#+TITLE: Electrons #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org In conventional QMC simulations, up-spin and down-spin electrons are different. The ~electron~ data structure contains the number of up-spin and down-spin electrons, and the electron coordinates. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_ELECTRON_HPT #define QMCKL_ELECTRON_HPT #include #+end_src #+begin_src c :tangle (eval h_private_func) #ifndef QMCKL_ELECTRON_HPF #define QMCKL_ELECTRON_HPF #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "chbrclf.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_electron_private_func.h" #+end_src * Context The following data stored in the context: | Variable | Type | Description | |---------------------------+----------------------------+-------------------------------------------| | ~uninitialized~ | ~int32_t~ | Keeps bit set for uninitialized data | | ~num~ | ~int64_t~ | Total number of electrons | | ~up_num~ | ~int64_t~ | Number of up-spin electrons | | ~down_num~ | ~int64_t~ | Number of down-spin electrons | | ~walk_num~ | ~int64_t~ | Number of walkers | | ~rescale_factor_kappa_ee~ | ~double~ | The distance scaling factor | | ~rescale_factor_kappa_en~ | ~double~ | The distance scaling factor | | ~provided~ | ~bool~ | If true, ~electron~ is valid | | ~coord_new~ | ~double[3][walk_num][num]~ | New set of electron coordinates | | ~coord_old~ | ~double[3][walk_num][num]~ | Old set of electron coordinates | | ~coord_new_date~ | ~uint64_t~ | Last modification date of the coordinates | Computed data: | Variable | Type | Description | |-------------------------------------+--------------------------------------+----------------------------------------------------------------------| | ~ee_distance~ | ~double[walk_num][num][num]~ | Electron-electron distances | | ~ee_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~en_distance~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances | | ~en_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~ee_distance_rescaled~ | ~double[walk_num][num][num]~ | Electron-electron rescaled distances | | ~ee_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~ee_distance_rescaled_deriv_e~ | ~double[walk_num][4][num][num]~ | Electron-electron rescaled distances derivatives | | ~ee_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives | | ~ee_pot~ | ~double[walk_num]~ | Electron-electron rescaled distances derivatives | | ~ee_pot_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives | | ~en_pot~ | double[walk_num] | Electron-nucleus potential energy | | ~en_pot_date~ | int64_t | Date when the electron-nucleus potential energy was computed | | ~en_distance_rescaled~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances | | ~en_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][nucl_num][num]~ | Electron-electron rescaled distances derivatives | | ~en_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives | ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_electron_struct { int64_t num; int64_t up_num; int64_t down_num; int64_t walk_num; double rescale_factor_kappa_ee; double rescale_factor_kappa_en; int64_t coord_new_date; int64_t ee_distance_date; int64_t en_distance_date; int64_t ee_pot_date; int64_t en_pot_date; int64_t ee_distance_rescaled_date; int64_t ee_distance_rescaled_deriv_e_date; int64_t en_distance_rescaled_date; int64_t en_distance_rescaled_deriv_e_date; double* coord_new; double* coord_old; double* ee_distance; double* en_distance; double* ee_pot; double* en_pot; double* ee_distance_rescaled; double* ee_distance_rescaled_deriv_e; double* en_distance_rescaled; double* en_distance_rescaled_deriv_e; int32_t uninitialized; bool provided; } qmckl_electron_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_private_func) qmckl_exit_code qmckl_init_electron(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_electron(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); ctx->electron.uninitialized = (1 << 2) - 1; /* Default values */ ctx->electron.rescale_factor_kappa_ee = 1.0; ctx->electron.rescale_factor_kappa_en = 1.0; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) bool qmckl_electron_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_electron_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->electron.provided; } #+end_src ** Access functions Access functions return ~QMCKL_SUCCESS~ when the data has been successfully retrieved. It returnes ~QMCKL_INVALID_CONTEXT~ when the context is not a valid context, and ~QMCKL_NOT_PROVIDED~ when the data has not been provided. If the function returns successfully, the variable pointed by the pointer given in argument contains the requested data. Otherwise, this variable is untouched. #+NAME:post #+begin_src c :exports none if ( (ctx->electron.uninitialized & mask) != 0) { return NULL; } #+end_src *** Number of electrons #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num); qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num); qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_num", "num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.num > (int64_t) 0); ,*num = ctx->electron.num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (up_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_up_num", "up_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.up_num > (int64_t) 0); ,*up_num = ctx->electron.up_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (down_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_down_num", "down_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.down_num >= (int64_t) 0); ,*down_num = ctx->electron.down_num; return QMCKL_SUCCESS; } #+end_src *** Number of walkers A walker is a set of electron coordinates that are arguments of the wave function. ~walk_num~ is the number of walkers. #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_walk_num", "walk_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.walk_num > (int64_t) 0); ,*walk_num = ctx->electron.walk_num; return QMCKL_SUCCESS; } #+end_src *** Scaling factors Kappa #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_rescale_factor_ee (const qmckl_context context, double* const rescale_factor_kappa_ee); qmckl_exit_code qmckl_get_electron_rescale_factor_en (const qmckl_context context, double* const rescale_factor_kappa_en); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_rescale_factor_ee (const qmckl_context context, double* const rescale_factor_kappa_ee) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (rescale_factor_kappa_ee == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_rescale_factor_ee", "rescale_factor_kappa_ee is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); assert (ctx->electron.rescale_factor_kappa_ee > 0.0); *rescale_factor_kappa_ee = ctx->electron.rescale_factor_kappa_ee; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_rescale_factor_en (const qmckl_context context, double* const rescale_factor_kappa_en) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (rescale_factor_kappa_en == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_rescale_factor_en", "rescale_factor_kappa_en is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); assert (ctx->electron.rescale_factor_kappa_en > 0.0); *rescale_factor_kappa_en = ctx->electron.rescale_factor_kappa_en; return QMCKL_SUCCESS; } #+end_src *** Electron coordinates Returns the current electron coordinates. The pointer is assumed to point on a memory block of size ~size_max~ \ge ~3 * elec_num * walk_num~. The order of the indices is: | | Normal | Transposed | |---------+--------------------------+--------------------------| | C | ~[walk_num*elec_num][3]~ | ~[3][walk_num*elec_num]~ | | Fortran | ~(3,walk_num*elec_num)~ | ~(walk_num*elec_num, 3)~ | #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_coord", "transp should be 'N' or 'T'"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_electron_coord", "coord is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if ( !(ctx->electron.provided) ) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_electron_coord", "electron data is not provided"); } int64_t elec_num = ctx->electron.num; int64_t walk_num = ctx->electron.walk_num; if (size_max < elec_num*walk_num*3) { return qmckl_failwith( context, QMCKL_INVALID_ARG_4, "qmckl_get_electron_coord", "Array too small"); } assert (ctx->electron.coord_new != NULL); double* ptr1 = ctx->electron.coord_new; double* ptr2 = coord; if (transp == 'N') { for (int64_t i=0 ; ielectron.uninitialized &= ~mask; ctx->electron.provided = (ctx->electron.uninitialized == 0); if (ctx->electron.provided) { if (ctx->electron.coord_new != NULL) { qmckl_free(context, ctx->electron.coord_new); ctx->electron.coord_new = NULL; } if (ctx->electron.coord_old != NULL) { qmckl_free(context, ctx->electron.coord_old); ctx->electron.coord_old = NULL; } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.walk_num * 3 * sizeof(double); double* coord_new = (double*) qmckl_malloc(context, mem_info); if (coord_new == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_electron_num", NULL); } ctx->electron.coord_new = coord_new; double* coord_old = (double*) qmckl_malloc(context, mem_info); if (coord_old == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_electron_num", NULL); } ctx->electron.coord_old = coord_old; } return QMCKL_SUCCESS; #+end_src To set the number of electrons, we give the number of up-spin and down-spin electrons to the context and we set the number of walkers. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_num(qmckl_context context, const int64_t up_num, const int64_t down_num) { <> if (up_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_num", "up_num <= 0"); } if (down_num < 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_num", "down_num < 0"); } int32_t mask = 1 << 0; ctx->electron.up_num = up_num; ctx->electron.down_num = down_num; ctx->electron.num = up_num + down_num; <> } #+end_src The following function sets the number of walkers. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_walk_num(qmckl_context context, const int64_t walk_num) { <> if (walk_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_walk_num", "walk_num <= 0"); } int32_t mask = 1 << 1; ctx->electron.walk_num = walk_num; <> } #+end_src Next we set the rescale parameter for the rescaled distance metric. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_rescale_factor_ee(qmckl_context context, const double rescale_factor_kappa_ee) { <> if (rescale_factor_kappa_ee <= 0.0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_rescale_factor_ee", "rescale_factor_kappa_ee <= 0.0"); } ctx->electron.rescale_factor_kappa_ee = rescale_factor_kappa_ee; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_set_electron_rescale_factor_en(qmckl_context context, const double rescale_factor_kappa_en) { <> if (rescale_factor_kappa_en <= 0.0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_rescale_factor_en", "rescale_factor_kappa_en <= 0.0"); } ctx->electron.rescale_factor_kappa_en = rescale_factor_kappa_en; return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :comments org :tangle (eval fh_func) :noweb yes interface integer(c_int32_t) function qmckl_set_electron_num(context, alpha, beta) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: alpha integer (c_int64_t) , intent(in) , value :: beta end function end interface interface integer(c_int32_t) function qmckl_set_electron_walk_num(context, walk_num) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num end function end interface #+end_src The following function sets the electron coordinates of all the walkers. When this is done, the pointers to the old and new sets of coordinates are swapped, and the new coordinates are overwritten. This can be done only when the data relative to electrons have been set. Important: changing the electron coordinates increments the date in the context. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_coord(qmckl_context context, const char transp, const double* coord, const int64_t size_max) { <> if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_coord", "transp should be 'N' or 'T'"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_coord", "coord is a null pointer"); } int64_t elec_num; qmckl_exit_code rc; rc = qmckl_get_electron_num(context, &elec_num); if (rc != QMCKL_SUCCESS) return rc; if (elec_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_electron_coord", "elec_num is not set"); } int64_t walk_num; rc = qmckl_get_electron_walk_num(context, &walk_num); if (rc != QMCKL_SUCCESS) return rc; if (walk_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_electron_coord", "walk_num is not set"); } if (size_max < walk_num*3*elec_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_4, "qmckl_set_electron_coord", "Array too small"); } /* If num and walk_num are set, the arrays should be allocated */ assert (ctx->electron.coord_old != NULL); assert (ctx->electron.coord_new != NULL); /* Increment the date of the context */ ctx->date += 1UL; /* Swap pointers */ double * swap; swap = ctx->electron.coord_old; ctx->electron.coord_old = ctx->electron.coord_new; ctx->electron.coord_new = swap; double* ptr1 = ctx->electron.coord_new; if (transp == 'N') { for (int64_t i=0 ; ielectron.coord_new_date = ctx->date; return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :comments org :tangle (eval fh_func) :noweb yes interface integer(c_int32_t) function qmckl_set_electron_coord(context, transp, coord, size_max) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character , intent(in) , value :: transp double precision , intent(in) :: coord(*) integer (c_int64_t) , intent(in) , value :: size_max end function end interface #+end_src ** Test #+begin_src python :results output :exports none import numpy as np #+end_src #+begin_src c :tangle (eval c_test) /* Reference input data */ int64_t walk_num = chbrclf_walk_num; int64_t elec_num = chbrclf_elec_num; int64_t elec_up_num = chbrclf_elec_up_num; int64_t elec_dn_num = chbrclf_elec_dn_num; double rescale_factor_kappa_ee = 1.0; double rescale_factor_kappa_en = 1.0; double nucl_rescale_factor_kappa = 1.0; double* elec_coord = &(chbrclf_elec_coord[0][0][0]); int64_t nucl_num = chbrclf_nucl_num; double* charge = chbrclf_charge; double* nucl_coord = &(chbrclf_nucl_coord[0][0]); /* --- */ qmckl_exit_code rc; assert(!qmckl_electron_provided(context)); int64_t n; rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_electron_provided(context)); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_up_num); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_dn_num); rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_num); double k_ee = 0.; double k_en = 0.; rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == 1.0); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == 1.0); rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == rescale_factor_kappa_ee); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == rescale_factor_kappa_en); int64_t w; rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_walk_num (context, walk_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_SUCCESS); assert(w == walk_num); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', elec_coord, walk_num*elec_num*3); assert(rc == QMCKL_SUCCESS); double elec_coord2[walk_num*3*elec_num]; rc = qmckl_get_electron_coord (context, 'N', elec_coord2, walk_num*3*elec_num); assert(rc == QMCKL_SUCCESS); for (int64_t i=0 ; i<3*elec_num*walk_num ; ++i) { assert( elec_coord[i] == elec_coord2[i] ); } #+end_src * Computation The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored. ** Electron-electron distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance); #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_electron_ee_distance(context, distance) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double ) , intent(out) :: distance(*) end function end interface #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num; memcpy(distance, ctx->electron.ee_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.ee_distance_date) { /* Allocate array */ if (ctx->electron.ee_distance == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* ee_distance = (double*) qmckl_malloc(context, mem_info); if (ee_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_distance", NULL); } ctx->electron.ee_distance = ee_distance; } qmckl_exit_code rc = qmckl_compute_ee_distance(context, ctx->electron.num, ctx->electron.walk_num, ctx->electron.coord_new, ctx->electron.ee_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_distance_args | Variable | Type | In/Out | Description | |---------------+----------------------------------------+--------+-----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_distance_f(context, elec_num, walk_num, coord, ee_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: coord(elec_num,walk_num,3) double precision , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer*8 :: k, i, j double precision :: x, y, z info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif do k=1,walk_num info = qmckl_distance(context, 'T', 'T', elec_num, elec_num, & coord(1,k,1), elec_num * walk_num, & coord(1,k,1), elec_num * walk_num, & ee_distance(1,1,k), elec_num) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_ee_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_ee_distance ( const qmckl_context context, const int64_t elec_num, const int64_t walk_num, const double* coord, double* const ee_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_distance & (context, elec_num, walk_num, coord, ee_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: coord(elec_num,3,walk_num) real (c_double ) , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_ee_distance_f info = qmckl_compute_ee_distance_f & (context, elec_num, walk_num, coord, ee_distance) end function qmckl_compute_ee_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-elec_1_w1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-elec_2_w1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_2_w1-elec_1_w1) ) print ( "[0][0][1] : ", np.linalg.norm(elec_1_w2-elec_1_w2) ) print ( "[0][1][1] : ", np.linalg.norm(elec_1_w2-elec_2_w2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-elec_1_w2) ) #+end_src #+RESULTS: : [0][0][0] : 0.0 : [0][1][0] : 7.152322512964209 : [1][0][0] : 7.152322512964209 : [0][0][1] : 0.0 : [0][1][1] : 6.5517646321055665 : [1][0][1] : 6.5517646321055665 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double ee_distance[walk_num * elec_num * elec_num]; rc = qmckl_get_electron_ee_distance(context, ee_distance); // (e1,e2,w) // (0,0,0) == 0. assert(ee_distance[0] == 0.); // (1,0,0) == (0,1,0) assert(ee_distance[1] == ee_distance[elec_num]); // value of (1,0,0) assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12); // (0,0,1) == 0. assert(ee_distance[elec_num*elec_num] == 0.); // (1,0,1) == (0,1,1) assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]); // value of (1,0,1) assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12); #+end_src ** Electron-electron rescaled distances ~ee_distance_rescaled~ stores the matrix of the rescaled distances between all pairs of electrons: \[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \] where \(C_{ij}\) is the matrix of electron-electron distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_distance_rescaled(qmckl_context context, double* const distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_distance_rescaled(qmckl_context context, double* const distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_distance_rescaled(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num; memcpy(distance_rescaled, ctx->electron.ee_distance_rescaled, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance_rescaled(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance_rescaled(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.ee_distance_rescaled_date) { /* Allocate array */ if (ctx->electron.ee_distance_rescaled == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* ee_distance_rescaled = (double*) qmckl_malloc(context, mem_info); if (ee_distance_rescaled == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_distance_rescaled", NULL); } ctx->electron.ee_distance_rescaled = ee_distance_rescaled; } qmckl_exit_code rc = qmckl_compute_ee_distance_rescaled(context, ctx->electron.num, ctx->electron.rescale_factor_kappa_en, ctx->electron.walk_num, ctx->electron.coord_new, ctx->electron.ee_distance_rescaled); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_distance_rescaled_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_distance_rescaled :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_distance_rescaled_args | Variable | Type | In/Out | Description | |---------------------------+----------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~coord~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_distance_rescaled_f(context, elec_num, rescale_factor_kappa_ee, walk_num, & coord, ee_distance_rescaled) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num double precision , intent(in) :: rescale_factor_kappa_ee integer*8 , intent(in) :: walk_num double precision , intent(in) :: coord(elec_num,3,walk_num) double precision , intent(out) :: ee_distance_rescaled(elec_num,elec_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif do k=1,walk_num info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, elec_num, & coord(1,k,1), elec_num * walk_num, & coord(1,k,1), elec_num * walk_num, & ee_distance_rescaled(1,1,k), elec_num, rescale_factor_kappa_ee) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_ee_distance_rescaled_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_ee_distance_rescaled ( const qmckl_context context, const int64_t elec_num, const double rescale_factor_kappa_ee, const int64_t walk_num, const double* coord, double* const ee_distance_rescaled ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_distance_rescaled_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_distance_rescaled & (context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: coord(elec_num,3,walk_num) real (c_double ) , intent(out) :: ee_distance_rescaled(elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_ee_distance_rescaled_f info = qmckl_compute_ee_distance_rescaled_f & (context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled) end function qmckl_compute_ee_distance_rescaled #+end_src *** Test #+begin_src python :results output :exports none import numpy as np kappa = 1.0 elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) print ( "[0][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_1_w1)) )/kappa ) print ( "[0][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_2_w1)) )/kappa ) print ( "[1][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-elec_1_w1)) )/kappa ) print ( "[0][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-elec_1_w2)) )/kappa ) print ( "[0][1][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-elec_2_w2)) )/kappa ) print ( "[1][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w2-elec_1_w2)) )/kappa ) #+end_src #+RESULTS: : [0][0][0] : 0.0 : [0][1][0] : 0.9992169566605263 : [1][0][0] : 0.9992169566605263 : [0][0][1] : 0.0 : [0][1][1] : 0.9985724058042633 : [1][0][1] : 0.9985724058042633 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double ee_distance_rescaled[walk_num * elec_num * elec_num]; rc = qmckl_get_electron_ee_distance_rescaled(context, ee_distance_rescaled); // (e1,e2,w) // (0,0,0) == 0. assert(ee_distance_rescaled[0] == 0.); // (1,0,0) == (0,1,0) assert(ee_distance_rescaled[1] == ee_distance_rescaled[elec_num]); // value of (1,0,0) assert(fabs(ee_distance_rescaled[1]-0.9992169566605263) < 1.e-12); // (0,0,1) == 0. assert(ee_distance_rescaled[elec_num*elec_num] == 0.); // (1,0,1) == (0,1,1) assert(ee_distance_rescaled[elec_num*elec_num+1] == ee_distance_rescaled[elec_num*elec_num+elec_num]); // value of (1,0,1) assert(fabs(ee_distance_rescaled[elec_num*elec_num+1]-0.9985724058042633) < 1.e-12); #+end_src ** Electron-electron rescaled distance gradients and laplacian with respect to electron coords The rescaled distances which is given as $R = (1 - \exp{-\kappa r})/\kappa$ needs to be perturbed with respect to the electorn coordinates. This data is stored in the ~ee_distance_rescaled_deriv_e~ tensor. The The first three elements of this three index tensor ~[4][num][num]~ gives the derivatives in the x, y, and z directions $dx, dy, dz$ and the last index gives the Laplacian $\partial x^2 + \partial y^2 + \partial z^2$. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_distance_rescaled_deriv_e(qmckl_context context, double* const distance_rescaled_deriv_e); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_distance_rescaled_deriv_e(qmckl_context context, double* const distance_rescaled_deriv_e) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_distance_rescaled_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = 4 * ctx->electron.num * ctx->electron.num * ctx->electron.walk_num; memcpy(distance_rescaled_deriv_e, ctx->electron.ee_distance_rescaled_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance_rescaled_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance_rescaled_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.ee_distance_rescaled_deriv_e_date) { /* Allocate array */ if (ctx->electron.ee_distance_rescaled_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* ee_distance_rescaled_deriv_e = (double*) qmckl_malloc(context, mem_info); if (ee_distance_rescaled_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_distance_rescaled_deriv_e", NULL); } ctx->electron.ee_distance_rescaled_deriv_e = ee_distance_rescaled_deriv_e; } qmckl_exit_code rc = qmckl_compute_ee_distance_rescaled_deriv_e(context, ctx->electron.num, ctx->electron.rescale_factor_kappa_en, ctx->electron.walk_num, ctx->electron.coord_new, ctx->electron.ee_distance_rescaled_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_distance_rescaled_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_distance_rescaled_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_distance_rescaled_deriv_e_args | Variable | Type | In/Out | Description | |---------------------------+-------------------------------------------+--------+-------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~coord~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~ee_distance_deriv_e~ | ~double[walk_num][4][elec_num][elec_num]~ | out | Electron-electron rescaled distance derivatives | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_distance_rescaled_deriv_e_f(context, elec_num, rescale_factor_kappa_ee, walk_num, & coord, ee_distance_rescaled_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num double precision , intent(in) :: rescale_factor_kappa_ee integer*8 , intent(in) :: walk_num double precision , intent(in) :: coord(elec_num,3,walk_num) double precision , intent(out) :: ee_distance_rescaled_deriv_e(4,elec_num,elec_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif do k=1,walk_num info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, elec_num, & coord(1,1,k), elec_num, & coord(1,1,k), elec_num, & ee_distance_rescaled_deriv_e(1,1,1,k), elec_num, rescale_factor_kappa_ee) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_ee_distance_rescaled_deriv_e_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_ee_distance_rescaled_deriv_e ( const qmckl_context context, const int64_t elec_num, const double rescale_factor_kappa_ee, const int64_t walk_num, const double* coord, double* const ee_distance_rescaled_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_distance_rescaled_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_distance_rescaled_deriv_e & (context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: coord(elec_num,3,walk_num) real (c_double ) , intent(out) :: ee_distance_rescaled_deriv_e(4,elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_ee_distance_rescaled_deriv_e_f info = qmckl_compute_ee_distance_rescaled_deriv_e_f & (context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled_deriv_e) end function qmckl_compute_ee_distance_rescaled_deriv_e #+end_src *** Test #+begin_src python :results output :exports none import numpy as np # TODO #+end_src #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double ee_distance_rescaled_deriv_e[4 * walk_num * elec_num * elec_num]; rc = qmckl_get_electron_ee_distance_rescaled_deriv_e(context, ee_distance_rescaled_deriv_e); // TODO: Get exact values //// (e1,e2,w) //// (0,0,0) == 0. //assert(ee_distance[0] == 0.); // //// (1,0,0) == (0,1,0) //assert(ee_distance[1] == ee_distance[elec_num]); // //// value of (1,0,0) //assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12); // //// (0,0,1) == 0. //assert(ee_distance[elec_num*elec_num] == 0.); // //// (1,0,1) == (0,1,1) //assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]); // //// value of (1,0,1) //assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12); #+end_src ** Electron-electron potential ~ee_pot~ calculates the ~ee~ potential energy. \[ \mathcal{V}_{ee} = \sum_{i=1}^{N_e}\sum_{j>i}^{N_e}\frac{1}{r_{ij}} \] where \(\mathcal{V}_{ee}\) is the ~ee~ potential and \[r_{ij}\] the ~ee~ distance. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_potential(qmckl_context context, double* const ee_pot); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_potential(qmckl_context context, double* const ee_pot) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_potential(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.walk_num * sizeof(double); memcpy(ee_pot, ctx->electron.ee_pot, sze); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_potential(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_potential(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!ctx->electron.provided) return QMCKL_NOT_PROVIDED; qmckl_exit_code rc = qmckl_provide_ee_distance(context); if (rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.ee_pot_date) { /* Allocate array */ if (ctx->electron.ee_pot == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* ee_pot = (double*) qmckl_malloc(context, mem_info); if (ee_pot == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_potential", NULL); } ctx->electron.ee_pot = ee_pot; } qmckl_exit_code rc = qmckl_compute_ee_potential(context, ctx->electron.num, ctx->electron.walk_num, ctx->electron.ee_distance, ctx->electron.ee_pot); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_pot_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_potential :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_potential_args | Variable | Type | In/Out | Description | |---------------+----------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron rescaled distances | | ~ee_pot~ | ~double[walk_num]~ | out | Electron-electron potential | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_potential_f(context, elec_num, walk_num, & ee_distance, ee_pot) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(out) :: ee_pot(walk_num) integer*8 :: nw, i, j info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif ee_pot = 0.0d0 do nw=1,walk_num do j=2,elec_num do i=1,j-1 if (dabs(ee_distance(i,j,nw)) > 1e-5) then ee_pot(nw) = ee_pot(nw) + 1.0d0/(ee_distance(i,j,nw)) endif end do end do end do end function qmckl_compute_ee_potential_f #+end_src #+CALL: generate_c_header(table=qmckl_ee_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_ee_potential ( const qmckl_context context, const int64_t elec_num, const int64_t walk_num, const double* ee_distance, double* const ee_pot ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_potential & (context, elec_num, walk_num, ee_distance, ee_pot) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(out) :: ee_pot(walk_num) integer(c_int32_t), external :: qmckl_compute_ee_potential_f info = qmckl_compute_ee_potential_f & (context, elec_num, walk_num, ee_distance, ee_pot) end function qmckl_compute_ee_potential #+end_src *** Test #+begin_src c :tangle (eval c_test) double ee_pot[walk_num]; rc = qmckl_get_electron_ee_potential(context, &(ee_pot[0])); assert (rc == QMCKL_SUCCESS); #+end_src ** Electron-nucleus distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance); #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_electron_en_distance(context, distance) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double ) , intent(out) :: distance(*) end function end interface #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(distance, ctx->electron.en_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_en_distance", NULL); } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_distance_date) { /* Allocate array */ if (ctx->electron.en_distance == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* en_distance = (double*) qmckl_malloc(context, mem_info); if (en_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance", NULL); } ctx->electron.en_distance = en_distance; } qmckl_exit_code rc = qmckl_compute_en_distance(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->electron.coord_new, ctx->nucleus.coord.data, ctx->electron.en_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_args | Variable | Type | In/Out | Description | |---------------+----------------------------------------+--------+----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_coord~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~nucl_coord~ | ~double[3][elec_num]~ | in | Nuclear coordinates | | ~en_distance~ | ~double[walk_num][nucl_num][elec_num]~ | out | Electron-nucleus distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_f(context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: elec_coord(elec_num,walk_num,3) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance(elec_num,nucl_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif do k=1,walk_num info = qmckl_distance(context, 'T', 'T', elec_num, nucl_num, & elec_coord(1,k,1), elec_num * walk_num, & nucl_coord, nucl_num, & en_distance(1,1,k), elec_num) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_en_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const int64_t walk_num, const double* elec_coord, const double* nucl_coord, double* const en_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance & (context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3) real (c_double ) , intent(in) :: nucl_coord(elec_num,3) real (c_double ) , intent(out) :: en_distance(elec_num,nucl_num,walk_num) integer(c_int32_t), external :: qmckl_compute_en_distance_f info = qmckl_compute_en_distance_f & (context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) end function qmckl_compute_en_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-nucl_1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-nucl_2) ) print ( "[0][0][1] : ", np.linalg.norm(elec_2_w1-nucl_1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_1_w2-nucl_1) ) print ( "[1][1][0] : ", np.linalg.norm(elec_1_w2-nucl_2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-nucl_1) ) #+end_src #+RESULTS: : [0][0][0] : 7.546738741619978 : [0][1][0] : 8.77102435246984 : [0][0][1] : 3.698922010513608 : [1][0][0] : 5.824059436060509 : [1][1][0] : 7.080482110317645 : [1][0][1] : 3.1804527583077356 #+begin_src c :tangle (eval c_test) assert(!qmckl_nucleus_provided(context)); assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge (context, charge, nucl_num); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord, 3*nucl_num); assert (rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); double en_distance[walk_num][nucl_num][elec_num]; rc = qmckl_get_electron_en_distance(context, &(en_distance[0][0][0])); assert (rc == QMCKL_SUCCESS); // (e,n,w) in Fortran notation // (1,1,1) assert(fabs(en_distance[0][0][0] - 7.546738741619978) < 1.e-12); // (1,2,1) assert(fabs(en_distance[0][1][0] - 8.77102435246984) < 1.e-12); // (2,1,1) assert(fabs(en_distance[0][0][1] - 3.698922010513608) < 1.e-12); // (1,1,2) assert(fabs(en_distance[1][0][0] - 5.824059436060509) < 1.e-12); // (1,2,2) assert(fabs(en_distance[1][1][0] - 7.080482110317645) < 1.e-12); // (2,1,2) assert(fabs(en_distance[1][0][1] - 3.1804527583077356) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances ~en_distance_rescaled~ stores the matrix of the rescaled distances between electrons and nuclei. \[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \] where \(C_{ij}\) is the matrix of electron-nucleus distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance_rescaled(qmckl_context context, double* distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance_rescaled(qmckl_context context, double* distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance_rescaled(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(distance_rescaled, ctx->electron.en_distance_rescaled, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return QMCKL_NOT_PROVIDED; } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_distance_rescaled_date) { /* Allocate array */ if (ctx->electron.en_distance_rescaled == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* en_distance_rescaled = (double*) qmckl_malloc(context, mem_info); if (en_distance_rescaled == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance_rescaled", NULL); } ctx->electron.en_distance_rescaled = en_distance_rescaled; } qmckl_exit_code rc = qmckl_compute_en_distance_rescaled(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.rescale_factor_kappa_en, ctx->electron.walk_num, ctx->electron.coord_new, ctx->nucleus.coord.data, ctx->electron.en_distance_rescaled); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_rescaled_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance_rescaled :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_rescaled_args | Variable | Type | In/Out | Description | |---------------------------+----------------------------------------+--------+-----------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~rescale_factor_kappa_en~ | ~double~ | in | The factor for rescaled distances | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_coord~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~nucl_coord~ | ~double[3][elec_num]~ | in | Nuclear coordinates | | ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | out | Electron-nucleus distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_rescaled_f(context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, & nucl_coord, en_distance_rescaled) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num double precision , intent(in) :: rescale_factor_kappa_en integer*8 , intent(in) :: walk_num double precision , intent(in) :: elec_coord(elec_num,walk_num,3) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif ! TODO: comparison with 0 !if (rescale_factor_kappa_en <= 0) then ! info = QMCKL_INVALID_ARG_4 ! return !endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif do k=1,walk_num info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, nucl_num, & elec_coord(1,k,1), elec_num*walk_num, & nucl_coord, nucl_num, & en_distance_rescaled(1,1,k), elec_num, rescale_factor_kappa_en) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_en_distance_rescaled_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance_rescaled ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const double rescale_factor_kappa_en, const int64_t walk_num, const double* elec_coord, const double* nucl_coord, double* const en_distance_rescaled ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_rescaled_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance_rescaled & (context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3) real (c_double ) , intent(in) :: nucl_coord(elec_num,3) real (c_double ) , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num) integer(c_int32_t), external :: qmckl_compute_en_distance_rescaled_f info = qmckl_compute_en_distance_rescaled_f & (context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled) end function qmckl_compute_en_distance_rescaled #+end_src *** Test #+begin_src python :results output :exports none import numpy as np kappa = 1.0 elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) print ( "[0][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_1)) )/kappa ) print ( "[0][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_2)) )/kappa ) print ( "[0][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-nucl_1)) )/kappa ) print ( "[1][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-nucl_1)) )/kappa ) print ( "[1][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-nucl_2)) )/kappa ) print ( "[1][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w2-nucl_1)) )/kappa ) #+end_src #+RESULTS: : [0][0][0] : 0.9994721712909764 : [0][1][0] : 0.9998448354439821 : [0][0][1] : 0.9752498074577688 : [1][0][0] : 0.9970444172399963 : [1][1][0] : 0.9991586325813303 : [1][0][1] : 0.9584331688679852 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge (context, charge, nucl_num); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord, 3*nucl_num); assert (rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); double en_distance_rescaled[walk_num][nucl_num][elec_num]; rc = qmckl_get_electron_en_distance_rescaled(context, &(en_distance_rescaled[0][0][0])); assert (rc == QMCKL_SUCCESS); // (e,n,w) in Fortran notation // (1,1,1) assert(fabs(en_distance_rescaled[0][0][0] - 0.9994721712909764) < 1.e-12); // (1,2,1) printf("%f\n%f\n", en_distance_rescaled[0][1][0] , 0.9998448354439821); assert(fabs(en_distance_rescaled[0][1][0] - 0.9998448354439821) < 1.e-12); // (2,1,1) assert(fabs(en_distance_rescaled[0][0][1] - 0.9752498074577688) < 1.e-12); // (1,1,2) assert(fabs(en_distance_rescaled[1][0][0] - 0.9970444172399963) < 1.e-12); // (1,2,2) assert(fabs(en_distance_rescaled[1][1][0] - 0.9991586325813303) < 1.e-12); // (2,1,2) assert(fabs(en_distance_rescaled[1][0][1] - 0.9584331688679852) < 1.e-12); #+end_src ** Electron-nucleus rescaled distance gradients and laplacian with respect to electron coords The rescaled distances which is given as $R = (1 - \exp{-\kappa r})/\kappa$ needs to be perturbed with respect to the nuclear coordinates. This data is stored in the ~en_distance_rescaled_deriv_e~ tensor. The The first three elements of this three index tensor ~[4][nucl_num][elec_num]~ gives the derivatives in the x, y, and z directions $dx, dy, dz$ and the last index gives the Laplacian $\partial x^2 + \partial y^2 + \partial z^2$. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance_rescaled_deriv_e(qmckl_context context, double* distance_rescaled_deriv_e); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance_rescaled_deriv_e(qmckl_context context, double* distance_rescaled_deriv_e) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance_rescaled_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(distance_rescaled_deriv_e, ctx->electron.en_distance_rescaled_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance_rescaled_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return QMCKL_NOT_PROVIDED; } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_distance_rescaled_deriv_e_date) { /* Allocate array */ if (ctx->electron.en_distance_rescaled_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* en_distance_rescaled_deriv_e = (double*) qmckl_malloc(context, mem_info); if (en_distance_rescaled_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance_rescaled_deriv_e", NULL); } ctx->electron.en_distance_rescaled_deriv_e = en_distance_rescaled_deriv_e; } qmckl_exit_code rc = qmckl_compute_en_distance_rescaled_deriv_e(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.rescale_factor_kappa_en, ctx->electron.walk_num, ctx->electron.coord_new, ctx->nucleus.coord.data, ctx->electron.en_distance_rescaled_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_rescaled_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance_rescaled_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_rescaled_deriv_e_args | Variable | Type | In/Out | Description | |--------------------------------+-------------------------------------------+--------+---------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~rescale_factor_kappa_en~ | ~double~ | in | The factor for rescaled distances | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_coord~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~nucl_coord~ | ~double[3][elec_num]~ | in | Nuclear coordinates | | ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][nucl_num][elec_num]~ | out | Electron-nucleus distance derivatives | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_rescaled_deriv_e_f(context, elec_num, nucl_num, & rescale_factor_kappa_en, walk_num, elec_coord, & nucl_coord, en_distance_rescaled_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num double precision , intent(in) :: rescale_factor_kappa_en integer*8 , intent(in) :: walk_num double precision , intent(in) :: elec_coord(elec_num,walk_num,3) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,walk_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif ! TODO: comparison with 0 !if (rescale_factor_kappa_en <= 0) then ! info = QMCKL_INVALID_ARG_4 ! return !endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif do k=1,walk_num info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, nucl_num, & elec_coord(1,k,1), elec_num*walk_num, & nucl_coord, nucl_num, & en_distance_rescaled_deriv_e(1,1,k), elec_num, rescale_factor_kappa_en) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_en_distance_rescaled_deriv_e_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance_rescaled_deriv_e ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const double rescale_factor_kappa_en, const int64_t walk_num, const double* elec_coord, const double* nucl_coord, double* const en_distance_rescaled_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_rescaled_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance_rescaled_deriv_e & (context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3) real (c_double ) , intent(in) :: nucl_coord(elec_num,3) real (c_double ) , intent(out) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,walk_num) integer(c_int32_t), external :: qmckl_compute_en_distance_rescaled_deriv_e_f info = qmckl_compute_en_distance_rescaled_deriv_e_f & (context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled_deriv_e) end function qmckl_compute_en_distance_rescaled_deriv_e #+end_src *** Test #+begin_src python :results output :exports none import numpy as np # TODO #+end_src #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge (context, charge, nucl_num); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord, 3*nucl_num); assert (rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); double en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num]; rc = qmckl_get_electron_en_distance_rescaled_deriv_e(context, &(en_distance_rescaled_deriv_e[0][0][0][0])); assert (rc == QMCKL_SUCCESS); // TODO: check exact values //// (e,n,w) in Fortran notation //// (1,1,1) //assert(fabs(en_distance_rescaled[0][0][0] - 7.546738741619978) < 1.e-12); // //// (1,2,1) //assert(fabs(en_distance_rescaled[0][1][0] - 8.77102435246984) < 1.e-12); // //// (2,1,1) //assert(fabs(en_distance_rescaled[0][0][1] - 3.698922010513608) < 1.e-12); // //// (1,1,2) //assert(fabs(en_distance_rescaled[1][0][0] - 5.824059436060509) < 1.e-12); // //// (1,2,2) //assert(fabs(en_distance_rescaled[1][1][0] - 7.080482110317645) < 1.e-12); // //// (2,1,2) //assert(fabs(en_distance_rescaled[1][0][1] - 3.1804527583077356) < 1.e-12); #+end_src ** Electron-nucleus potential ~en_potential~ stores the ~en~ potential energy \[ \mathcal{V}_{en} = -\sum_{i=1}^{N_e}\sum_{A=1}^{N_n}\frac{Z_A}{r_{iA}} \] where \(\mathcal{V}_{en}\) is the ~en~ potential, \[r_{iA}\] the ~en~ distance and \[Z_A\] is the nuclear charge. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_potential(qmckl_context context, double* const en_pot); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_potential(qmckl_context context, double* const en_pot) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_potential(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.walk_num * sizeof(double); memcpy(en_pot, ctx->electron.en_pot, sze); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_potential(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_potential(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!ctx->electron.provided) return QMCKL_NOT_PROVIDED; if (!ctx->nucleus.provided) return QMCKL_NOT_PROVIDED; qmckl_exit_code rc = qmckl_provide_en_distance(context); if (rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->electron.en_pot_date) { /* Allocate array */ if (ctx->electron.en_pot == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* en_pot = (double*) qmckl_malloc(context, mem_info); if (en_pot == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_potential", NULL); } ctx->electron.en_pot = en_pot; } qmckl_exit_code rc = qmckl_compute_en_potential(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->nucleus.charge.data, ctx->electron.en_distance, ctx->electron.en_pot); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_pot_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_potential :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_potential_args | Variable | Type | In/Out | Description | |---------------+----------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~charge~ | ~double[nucl_num]~ | in | charge of nucleus | | ~en_distance~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-electron rescaled distances | | ~en_pot~ | ~double[walk_num]~ | out | Electron-electron potential | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_potential_f(context, elec_num, nucl_num, walk_num, & charge, en_distance, en_pot) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: charge(nucl_num) double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) double precision , intent(out) :: en_pot(walk_num) integer*8 :: nw, i, j info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif en_pot = 0.0d0 do nw=1,walk_num do j=1,nucl_num do i=1,elec_num if (dabs(en_distance(i,j,nw)) > 1e-5) then en_pot(nw) = en_pot(nw) - charge(j)/(en_distance(i,j,nw)) endif end do end do end do end function qmckl_compute_en_potential_f #+end_src #+CALL: generate_c_header(table=qmckl_en_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_en_potential ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const int64_t walk_num, const double* charge, const double* en_distance, double* const en_pot ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_potential & (context, elec_num, nucl_num, walk_num, charge, en_distance, en_pot) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: charge(nucl_num) real (c_double ) , intent(in) :: en_distance(elec_num,nucl_num,walk_num) real (c_double ) , intent(out) :: en_pot(walk_num) integer(c_int32_t), external :: qmckl_compute_en_potential_f info = qmckl_compute_en_potential_f & (context, elec_num, nucl_num, walk_num, charge, en_distance, en_pot) end function qmckl_compute_en_potential #+end_src *** Test #+begin_src c :tangle (eval c_test) double en_pot[walk_num]; rc = qmckl_get_electron_en_potential(context, &(en_pot[0])); assert (rc == QMCKL_SUCCESS); #+end_src ** Generate initial coordinates *** Compute :noexport: # begin_src f90 :comments org :tangle (eval f) :noweb yes subroutine draw_init_points implicit none BEGIN_DOC ! Place randomly electrons around nuclei END_DOC integer :: iwalk logical, allocatable :: do_elec(:) integer :: acc_num real, allocatable :: xmin(:,:) integer :: i, j, k, l, kk real :: norm allocate (do_elec(elec_num), xmin(3,elec_num)) xmin = -huge(1.) norm = 0. do i=1,elec_alpha_num do j=1,ao_num norm += mo_coef_transp(i,j)*mo_coef_transp(i,j) enddo enddo norm = sqrt(norm/float(elec_alpha_num)) call rinfo( irp_here, 'Norm : ', norm ) call rinfo( irp_here, 'mo_scale: ' , mo_scale ) mo_coef_transp = mo_coef_transp/norm double precision :: qmc_ranf real :: mo_max do i=1,elec_alpha_num l=1 xmin(1,i) = mo_coef_transp(i,1)*mo_coef_transp(i,1) - 0.001*qmc_ranf() do j=2,ao_num xmin(2,i) = mo_coef_transp(i,j)*mo_coef_transp(i,j) - 0.001*qmc_ranf() if (xmin(2,i) > xmin(1,i) ) then xmin(1,i) = xmin(2,i) l = ao_nucl(j) endif enddo xmin(1,i) = nucl_coord(l,1) xmin(2,i) = nucl_coord(l,2) xmin(3,i) = nucl_coord(l,3) enddo call iinfo(irp_here, 'Det num = ', det_num ) do k=1,elec_beta_num i = k+elec_alpha_num l=1 xmin(1,i) = mo_coef_transp(k,1)*mo_coef_transp(k,1) - 0.001*qmc_ranf() do j=2,ao_num xmin(2,i) = mo_coef_transp(k,j)*mo_coef_transp(k,j) - 0.001*qmc_ranf() if (xmin(2,i) > xmin(1,i) ) then xmin(1,i) = xmin(2,i) l = ao_nucl(j) endif enddo xmin(1,i) = nucl_coord(l,1) xmin(2,i) = nucl_coord(l,2) xmin(3,i) = nucl_coord(l,3) enddo call rinfo( irp_here, 'time step =', time_step ) do iwalk=1,walk_num print *, 'Generating initial positions for walker', iwalk acc_num = 0 do_elec = .True. integer :: iter do iter = 1,10000 if (acc_num >= elec_num) then exit endif double precision :: gauss real :: re_compute re_compute = 0. do while (re_compute < 1.e-6) do i=1,elec_num if (do_elec(i)) then do l=1,3 elec_coord(i,l) = xmin(l,i) + 1.5*(0.5-qmc_ranf()) enddo endif enddo TOUCH elec_coord re_compute = minval(nucl_elec_dist(1:nucl_num,1:elec_num)) enddo do i=1,elec_alpha_num if (do_elec(i)) then if ( mo_value_transp(i,i)**2 >= qmc_ranf()) then acc_num += 1 do_elec(i) = .False. endif endif enddo do i=1,elec_beta_num if (do_elec(i+elec_alpha_num)) then if ( mo_value_transp(i,i+elec_alpha_num)**2 >= qmc_ranf()) then acc_num += 1 do_elec(i+elec_alpha_num) = .False. endif endif enddo enddo do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,iwalk) = elec_coord(i,l) enddo enddo enddo if (.not.is_worker) then call ezfio_set_electrons_elec_coord_pool_size(walk_num) call ezfio_set_electrons_elec_coord_pool(elec_coord_full) endif SOFT_TOUCH elec_coord elec_coord_full deallocate (do_elec, xmin) end # end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src #+begin_src c :tangle (eval h_private_func) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) if (qmckl_context_destroy(context) != QMCKL_SUCCESS) return QMCKL_FAILURE; return 0; } #+end_src *** Compute file names #+begin_src emacs-lisp ; The following is required to compute the file names (setq pwd (file-name-directory buffer-file-name)) (setq name (file-name-nondirectory (substring buffer-file-name 0 -4))) (setq f (concat pwd name "_f.f90")) (setq fh (concat pwd name "_fh.f90")) (setq c (concat pwd name ".c")) (setq h (concat name ".h")) (setq h_private (concat name "_private.h")) (setq c_test (concat pwd "test_" name ".c")) (setq f_test (concat pwd "test_" name "_f.f90")) ; Minted (require 'ox-latex) (setq org-latex-listings 'minted) (add-to-list 'org-latex-packages-alist '("" "listings")) (add-to-list 'org-latex-packages-alist '("" "color")) #+end_src #+RESULTS: | | color | | | listings | # -*- mode: org -*- # vim: syntax=c