#+TITLE: Molecular Orbitals #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org The molecular orbitals (MOs) are defined in the basis of AOs along with a AO to MO coefficient matrix \[C\]. Using these coefficients (e.g. from Hartree Fock SCF method) the MOs are defined as follows: \[ \phi_i(\mathbf{r}) = C_i * \chi_i (\mathbf{r}) \] In this section we demonstrate how to use the QMCkl specific DGEMM function to calculate the MOs. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_MO_HPT #define QMCKL_MO_HPT #include #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include "assert.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "chbrclf.h" #include "qmckl_ao_private_func.h" #include "qmckl_mo_private_func.h" int main() { qmckl_context context; context = qmckl_context_create(); qmckl_exit_code rc; #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_ao_private_type.h" #include "qmckl_ao_private_func.h" #include "qmckl_mo_private_type.h" #include "qmckl_mo_private_func.h" #+end_src * Context The following arrays are stored in the context: |---------------+--------------------+------------------------------------| | ~type~ | | Gaussian (~'G'~) or Slater (~'S'~) | | ~mo_num~ | | Number of MOs | | ~coefficient~ | ~[mo_num, ao_num]~ | Orbital coefficients | Computed data: |---------------+-----------------------------------+----------------------------------------------------------------------------------------| |---------------+-----------------------------------+----------------------------------------------------------------------------------------| | ~mo_vgl~ | ~[5][elec_num][mo_num]~ | Value, gradients, Laplacian of the MOs at electron positions | | ~mo_vgl_date~ | ~uint64_t~ | Late modification date of Value, gradients, Laplacian of the MOs at electron positions | |---------------+-----------------------------------+----------------------------------------------------------------------------------------| ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_mo_basis_struct { int64_t mo_num; double * coefficient; double * mo_vgl; int64_t mo_vgl_date; int32_t uninitialized; bool provided; char type; } qmckl_mo_basis_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. ** Access functions #+begin_src c :comments org :tangle (eval h_private_func) :exports none char qmckl_get_mo_basis_type (const qmckl_context context); int64_t qmckl_get_mo_basis_mo_num (const qmckl_context context); double* qmckl_get_mo_basis_coefficient (const qmckl_context context); #+end_src When all the data for the AOs have been provided, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_mo_basis_provided (const qmckl_context context); #+end_src #+NAME:post #+begin_src c :exports none if ( (ctx->mo_basis.uninitialized & mask) != 0) { return NULL; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none char qmckl_get_mo_basis_type (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1; if ( (ctx->mo_basis.uninitialized & mask) != 0) { return (char) 0; } assert (ctx->mo_basis.type != (char) 0); return ctx->mo_basis.type; } int64_t qmckl_get_mo_basis_mo_num (const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (int64_t) 0; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->mo_basis.uninitialized & mask) != 0) { return (int64_t) 0; } assert (ctx->mo_basis.mo_num > (int64_t) 0); return ctx->mo_basis.mo_num; } bool qmckl_mo_basis_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->mo_basis.provided; } #+end_src ** Initialization functions To set the basis set, all the following functions need to be called. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_mo_basis_type (qmckl_context context, const char t); qmckl_exit_code qmckl_set_mo_basis_mo_num (qmckl_context context, const int64_t mo_num); qmckl_exit_code qmckl_set_mo_basis_coefficient (qmckl_context context, const double * coefficient); #+end_src #+NAME:pre2 #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; #+end_src #+NAME:post2 #+begin_src c :exports none ctx->mo_basis.uninitialized &= ~mask; ctx->mo_basis.provided = (ctx->mo_basis.uninitialized == 0); if (ctx->mo_basis.provided) { qmckl_exit_code rc_ = qmckl_finalize_basis(context); if (rc_ != QMCKL_SUCCESS) return rc_; } return QMCKL_SUCCESS; #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_mo_basis_type(qmckl_context context, const char t) { <> if (t != 'G' && t != 'S') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_mo_basis_type", NULL); } int32_t mask = 1; ctx->mo_basis.type = t; <> } qmckl_exit_code qmckl_set_mo_basis_mo_num(qmckl_context context, const int64_t mo_num) { <> if (mo_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_mo_basis_mo_num", "mo_num <= 0"); } int32_t mask = 1 << 1; ctx->mo_basis.mo_num = mo_num; <> } qmckl_exit_code qmckl_set_mo_basis_coefficient(qmckl_context context, const double* coefficient) { <> int32_t mask = 1 << 2; if (ctx->mo_basis.coefficient != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->mo_basis.coefficient); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_mo_basis_coefficient", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->ao_basis.ao_num * ctx->mo_basis.mo_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if (new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_mo_basis_coefficient", NULL); } memcpy(new_array, coefficient, mem_info.size); ctx->mo_basis.coefficient = new_array; <> } #+end_src When the basis set is completely entered, other data structures are computed to accelerate the calculations. * Computation ** Computation of MOs *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_mo_basis_vgl(qmckl_context context, double* const mo_vgl); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_mo_basis_vgl(qmckl_context context, double* const mo_vgl) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ao_vgl(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_mo_vgl(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = 5 * ctx->electron.num * ctx->mo_basis.mo_num; memcpy(mo_vgl, ctx->mo_basis.mo_vgl, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_mo_basis_vgl (context, mo_vgl) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context double precision, intent(out) :: mo_vgl(*) end function end interface #+end_src *** Provide #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_mo_vgl(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_mo_vgl(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); if (!ctx->ao_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_ao_basis", NULL); } if(!(ctx->electron.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_electron", NULL); } if (!ctx->mo_basis.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_mo_basis", NULL); } /* Compute if necessary */ if (ctx->electron.coord_new_date > ctx->mo_basis.mo_vgl_date) { /* Allocate array */ if (ctx->mo_basis.mo_vgl == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 5 * ctx->electron.num * ctx->mo_basis.mo_num * sizeof(double); double* mo_vgl = (double*) qmckl_malloc(context, mem_info); if (mo_vgl == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_mo_basis_vgl", NULL); } ctx->mo_basis.mo_vgl = mo_vgl; } qmckl_exit_code rc; if (ctx->mo_basis.type == 'G') { rc = qmckl_compute_mo_basis_gaussian_vgl(context, ctx->ao_basis.ao_num, ctx->mo_basis.mo_num, ctx->electron.num, ctx->mo_basis.coefficient, ctx->ao_basis.ao_vgl, ctx->mo_basis.mo_vgl); } else { return qmckl_failwith( context, QMCKL_FAILURE, "compute_mo_basis_vgl", "Not yet implemented"); } if (rc != QMCKL_SUCCESS) { return rc; } ctx->mo_basis.mo_vgl_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_mo_basis_gaussian_vgl :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_mo_basis_gaussian_vgl_args | ~qmckl_context~ | ~context~ | in | Global state | | ~int64_t~ | ~ao_num~ | in | Number of AOs | | ~int64_t~ | ~mo_num~ | in | Number of MOs | | ~int64_t~ | ~elec_num~ | in | Number of electrons | | ~double~ | ~coef_normalized[ao_num][mo_num]~ | in | AO to MO transformation matrix | | ~double~ | ~ao_vgl[5][elec_num][ao_num]~ | in | Value, gradients and Laplacian of the AOs | | ~double~ | ~mo_vgl[5][elec_num][mo_num]~ | out | Value, gradients and Laplacian of the MOs | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_mo_basis_gaussian_vgl_f(context, & ao_num, mo_num, elec_num, & coef_normalized, ao_vgl, mo_vgl) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: ao_num, mo_num integer*8 , intent(in) :: elec_num double precision , intent(in) :: ao_vgl(ao_num,elec_num,5) double precision , intent(in) :: coef_normalized(mo_num,ao_num) double precision , intent(out) :: mo_vgl(mo_num,elec_num,5) logical*8 :: TransA, TransB double precision,dimension(:,:),allocatable :: mo_vgl_big double precision,dimension(:,:),allocatable :: ao_vgl_big double precision :: alpha, beta integer :: info_qmckl_dgemm_value integer :: info_qmckl_dgemm_Gx integer :: info_qmckl_dgemm_Gy integer :: info_qmckl_dgemm_Gz integer :: info_qmckl_dgemm_lap integer*8 :: M, N, K, LDA, LDB, LDC, i,j integer*8 :: inucl, iprim, iwalk, ielec, ishell double precision :: x, y, z, two_a, ar2, r2, v, cutoff allocate(mo_vgl_big(mo_num,elec_num*5)) allocate(ao_vgl_big(ao_num,elec_num*5)) TransA = .False. TransB = .False. alpha = 1.0d0 beta = 0.0d0 info = QMCKL_SUCCESS info_qmckl_dgemm_value = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. ! TODO : Use numerical precision here cutoff = -dlog(1.d-15) M = mo_num N = elec_num*5 K = ao_num * 1_8 LDA = M LDB = K LDC = M ao_vgl_big = reshape(ao_vgl(:, :, :),(/ao_num, elec_num*5_8/)) info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & coef_normalized,size(coef_normalized,1) * 1_8, & ao_vgl_big, LDB, & beta, & mo_vgl_big,LDC) mo_vgl = reshape(mo_vgl_big,(/mo_num,elec_num,5_8/)) deallocate(mo_vgl_big) deallocate(ao_vgl_big) end function qmckl_compute_mo_basis_gaussian_vgl_f #+end_src #+CALL: generate_c_header(table=qmckl_mo_basis_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_mo_basis_gaussian_vgl")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_mo_basis_gaussian_vgl ( const qmckl_context context, const int64_t ao_num, const int64_t mo_num, const int64_t elec_num, const double* coef_normalized, const double* ao_vgl, double* const mo_vgl ); #+end_src #+CALL: generate_c_interface(table=qmckl_mo_basis_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_mo_basis_gaussian_vgl")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_mo_basis_gaussian_vgl & (context, ao_num, mo_num, elec_num, coef_normalized, ao_vgl, mo_vgl) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: mo_num integer (c_int64_t) , intent(in) , value :: elec_num real (c_double ) , intent(in) :: coef_normalized(mo_num,ao_num) real (c_double ) , intent(in) :: ao_vgl(ao_num,elec_num,5) real (c_double ) , intent(out) :: mo_vgl(mo_num,elec_num,5) integer(c_int32_t), external :: qmckl_compute_mo_basis_gaussian_vgl_f info = qmckl_compute_mo_basis_gaussian_vgl_f & (context, ao_num, mo_num, elec_num, coef_normalized, ao_vgl, mo_vgl) end function qmckl_compute_mo_basis_gaussian_vgl #+end_src *** Test #+begin_src python :results output :exports none import numpy as np def f(a,x,y): return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) def df(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0) def d2f(a,x,y,n): h0 = 1.e-6 if n == 1: h = np.array([h0,0.,0.]) elif n == 2: h = np.array([0.,h0,0.]) elif n == 3: h = np.array([0.,0.,h0]) return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2 def lf(a,x,y): return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3) elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] ) elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] ) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) #double prim_vgl[prim_num][5][walk_num][elec_num]; x = elec_26_w1 ; y = nucl_1 a = [( 8.236000E+03, -1.130000E-04 * 6.1616545431994848e+02 ), ( 1.235000E+03, -8.780000E-04 * 1.4847738511079908e+02 ), ( 2.808000E+02, -4.540000E-03 * 4.8888635917437597e+01 ), ( 7.927000E+01, -1.813300E-02 * 1.8933972232608955e+01 ), ( 2.559000E+01, -5.576000E-02 * 8.1089160941724145e+00 ), ( 8.997000E+00, -1.268950E-01 * 3.7024003863155635e+00 ), ( 3.319000E+00, -1.703520E-01 * 1.7525302846177560e+00 ), ( 9.059000E-01, 1.403820E-01 * 6.6179013183966806e-01 ), ( 3.643000E-01, 5.986840E-01 * 3.3419848027174592e-01 ), ( 1.285000E-01, 3.953890E-01 * 1.5296336817449557e-01 )] print ( "[1][0][0][26] : %25.15e"% f(a,x,y)) print ( "[1][1][0][26] : %25.15e"% df(a,x,y,1)) print ( "[1][2][0][26] : %25.15e"% df(a,x,y,2)) print ( "[1][3][0][26] : %25.15e"% df(a,x,y,3)) print ( "[1][4][0][26] : %25.15e"% lf(a,x,y)) x = elec_15_w2 ; y = nucl_2 a = [(3.387000E+01, 6.068000E-03 *1.0006253235944540e+01), (5.095000E+00, 4.530800E-02 *2.4169531573445120e+00), (1.159000E+00, 2.028220E-01 *7.9610924849766440e-01), (3.258000E-01, 5.039030E-01 *3.0734305383061117e-01), (1.027000E-01, 3.834210E-01 *1.2929684417481876e-01)] print ( "[0][1][15][14] : %25.15e"% f(a,x,y)) print ( "[1][1][15][14] : %25.15e"% df(a,x,y,1)) print ( "[2][1][15][14] : %25.15e"% df(a,x,y,2)) print ( "[3][1][15][14] : %25.15e"% df(a,x,y,3)) print ( "[4][1][15][14] : %25.15e"% lf(a,x,y)) #+end_src #+begin_src c :tangle (eval c_test) :exports none { #define walk_num chbrclf_walk_num #define elec_num chbrclf_elec_num #define shell_num chbrclf_shell_num #define ao_num chbrclf_ao_num int64_t elec_up_num = chbrclf_elec_up_num; int64_t elec_dn_num = chbrclf_elec_dn_num; double* elec_coord = &(chbrclf_elec_coord[0][0][0]); const int64_t nucl_num = chbrclf_nucl_num; const double* nucl_charge = chbrclf_charge; const double* nucl_coord = &(chbrclf_nucl_coord[0][0]); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert (rc == QMCKL_SUCCESS); rc = qmckl_set_electron_walk_num (context, walk_num); assert (rc == QMCKL_SUCCESS); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', elec_coord); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0])); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_nucleus_charge(context, nucl_charge); assert(rc == QMCKL_SUCCESS); assert(qmckl_nucleus_provided(context)); const int64_t * nucleus_index = &(chbrclf_basis_nucleus_index[0]); const int64_t * nucleus_shell_num = &(chbrclf_basis_nucleus_shell_num[0]); const int32_t * shell_ang_mom = &(chbrclf_basis_shell_ang_mom[0]); const int64_t * shell_prim_num = &(chbrclf_basis_shell_prim_num[0]); const int64_t * shell_prim_index = &(chbrclf_basis_shell_prim_index[0]); const double * shell_factor = &(chbrclf_basis_shell_factor[0]); const double * exponent = &(chbrclf_basis_exponent[0]); const double * coefficient = &(chbrclf_basis_coefficient[0]); const double * prim_factor = &(chbrclf_basis_prim_factor[0]); const double * ao_factor = &(chbrclf_basis_ao_factor[0]); const char typ = 'G'; assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_type (context, typ); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_num (context, chbrclf_shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_prim_num (context, chbrclf_prim_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_nucleus_shell_num (context, nucleus_shell_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_ang_mom (context, shell_ang_mom); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_factor (context, shell_factor); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_num (context, shell_prim_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_shell_prim_index (context, shell_prim_index); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_exponent (context, exponent); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_coefficient (context, coefficient); assert(rc == QMCKL_SUCCESS); assert(!qmckl_ao_basis_provided(context)); rc = qmckl_set_ao_basis_prim_factor (context, prim_factor); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_ao_basis_ao_num(context, chbrclf_ao_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_ao_basis_ao_factor (context, ao_factor); assert(rc == QMCKL_SUCCESS); assert(qmckl_ao_basis_provided(context)); double ao_vgl[5][walk_num][elec_num][chbrclf_ao_num]; rc = qmckl_get_ao_vgl(context, &(ao_vgl[0][0][0][0])); assert (rc == QMCKL_SUCCESS); /* Set up MO data */ rc = qmckl_set_mo_basis_type(context, typ); assert (rc == QMCKL_SUCCESS); const int64_t mo_num = chbrclf_mo_num; rc = qmckl_set_mo_basis_mo_num(context, mo_num); assert (rc == QMCKL_SUCCESS); const double * mo_coefficient = &(chbrclf_mo_coef[0]); rc = qmckl_set_mo_basis_coefficient(context, mo_coefficient); assert (rc == QMCKL_SUCCESS); assert(qmckl_mo_basis_provided(context)); double mo_vgl[5][walk_num][elec_num][chbrclf_mo_num]; rc = qmckl_get_mo_basis_vgl(context, &(mo_vgl[0][0][0][0])); assert (rc == QMCKL_SUCCESS); // Test overlap of MO //double point_x[10]; //double point_y[10]; //double point_z[10]; //int32_t npoints=10; //// obtain points //double dr = 20./(npoints-1); //double dr3 = dr*dr*dr; // //for (int i=0;i