end_src #+CALL: generate_f_interface(table=qmckl_distance_rescaled_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_distance_rescaled & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n) integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa end function qmckl_distance_rescaled end interface #+end_src *** Test :noexport: #+BEGIN_SRC python :results output :exports none import numpy as np kappa = 0.6 kappa_inv = 1./kappa # For H2O we have the following data: elec_num = 10 nucl_num = 2 up_num = 5 down_num = 5 nucl_coord = np.array([ [0.000000, 0.000000 ], [0.000000, 0.000000 ], [0.000000, 2.059801 ] ]) elec_coord = np.array( [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303], [-0.587812193472177 , -0.128751981129274 , 0.187773606533075], [ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ], [-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ], [ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ], [-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002], [-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867], [ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002], [-0.108090166832043 , 0.189161729653261 , 2.15398313919894], [ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]]) ee_distance_rescaled = \ np.array([ [(1.-np.exp(-kappa*np.linalg.norm(elec_coord[0,j,:]-elec_coord[0,i,:])))/kappa \ for i in range(elec_num) ] for j in range(elec_num) ]) en_distance_rescaled = \ np.array([ [(1.-np.exp(-kappa*np.linalg.norm(elec_coord[0,j,:]-nucl_coord[:,i])))/kappa \ for j in range(elec_num) ] for i in range(nucl_num) ]) print(ee_distance_rescaled) print() print(en_distance_rescaled) #+END_SRC #+RESULTS: #+begin_example [[0. 0.63475074 1.29816415 1.23147027 1.51933127 0.54402406 0.51452479 0.96538731 1.25878564 1.3722995 ] [0.63475074 0. 1.35148664 1.13524156 1.48940503 0.4582292 0.62758076 1.06560856 1.179133 1.30763703] [1.29816415 1.35148664 0. 1.50021375 1.59200788 1.23488312 1.20844259 1.0355537 1.52064535 1.53049239] [1.23147027 1.13524156 1.50021375 0. 1.12016142 1.19158954 1.29762585 1.24824277 0.25292267 0.58609336] [1.51933127 1.48940503 1.59200788 1.12016142 0. 1.50217017 1.54012828 1.48753895 1.10441805 0.84504381] [0.54402406 0.4582292 1.23488312 1.19158954 1.50217017 0. 0.39417354 0.87009603 1.23838502 1.33419121] [0.51452479 0.62758076 1.20844259 1.29762585 1.54012828 0.39417354 0. 0.95118809 1.33068934 1.41097406] [0.96538731 1.06560856 1.0355537 1.24824277 1.48753895 0.87009603 0.95118809 0. 1.29422213 1.33222493] [1.25878564 1.179133 1.52064535 0.25292267 1.10441805 1.23838502 1.33068934 1.29422213 0. 0.62196802] [1.3722995 1.30763703 1.53049239 0.58609336 0.84504381 1.33419121 1.41097406 1.33222493 0.62196802 0. ]] [[0.49421587 0.52486545 1.23280503 1.16396998 1.49156627 0.1952946 0.4726453 0.80211227 1.21198526 1.31411513] [1.24641375 1.15444238 1.50565145 0.06218339 1.10153184 1.20919677 1.3111856 1.26122875 0.22122563 0.55669168]] #+end_example #+begin_src f90 :tangle (eval f_test) integer(qmckl_exit_code) function test_qmckl_dist_rescaled(context) bind(C) use qmckl use iso_c_binding implicit none integer(qmckl_context), intent(in), value :: context integer*8 :: m, n, LDA, LDB, LDC double precision :: x integer*8 :: i,j double precision, parameter :: kappa = 0.6d0 double precision, parameter :: kappa_inv = 1.d0/kappa integer*8, parameter :: elec_num = 10_8 integer*8, parameter :: nucl_num = 2_8 double precision :: nucl_coord(nucl_num,3) = reshape( (/ & 0.0d0, 0.0d0 , & 0.0d0, 0.0d0 , & 0.0d0, 2.059801d0 /), shape(nucl_coord) ) double precision :: elec_coord(3,elec_num) = reshape( (/ & -0.250655104764153d0 , 0.503070975550133d0 , -0.166554344502303d0 , & -0.587812193472177d0 , -0.128751981129274d0 , 0.187773606533075d0 , & 1.61335569047166d0 , -0.615556732874863d0 , -1.43165470979934d0 , & -4.901239896295210d-003 , -1.120440036458986d-002 , 1.99761909330422d0 , & 0.766647499681200d0 , -0.293515395797937d0 , 3.66454589201239d0 , & -0.127732483187947d0 , -0.138975497694196d0 , -8.669850480215846d-002 , & -0.232271834949124d0 , -1.059321673434182d-002 , -0.504862241464867d0 , & 1.09360863531826d0 , -2.036103063808752d-003 , -2.702796910818986d-002 , & -0.108090166832043d0 , 0.189161729653261d0 , 2.15398313919894d0 , & 0.397978144318712d0 , -0.254277292595981d0 , 2.54553335476344d0 /), & shape(elec_coord)) double precision :: ref_ee(elec_num,elec_num) = reshape( (/ & 0.d0, 0.63475074d0, 1.29816415d0, 1.23147027d0, 1.51933127d0, & 0.54402406d0, 0.51452479d0, 0.96538731d0, 1.25878564d0, 1.3722995d0 , & 0.63475074d0, 0.d0, 1.35148664d0, 1.13524156d0, 1.48940503d0, & 0.4582292d0, 0.62758076d0, 1.06560856d0, 1.179133d0, 1.30763703d0 , & 1.29816415d0, 1.35148664d0, 0.d0, 1.50021375d0, 1.59200788d0, & 1.23488312d0, 1.20844259d0, 1.0355537d0, 1.52064535d0, 1.53049239d0 , & 1.23147027d0, 1.13524156d0, 1.50021375d0, 0.d0, 1.12016142d0, & 1.19158954d0, 1.29762585d0, 1.24824277d0, 0.25292267d0, 0.58609336d0 , & 1.51933127d0, 1.48940503d0, 1.59200788d0, 1.12016142d0, 0.d0, & 1.50217017d0, 1.54012828d0, 1.48753895d0, 1.10441805d0, 0.84504381d0 , & 0.54402406d0, 0.4582292d0, 1.23488312d0, 1.19158954d0, 1.50217017d0, & 0.d0, 0.39417354d0, 0.87009603d0, 1.23838502d0, 1.33419121d0 , & 0.51452479d0, 0.62758076d0, 1.20844259d0, 1.29762585d0, 1.54012828d0, & 0.39417354d0, 0.d0, 0.95118809d0, 1.33068934d0, 1.41097406d0 , & 0.96538731d0, 1.06560856d0, 1.0355537d0, 1.24824277d0, 1.48753895d0, & 0.87009603d0, 0.95118809d0, 0.d0, 1.29422213d0, 1.33222493d0 , & 1.25878564d0, 1.179133d0, 1.52064535d0, 0.25292267d0, 1.10441805d0, & 1.23838502d0, 1.33068934d0, 1.29422213d0, 0.d0, 0.62196802d0 , & 1.3722995d0, 1.30763703d0, 1.53049239d0, 0.58609336d0, 0.84504381d0, & 1.33419121d0, 1.41097406d0, 1.33222493d0, 0.62196802d0, 0.d0 /), shape(ref_ee) ) double precision :: ref_en(elec_num, nucl_num) = reshape( (/ & 0.49421587d0, 0.52486545d0, 1.23280503d0, 1.16396998d0, 1.49156627d0, & 0.1952946d0, 0.4726453d0, 0.80211227d0, 1.21198526d0, 1.31411513d0, & 1.24641375d0, 1.15444238d0, 1.50565145d0, 0.06218339d0, 1.10153184d0, & 1.20919677d0, 1.3111856d0, 1.26122875d0, 0.22122563d0, 0.55669168d0 /), shape(ref_en) ) double precision, allocatable :: distance_ee(:,:), distance_en(:,:) allocate( distance_ee(elec_num,elec_num), distance_en(elec_num,nucl_num) ) print *, 'ee' test_qmckl_dist_rescaled = & qmckl_distance_rescaled(context, 'N', 'N', elec_num, elec_num, elec_coord, & size(elec_coord,1)*1_8, elec_coord, size(elec_coord,1)*1_8, & distance_ee, size(distance_ee,1)*1_8, kappa) if (test_qmckl_dist_rescaled /= QMCKL_SUCCESS) return test_qmckl_dist_rescaled = QMCKL_FAILURE do j=1,elec_num do i=1,elec_num print *, i,j,real(distance_ee(i,j)), real(ref_ee(i,j)) if (dabs(distance_ee(i,j) - ref_ee(i,j)) > 1.d-7) then return endif end do end do print *, 'en' test_qmckl_dist_rescaled = & qmckl_distance_rescaled(context, 'N', 'T', elec_num, nucl_num, elec_coord, & size(elec_coord,1)*1_8, nucl_coord, size(nucl_coord,1)*1_8, & distance_en, size(distance_en,1)*1_8, kappa) if (test_qmckl_dist_rescaled /= QMCKL_SUCCESS) return test_qmckl_dist_rescaled = QMCKL_FAILURE do j=1,nucl_num do i=1,elec_num print *, i,j,real(distance_en(i,j)), real(ref_en(i,j)) if (dabs(distance_en(i,j) - ref_en(i,j)) > 1.d-7) then return endif end do end do test_qmckl_dist_rescaled = QMCKL_SUCCESS end function test_qmckl_dist_rescaled #+end_src #+begin_src c :comments link :tangle (eval c_test) qmckl_exit_code test_qmckl_dist_rescaled(qmckl_context context); assert(test_qmckl_dist_rescaled(context) == QMCKL_SUCCESS); #+end_src * Rescaled Distance Derivatives ** ~qmckl_distance_rescaled_gl~ :PROPERTIES: :Name: qmckl_distance_rescaled_gl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: ~qmckl_distance_rescaled_gl~ computes the matrix of the gradient and Laplacian of the rescaled distance with respect to the electron coordinates. The derivative is a rank 3 tensor. The first dimension has a dimension of 4 of which the first three coordinates contains the gradient vector and the last index is the Laplacian. \[ C(r_{ij}) = \left( 1 - \exp(-\kappa\, r_{ij})\right)/\kappa \] Here the gradient is defined as follows: \[ \nabla_i C(r_{ij}) = \left(\frac{\partial C(r_{ij})}{\partial x_i},\frac{\partial C(r_{ij})}{\partial y_i},\frac{\partial C(r_{ij})}{\partial z_i} \right) \] and the Laplacian is defined as follows: \[ \Delta_i C(r_{ij}) = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \] Using the above three formulas, the expression for the gradient and Laplacian is: \[ \frac{\partial C(r_{ij})}{\partial x_i} = \frac{|(x_i - x_j)|}{r_{ij}} \exp (- \kappa \, r_{ij}) \] \[ \Delta C_{ij}(r_{ij}) = \left[ \frac{2}{r_{ij}} - \kappa \right] \exp (- \kappa \, r_{ij}) \] If the input array is normal (~'N'~), the xyz coordinates are in the leading dimension: ~[n][3]~ in C and ~(3,n)~ in Fortran. #+NAME: qmckl_distance_rescaled_gl_args | Variable | Type | In/Out | Description | |------------------------+---------------------+--------+-------------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~transa~ | ~char~ | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed | | ~transb~ | ~char~ | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed | | ~m~ | ~int64_t~ | in | Number of points in the first set | | ~n~ | ~int64_t~ | in | Number of points in the second set | | ~A~ | ~double[][lda]~ | in | Array containing the $m \times 3$ matrix $A$ | | ~lda~ | ~int64_t~ | in | Leading dimension of array ~A~ | | ~B~ | ~double[][ldb]~ | in | Array containing the $n \times 3$ matrix $B$ | | ~ldb~ | ~int64_t~ | in | Leading dimension of array ~B~ | | ~C~ | ~double[4][n][ldc]~ | out | Array containing the $4 \times m \times n$ matrix $C$ | | ~ldc~ | ~int64_t~ | in | Leading dimension of array ~C~ | | ~rescale_factor_kappa~ | ~double~ | in | Factor for calculating rescaled distances derivatives | Requirements: - ~context~ is not ~QMCKL_NULL_CONTEXT~ - ~m > 0~ - ~n > 0~ - ~lda >= 3~ if ~transa == 'N'~ - ~lda >= m~ if ~transa == 'T'~ - ~ldb >= 3~ if ~transb == 'N'~ - ~ldb >= n~ if ~transb == 'T'~ - ~ldc >= m~ - ~A~ is allocated with at least $3 \times m \times 8$ bytes - ~B~ is allocated with at least $3 \times n \times 8$ bytes - ~C~ is allocated with at least $4 \times m \times n \times 8$ bytes #+CALL: generate_c_header(table=qmckl_distance_rescaled_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_distance_rescaled_gl ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc, const double rescale_factor_kappa ); #+end_src #+begin_src f90 :tangle (eval f) integer function qmckl_distance_rescaled_gl_f(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC, rescale_factor_kappa) & result(info) use qmckl implicit none integer(qmckl_context) , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(4,ldc,*) real*8 , intent(in) :: rescale_factor_kappa integer*8 :: i,j real*8 :: x, y, z, dist, dist_inv real*8 :: rij integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif ! check for LDA if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) dist = dsqrt(x*x + y*y + z*z) ! Avoid floating-point exception if (dist == 0.d0) then dist = 69.d0/rescale_factor_kappa endif dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) dist = dsqrt(x*x + y*y + z*z) ! Avoid floating-point exception if (dist == 0.d0) then dist = 69.d0/rescale_factor_kappa endif dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) dist = dsqrt(x*x + y*y + z*z) ! Avoid floating-point exception if (dist == 0.d0) then dist = 69.d0/rescale_factor_kappa endif dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) dist = dsqrt(x*x + y*y + z*z) ! Avoid floating-point exception if (dist == 0.d0) then dist = 69.d0/rescale_factor_kappa endif dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do end select end function qmckl_distance_rescaled_gl_f #+end_src This function is more efficient when ~A~ and ~B~ are transposed. #+CALL: generate_c_interface(table=qmckl_distance_rescaled_gl_args,fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_distance_rescaled_gl & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n,4) integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa integer(c_int32_t), external :: qmckl_distance_rescaled_gl_f info = qmckl_distance_rescaled_gl_f & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) end function qmckl_distance_rescaled_gl #+end_src #+CALL: generate_f_interface(table=qmckl_distance_rescaled_gl_args,rettyp=get_value("FRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_distance_rescaled_gl & (context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n real (c_double ) , intent(in) :: A(lda,*) integer (c_int64_t) , intent(in) , value :: lda real (c_double ) , intent(in) :: B(ldb,*) integer (c_int64_t) , intent(in) , value :: ldb real (c_double ) , intent(out) :: C(ldc,n,4) integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa end function qmckl_distance_rescaled_gl end interface #+end_src * End of files :noexport: #+begin_src c :comments link :tangle (eval c_test) assert (qmckl_context_destroy(context) == QMCKL_SUCCESS); #ifdef VFC_CI qmckl_dump_probes(); #endif return 0; } #+end_src # -*- mode: org -*- # vim: syntax=c