Molecular Orbitals
Table of Contents
1 Context
The following arrays are stored in the context:
type |
Gaussian ('G' ) or Slater ('S' ) |
|
mo_num |
Number of MOs | |
coefficient |
[mo_num, ao_num] |
Orbital coefficients |
Computed data:
mo_vgl |
[5][elec_num][mo_num] |
Value, gradients, Laplacian of the MOs at electron positions |
mo_vgl_date |
uint64_t |
Late modification date of Value, gradients, Laplacian of the MOs at electron positions |
1.1 Data structure
typedef struct qmckl_mo_basis_struct { int64_t mo_num; double * coefficient; double * mo_vgl; int64_t mo_vgl_date; int32_t uninitialized; bool provided; char type; } qmckl_mo_basis_struct;
The uninitialized
integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and provided == true
.
Some values are initialized by default, and are not concerned by
this mechanism.
1.2 Access functions
When all the data for the AOs have been provided, the following
function returns true
.
bool qmckl_mo_basis_provided (const qmckl_context context);
1.3 Initialization functions
To set the basis set, all the following functions need to be called.
qmckl_exit_code qmckl_set_mo_basis_type (qmckl_context context, const char t); qmckl_exit_code qmckl_set_mo_basis_mo_num (qmckl_context context, const int64_t mo_num); qmckl_exit_code qmckl_set_mo_basis_coefficient (qmckl_context context, const double * coefficient);
When the basis set is completely entered, other data structures are computed to accelerate the calculations.
2 Computation
2.1 Computation of MOs
2.1.1 Get
qmckl_exit_code qmckl_get_mo_basis_vgl(qmckl_context context, double* const mo_vgl);
2.1.2 Provide
2.1.3 Compute
qmckl_context |
context |
in | Global state |
int64_t |
ao_num |
in | Number of AOs |
int64_t |
mo_num |
in | Number of MOs |
int64_t |
elec_num |
in | Number of electrons |
double |
coef_normalized[mo_num][ao_num] |
in | AO to MO transformation matrix |
double |
ao_vgl[5][elec_num][ao_num] |
in | Value, gradients and Laplacian of the AOs |
double |
mo_vgl[5][elec_num][mo_num] |
out | Value, gradients and Laplacian of the MOs |
integer function qmckl_compute_mo_basis_gaussian_vgl_f(context, & ao_num, mo_num, elec_num, & coef_normalized, ao_vgl, mo_vgl) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: ao_num, mo_num integer*8 , intent(in) :: elec_num double precision , intent(in) :: ao_vgl(ao_num,elec_num,5) double precision , intent(in) :: coef_normalized(ao_num,mo_num) double precision , intent(out) :: mo_vgl(mo_num,elec_num,5) logical*8 :: TransA, TransB double precision :: alpha, beta integer :: info_qmckl_dgemm_value integer :: info_qmckl_dgemm_Gx integer :: info_qmckl_dgemm_Gy integer :: info_qmckl_dgemm_Gz integer :: info_qmckl_dgemm_lap integer*8 :: M, N, K, LDA, LDB, LDC, i,j integer*8 :: inucl, iprim, iwalk, ielec, ishell double precision :: x, y, z, two_a, ar2, r2, v, cutoff TransA = .False. TransB = .False. alpha = 1.0d0 beta = 0.0d0 info = QMCKL_SUCCESS info_qmckl_dgemm_value = QMCKL_SUCCESS info_qmckl_dgemm_Gx = QMCKL_SUCCESS info_qmckl_dgemm_Gy = QMCKL_SUCCESS info_qmckl_dgemm_Gz = QMCKL_SUCCESS info_qmckl_dgemm_lap = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. ! TODO : Use numerical precision here cutoff = -dlog(1.d-15) M = 1_8 N = mo_num * 1_8 K = ao_num * 1_8 LDA = M LDB = K LDC = M do ielec = 1, elec_num ! Value info_qmckl_dgemm_value = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & ao_vgl(:, ielec, 1), LDA, & coef_normalized(1:ao_num,1:mo_num),size(coef_normalized,1) * 1_8, & beta, & mo_vgl(:,ielec,1),LDC) ! Grad_x info_qmckl_dgemm_Gx = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & ao_vgl(:, ielec, 2), LDA, & coef_normalized(1:ao_num,1:mo_num),size(coef_normalized,1) * 1_8, & beta, & mo_vgl(:,ielec,2),LDC) ! Grad_y info_qmckl_dgemm_Gy = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & ao_vgl(:, ielec, 3), LDA, & coef_normalized(1:ao_num,1:mo_num),size(coef_normalized,1) * 1_8, & beta, & mo_vgl(:,ielec,3),LDC) ! Grad_z info_qmckl_dgemm_Gz = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & ao_vgl(:, ielec, 4), LDA, & coef_normalized(1:ao_num,1:mo_num),size(coef_normalized,1) * 1_8, & beta, & mo_vgl(:,ielec,4),LDC) ! Lapl_z info_qmckl_dgemm_lap = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha, & ao_vgl(:, ielec, 5), LDA, & coef_normalized(1:ao_num,1:mo_num),size(coef_normalized,1) * 1_8, & beta, & mo_vgl(:,ielec,5),LDC) end do if(info_qmckl_dgemm_value .eq. QMCKL_SUCCESS .and. & info_qmckl_dgemm_Gx .eq. QMCKL_SUCCESS .and. & info_qmckl_dgemm_Gy .eq. QMCKL_SUCCESS .and. & info_qmckl_dgemm_Gz .eq. QMCKL_SUCCESS .and. & info_qmckl_dgemm_lap .eq. QMCKL_SUCCESS ) then info = QMCKL_SUCCESS else info = QMCKL_FAILURE end if end function qmckl_compute_mo_basis_gaussian_vgl_f
qmckl_exit_code qmckl_compute_mo_basis_gaussian_vgl ( const qmckl_context context, const int64_t ao_num, const int64_t mo_num, const int64_t elec_num, const double* coef_normalized, const double* ao_vgl, double* const mo_vgl );