#+TITLE: Jastrow Factor #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org * Introduction The Jastrow factor depends on the electronic ($\mathbf{r}$) and nuclear ($\mathbf{R}$) coordinates. Its defined as $\exp(J(\mathbf{r},\mathbf{R}))$, where \[ J(\mathbf{r},\mathbf{R}) = J_{\text{eN}}(\mathbf{r},\mathbf{R}) + J_{\text{ee}}(\mathbf{r}) + J_{\text{eeN}}(\mathbf{r},\mathbf{R}) \] In the following, we us the notations $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and $R_{i\alpha} = |\mathbf{r}_i - \mathbf{R}_\alpha|$. $J_{\text{eN}}$ contains electron-nucleus terms: \[ J_{\text{eN}}(\mathbf{r},\mathbf{R}) = \sum_{i=1}^{N_\text{elec}} \sum_{\alpha=1}^{N_\text{nucl}} \frac{a_1\, f(R_{i\alpha})}{1+a_2\, f(R_{i\alpha})} + \sum_{p=2}^{N_\text{ord}^a} a_{p+1}\, [f(R_{i\alpha})]^p - J_{eN}^\infty \] $J_{\text{ee}}$ contains electron-electron terms: \[ J_{\text{ee}}(\mathbf{r}) = \sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{b_1\, f(r_{ij})}{1+b_2\, f(r_{ij})} + \sum_{p=2}^{N_\text{ord}^b} a_{p+1}\, [f(r_{ij})]^p - J_{ee}^\infty \] and $J_{\text{eeN}}$ contains electron-electron-Nucleus terms: \[ J_{\text{eeN}}(\mathbf{r},\mathbf{R}) = \sum_{\alpha=1}^{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{elec}}} \sum_{j=1}^{i-1} \sum_{p=2}^{N_{\text{ord}}} \sum_{k=0}^{p-1} \sum_{l=0}^{p-k-2\delta_{k,0}} c_{lkp\alpha} \left[ g({r}_{ij}) \right]^k \left[ \left[ g({R}_{i\alpha}) \right]^l + \left[ g({R}_{j\alpha}) \right]^l \right] \left[ g({R}_{i\,\alpha}) \, g({R}_{j\alpha}) \right]^{(p-k-l)/2} \] $c_{lkp\alpha}$ are non-zero only when $p-k-l$ is even. $f$ and $g$ are scaling function defined as \[ f(r) = \frac{1-e^{-\kappa\, r}}{\kappa} \text{ and } g(r) = e^{-\kappa\, r}. \] The terms $J_{\text{ee}}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that $J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_func) #ifndef QMCKL_JASTROW_HPF #define QMCKL_JASTROW_HPF #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_JASTROW_HPT #define QMCKL_JASTROW_HPT #include #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "n2.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_jastrow_private_func.h" #include "qmckl_jastrow_private_type.h" #+end_src * Context :PROPERTIES: :Name: qmckl_jastrow :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: The following data stored in the context: #+NAME: qmckl_jastrow_args | Variable | Type | In/Out | Description | |---------------------------+---------------------------------------+--------+-------------------------------------------------------------------| | ~uninitialized~ | ~int32_t~ | in | Keeps bits set for uninitialized data | | ~aord_num~ | ~int64_t~ | in | The number of a coeffecients | | ~bord_num~ | ~int64_t~ | in | The number of b coeffecients | | ~cord_num~ | ~int64_t~ | in | The number of c coeffecients | | ~type_nucl_num~ | ~int64_t~ | in | Number of Nucleii types | | ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of types of Nucleii | | ~aord_vector~ | ~double[aord_num + 1][type_nucl_num]~ | in | Order of a polynomial coefficients | | ~bord_vector~ | ~double[bord_num + 1]~ | in | Order of b polynomial coefficients | | ~cord_vector~ | ~double[cord_num][type_nucl_num]~ | in | Order of c polynomial coefficients | | ~factor_ee~ | ~double[walk_num]~ | out | Jastrow factor: electron-electron part | | ~factor_ee_date~ | ~uint64_t~ | out | Jastrow factor: electron-electron part | | ~factor_en~ | ~double[walk_num]~ | out | Jastrow factor: electron-nucleus part | | ~factor_en_date~ | ~uint64_t~ | out | Jastrow factor: electron-nucleus part | | ~factor_een~ | ~double[walk_num]~ | out | Jastrow factor: electron-electron-nucleus part | | ~factor_een_date~ | ~uint64_t~ | out | Jastrow factor: electron-electron-nucleus part | | ~factor_ee_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~factor_ee_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the derivative | | ~factor_en_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~factor_en_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the en derivative | | ~factor_een_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~factor_een_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the een derivative | | ~offload_type~ | ~qmckl_jastrow_offload_type~ | in | Enum type to change offload type at runtime | computed data: | Variable | Type | In/Out | |----------------------------+-----------------------------------------------------------------+-------------------------------------------------| | ~dim_cord_vect~ | ~int64_t~ | Number of unique C coefficients | | ~dim_cord_vect_date~ | ~uint64_t~ | Number of unique C coefficients | | ~asymp_jasb~ | ~double[2]~ | Asymptotic component | | ~asymp_jasb_date~ | ~uint64_t~ | Asymptotic component | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | vector of non-zero coefficients | | ~cord_vect_full_date~ | ~uint64_t~ | Keep track of changes here | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | Transform l,k,p, and m into consecutive indices | | ~lkpm_combined_index_date~ | ~uint64_t~ | Transform l,k,p, and m into consecutive indices | | ~tmp_c~ | ~double[walk_num][cord_num][cord_num+1][nucl_num][elec_num]~ | vector of non-zero coefficients | | ~dtmp_c~ | ~double[walk_num][elec_num][4][nucl_num][cord_num+1][cord_num]~ | vector of non-zero coefficients | | ~een_rescaled_n~ | ~double[walk_num][cord_num+1][nucl_num][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord | | ~een_rescaled_n_date~ | ~uint64_t~ | Keep track of the date of creation | | ~een_rescaled_e_deriv_e~ | ~double[walk_num][cord_num+1][elec_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons | | ~een_rescaled_e_deriv_e_date~ | ~uint64_t~ | Keep track of the date of creation | | ~een_rescaled_n_deriv_e~ | ~double[walk_num][cord_num+1][nucl_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons | | ~een_rescaled_n_deriv_e_date~ | ~uint64_t~ | Keep track of the date of creation | #+NAME: jastrow_data #+BEGIN_SRC python :results none :exports none import numpy as np # For H2O we have the following data: elec_num = 10 nucl_num = 2 up_num = 5 down_num = 5 nucl_coord = np.array([ [0.000000, 0.000000 ], [0.000000, 0.000000 ], [0.000000, 2.059801 ] ]) elec_coord = [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303], [-0.587812193472177 , -0.128751981129274 , 0.187773606533075], [ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ], [-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ], [ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ], [-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002], [-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867], [ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002], [-0.108090166832043 , 0.189161729653261 , 2.15398313919894], [ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]]; ee_distance_rescaled = [ [ 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.550227800352402, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.919155060185168, 0.937695909123175, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.893325429242815, 0.851181978173561, 0.978501685226877, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.982457268305353, 0.976125002619471, 0.994349933143149, 0.844077311588328, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.482407528408731, 0.414816073699124, 0.894716035479343, 0.876540187084407, 0.978921170036895, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.459541909660400, 0.545007215761510, 0.883752955884551, 0.918958134888791, 0.986386936267237, 0.362209822236419, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.763732576854455, 0.817282762358449, 0.801802919535959, 0.900089095449775, 0.975704636491453, 0.707836537586060, 0.755705808346586, 0.000000000000000, 0.000000000000000, 0.000000000000000 ], [ 0.904249454052971, 0.871097965261373, 0.982717262706270, 0.239901207363622, 0.836519456769083, 0.896135326270534, 0.930694340243023, 0.917708540815567, 0.000000000000000, 0.000000000000000 ], [ 0.944400908070716, 0.922589018494961, 0.984615718580670, 0.514328661540623, 0.692362267147064, 0.931894098453677, 0.956034127544344, 0.931221472309472, 0.540903688625053, 0.000000000000000 ]] en_distance_rescaled = np.transpose(np.array([ [ 0.443570948411811 , 0.467602196999105 , 0.893870160799932 , 0.864347190364447 , 0.976608182392358 , 0.187563183468210 , 0.426404699872689 , 0.665107090128166 , 0.885246991424583 , 0.924902909715270 ], [ 0.899360150637444 , 0.860035135365386 , 0.979659405613798 , 6.140678415933776E-002, 0.835118398056681 , 0.884071658981068 , 0.923860000907362 , 0.905203414522289 , 0.211286300932359 , 0.492104840907350 ]])) # symmetrize it for i in range(elec_num): for j in range(elec_num): ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i] type_nucl_num = 1 aord_num = 5 bord_num = 5 cord_num = 5 dim_cord_vect= 23 type_nucl_vector = [ 1, 1] aord_vector = [ [0.000000000000000E+000], [0.000000000000000E+000], [-0.380512000000000E+000], [-0.157996000000000E+000], [-3.155800000000000E-002], [2.151200000000000E-002]] bord_vector = [ 0.500000000000000E-000, 0.153660000000000E-000, 6.722620000000000E-002, 2.157000000000000E-002, 7.309600000000000E-003, 2.866000000000000E-003] cord_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ] cord_vector_full = [ [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ], [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ], ] lkpm_combined_index = [[1 , 1 , 2 , 0], [0 , 0 , 2 , 1], [1 , 2 , 3 , 0], [2 , 1 , 3 , 0], [0 , 1 , 3 , 1], [1 , 0 , 3 , 1], [1 , 3 , 4 , 0], [2 , 2 , 4 , 0], [0 , 2 , 4 , 1], [3 , 1 , 4 , 0], [1 , 1 , 4 , 1], [2 , 0 , 4 , 1], [0 , 0 , 4 , 2], [1 , 4 , 5 , 0], [2 , 3 , 5 , 0], [0 , 3 , 5 , 1], [3 , 2 , 5 , 0], [1 , 2 , 5 , 1], [4 , 1 , 5 , 0], [2 , 1 , 5 , 1], [0 , 1 , 5 , 2], [3 , 0 , 5 , 1], [1 , 0 , 5 , 2]] kappa = 1.0 kappa_inv = 1.0/kappa #+END_SRC ** Data structure #+begin_src c :comments org :tangle (eval h_type) typedef enum qmckl_jastrow_offload_type{ OFFLOAD_NONE, OFFLOAD_OPENACC, OFFLOAD_CUBLAS } qmckl_jastrow_offload_type; #+end_src #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_jastrow_struct{ int32_t uninitialized; int64_t aord_num; int64_t bord_num; int64_t cord_num; int64_t type_nucl_num; uint64_t asymp_jasb_date; uint64_t tmp_c_date; uint64_t dtmp_c_date; uint64_t factor_ee_date; uint64_t factor_en_date; uint64_t factor_een_date; uint64_t factor_ee_deriv_e_date; uint64_t factor_en_deriv_e_date; uint64_t factor_een_deriv_e_date; int64_t* type_nucl_vector; double * aord_vector; double * bord_vector; double * cord_vector; double * asymp_jasb; double * factor_ee; double * factor_en; double * factor_een; double * factor_ee_deriv_e; double * factor_en_deriv_e; double * factor_een_deriv_e; int64_t dim_cord_vect; uint64_t dim_cord_vect_date; double * cord_vect_full; uint64_t cord_vect_full_date; int64_t* lkpm_combined_index; uint64_t lkpm_combined_index_date; double * tmp_c; double * dtmp_c; double * een_rescaled_e; double * een_rescaled_n; uint64_t een_rescaled_e_date; uint64_t een_rescaled_n_date; double * een_rescaled_e_deriv_e; double * een_rescaled_n_deriv_e; uint64_t een_rescaled_e_deriv_e_date; uint64_t een_rescaled_n_deriv_e_date; bool provided; char * type; qmckl_jastrow_offload_type offload_type; } qmckl_jastrow_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_init_jastrow(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_jastrow(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); ctx->jastrow.uninitialized = (1 << 5) - 1; /* Default values */ return QMCKL_SUCCESS; } #+end_src ** Access functions #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_jastrow_aord_num (qmckl_context context, int64_t* const aord_num); qmckl_exit_code qmckl_get_jastrow_bord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_cord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_type_nucl_num (qmckl_context context, int64_t* const type_nucl_num); qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num, const int64_t size_max); qmckl_exit_code qmckl_get_jastrow_aord_vector (qmckl_context context, double * const aord_vector, const int64_t size_max); qmckl_exit_code qmckl_get_jastrow_bord_vector (qmckl_context context, double * const bord_vector, const int64_t size_max); qmckl_exit_code qmckl_get_jastrow_cord_vector (qmckl_context context, double * const cord_vector, const int64_t size_max); qmckl_exit_code qmckl_get_jastrow_offload_type (qmckl_context context, qmckl_jastrow_offload_type * const offload_type); #+end_src Along with these core functions, calculation of the jastrow factor requires the following additional information to be set: When all the data for the AOs have been provided, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_jastrow_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_jastrow_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); return ctx->jastrow.provided; } #+end_src #+NAME:post #+begin_src c :exports none if ( (ctx->jastrow.uninitialized & mask) != 0) { return NULL; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_aord_num (const qmckl_context context, int64_t* const aord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (aord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_aord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.aord_num > 0); ,*aord_num = ctx->jastrow.aord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_bord_num (const qmckl_context context, int64_t* const bord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (bord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_bord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.bord_num > 0); ,*bord_num = ctx->jastrow.bord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_num (const qmckl_context context, int64_t* const cord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (cord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_cord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.cord_num > 0); ,*cord_num = ctx->jastrow.cord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_type_nucl_num (const qmckl_context context, int64_t* const type_nucl_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (type_nucl_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_type_nucl_num", "type_nucl_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.type_nucl_num > 0); ,*type_nucl_num = ctx->jastrow.type_nucl_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (const qmckl_context context, int64_t* const type_nucl_vector, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (type_nucl_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_type_nucl_vector", "type_nucl_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.type_nucl_vector != NULL); if (size_max < ctx->jastrow.type_nucl_num) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_type_nucl_vector", "Array too small. Expected jastrow.type_nucl_num"); } memcpy(type_nucl_vector, ctx->jastrow.type_nucl_vector, ctx->jastrow.type_nucl_num*sizeof(int64_t)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_aord_vector (const qmckl_context context, double * const aord_vector, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (aord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_aord_vector", "aord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 3; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.aord_vector != NULL); int64_t sze = (ctx->jastrow.aord_num + 1)*ctx->jastrow.type_nucl_num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_aord_vector", "Array too small. Expected (ctx->jastrow.aord_num + 1)*ctx->jastrow.type_nucl_num"); } memcpy(aord_vector, ctx->jastrow.aord_vector, sze*sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_bord_vector (const qmckl_context context, double * const bord_vector, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (bord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_bord_vector", "bord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 4; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.bord_vector != NULL); int64_t sze=ctx->jastrow.bord_num +1; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_bord_vector", "Array too small. Expected (ctx->jastrow.bord_num + 1)"); } memcpy(bord_vector, ctx->jastrow.bord_vector, sze*sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, double * const cord_vector, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (cord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_cord_vector", "cord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 5; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.cord_vector != NULL); int64_t dim_cord_vect; qmckl_exit_code rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); if (rc != QMCKL_SUCCESS) return rc; int64_t sze=dim_cord_vect * ctx->jastrow.type_nucl_num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_cord_vector", "Array too small. Expected dim_cord_vect * jastrow.type_nucl_num"); } memcpy(cord_vector, ctx->jastrow.cord_vector, sze*sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_offload_type (const qmckl_context context, qmckl_jastrow_offload_type* const offload_type) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (offload_type == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_offload_type", "offload_type is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } *offload_type = ctx->jastrow.offload_type; return QMCKL_SUCCESS; } #+end_src ** Initialization functions To prepare for the Jastrow and its derivative, all the following functions need to be called. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_jastrow_ord_num (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_num (qmckl_context context, const int64_t type_nucl_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t nucl_num); qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector, const int64_t size_max); qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector, const int64_t size_max); qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector, const int64_t size_max); qmckl_exit_code qmckl_set_jastrow_offload_type (qmckl_context context, const qmckl_jastrow_offload_type offload_type); #+end_src #+NAME:pre2 #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; #+end_src #+NAME:post2 #+begin_src c :exports none ctx->jastrow.uninitialized &= ~mask; ctx->jastrow.provided = (ctx->jastrow.uninitialized == 0); if (ctx->jastrow.provided) { qmckl_exit_code rc_ = qmckl_finalize_jastrow(context); if (rc_ != QMCKL_SUCCESS) return rc_; } return QMCKL_SUCCESS; #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_jastrow_ord_num(qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num) { <> if (aord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "aord_num <= 0"); } if (bord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "bord_num <= 0"); } if (cord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "cord_num <= 0"); } int32_t mask = 1 << 0; ctx->jastrow.aord_num = aord_num; ctx->jastrow.bord_num = bord_num; ctx->jastrow.cord_num = cord_num; <> } qmckl_exit_code qmckl_set_jastrow_type_nucl_num(qmckl_context context, const int64_t type_nucl_num) { <> if (type_nucl_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_type_nucl_num", "type_nucl_num < 0"); } int32_t mask = 1 << 1; ctx->jastrow.type_nucl_num = type_nucl_num; <> } qmckl_exit_code qmckl_set_jastrow_type_nucl_vector(qmckl_context context, int64_t const * type_nucl_vector, const int64_t nucl_num) { <> int32_t mask = 1 << 2; int64_t type_nucl_num; qmckl_exit_code rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (type_nucl_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_type_nucl_vector", "type_nucl_num is not set"); } if (type_nucl_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_type_nucl_vector", "type_nucl_vector = NULL"); } if (ctx->jastrow.type_nucl_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.type_nucl_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_type_nucl_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = nucl_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_type_nucl_vector", NULL); } memcpy(new_array, type_nucl_vector, mem_info.size); ctx->jastrow.type_nucl_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double const * aord_vector, const int64_t size_max) { <> int32_t mask = 1 << 3; int64_t aord_num; qmckl_exit_code rc = qmckl_get_jastrow_aord_num(context, &aord_num); if (rc != QMCKL_SUCCESS) return rc; int64_t type_nucl_num; rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (aord_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "aord_num is not set"); } if (aord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_aord_vector", "aord_vector = NULL"); } if (ctx->jastrow.aord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.aord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (aord_num + 1) * type_nucl_num * sizeof(double); if ((size_t) size_max < mem_info.size/sizeof(double)) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_jastrow_aord_vector", "Array too small. Expected (aord_num+1)*type_nucl_num"); } double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, aord_vector, mem_info.size); ctx->jastrow.aord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double const * bord_vector, const int64_t size_max) { <> int32_t mask = 1 << 4; int64_t bord_num; qmckl_exit_code rc = qmckl_get_jastrow_bord_num(context, &bord_num); if (rc != QMCKL_SUCCESS) return rc; if (bord_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "bord_num is not set"); } if (bord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_bord_vector", "bord_vector = NULL"); } if (ctx->jastrow.bord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.bord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (bord_num + 1) * sizeof(double); if ((size_t) size_max < mem_info.size/sizeof(double)) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_jastrow_bord_vector", "Array too small. Expected (bord_num+1)"); } double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, bord_vector, mem_info.size); ctx->jastrow.bord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double const * cord_vector, const int64_t size_max) { <> int32_t mask = 1 << 5; qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; int64_t dim_cord_vect; rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); if (rc != QMCKL_SUCCESS) return rc; int64_t type_nucl_num; rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (dim_cord_vect == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "dim_cord_vect is not set"); } if (cord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_cord_vector", "cord_vector = NULL"); } if (ctx->jastrow.cord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.cord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double); if ((size_t) size_max < mem_info.size/sizeof(double)) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_jastrow_cord_vector", "Array too small. Expected dim_cord_vect * type_nucl_num"); } double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, cord_vector, mem_info.size); ctx->jastrow.cord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_offload_type(qmckl_context context, const qmckl_jastrow_offload_type offload_type) { <> ctx->jastrow.offload_type = offload_type; return QMCKL_SUCCESS; } #+end_src When the required information is completely entered, other data structures are computed to accelerate the calculations. The intermediates factors are precontracted using BLAS LEVEL 3 operations for an optimal flop count. #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* ----------------------------------- */ /* Check for the necessary information */ /* ----------------------------------- */ /* Check for the electron data 1. elec_num 2. ee_distances_rescaled ,*/ if (!(ctx->electron.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_electron", NULL); } /* Check for the nucleus data 1. nucl_num 2. en_distances_rescaled ,*/ if (!(ctx->nucleus.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_nucleus", NULL); } qmckl_exit_code rc = QMCKL_SUCCESS; return rc; } #+end_src ** Test #+begin_src c :tangle (eval c_test) /* Reference input data */ int64_t walk_num = n2_walk_num; int64_t elec_num = n2_elec_num; int64_t elec_up_num = n2_elec_up_num; int64_t elec_dn_num = n2_elec_dn_num; double rescale_factor_kappa_ee = 1.0; double rescale_factor_kappa_en = 1.0; double nucl_rescale_factor_kappa = 1.0; double* elec_coord = &(n2_elec_coord[0][0][0]); const double* nucl_charge = n2_charge; int64_t nucl_num = n2_nucl_num; double* nucl_coord = &(n2_nucl_coord[0][0]); int64_t size_max; /* Provide Electron data */ qmckl_exit_code rc; assert(!qmckl_electron_provided(context)); int64_t n; rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_electron_provided(context)); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_up_num); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_dn_num); rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_num); double k_ee = 0.; double k_en = 0.; rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == 1.0); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == 1.0); rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == rescale_factor_kappa_ee); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == rescale_factor_kappa_en); int64_t w; rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_walk_num (context, walk_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_SUCCESS); assert(w == walk_num); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', elec_coord, walk_num*3*elec_num); assert(rc == QMCKL_SUCCESS); double elec_coord2[walk_num*3*elec_num]; rc = qmckl_get_electron_coord (context, 'N', elec_coord2, walk_num*3*elec_num); assert(rc == QMCKL_SUCCESS); for (int64_t i=0 ; i<3*elec_num ; ++i) { assert( elec_coord[i] == elec_coord2[i] ); } /* Provide Nucleus data */ assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == nucl_num); double k; rc = qmckl_get_nucleus_rescale_factor (context, &k); assert(rc == QMCKL_SUCCESS); assert(k == 1.0); rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_nucleus_rescale_factor (context, &k); assert(rc == QMCKL_SUCCESS); assert(k == nucl_rescale_factor_kappa); double nucl_coord2[3*nucl_num]; rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2, 3*nucl_num); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]), 3*nucl_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_coord (context, 'N', nucl_coord2, nucl_num*3); assert(rc == QMCKL_SUCCESS); for (int64_t k=0 ; k<3 ; ++k) { for (int64_t i=0 ; ijastrow.asymp_jasb, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee kappa is provided */ double rescale_factor_kappa_ee; rc = qmckl_get_electron_rescale_factor_ee(context, &rescale_factor_kappa_ee); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.asymp_jasb_date) { /* Allocate array */ if (ctx->jastrow.asymp_jasb == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 2 * sizeof(double); double* asymp_jasb = (double*) qmckl_malloc(context, mem_info); if (asymp_jasb == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_asymp_jasb", NULL); } ctx->jastrow.asymp_jasb = asymp_jasb; } qmckl_exit_code rc = qmckl_compute_asymp_jasb(context, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, rescale_factor_kappa_ee, ctx->jastrow.asymp_jasb); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.asymp_jasb_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_asymp_jasb :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_asymp_jasb_args | Variable | Type | In/Out | Description | |---------------------------+----------------------+--------+-------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~bord_num~ | ~int64_t~ | in | Order of the polynomial | | ~bord_vector~ | ~double[bord_num+1]~ | in | Values of b | | ~rescale_factor_kappa_ee~ | ~double~ | in | Electron coordinates | | ~asymp_jasb~ | ~double[2]~ | out | Asymptotic value | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_asymp_jasb_f(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: bord_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(out) :: asymp_jasb(2) integer*8 :: i, p double precision :: kappa_inv, x, asym_one kappa_inv = 1.0d0 / rescale_factor_kappa_ee info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif asym_one = bord_vector(1) * kappa_inv / (1.0d0 + bord_vector(2) * kappa_inv) asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/) do i = 1, 2 x = kappa_inv do p = 2, bord_num x = x * kappa_inv asymp_jasb(i) = asymp_jasb(i) + bord_vector(p + 1) * x end do end do end function qmckl_compute_asymp_jasb_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_asymp_jasb ( const qmckl_context context, const int64_t bord_num, const double* bord_vector, const double rescale_factor_kappa_ee, double* const asymp_jasb ) { double kappa_inv, x, asym_one; kappa_inv = 1.0 / rescale_factor_kappa_ee; if (context == QMCKL_NULL_CONTEXT){ return QMCKL_INVALID_CONTEXT; } if (bord_num <= 0) { return QMCKL_INVALID_ARG_2; } asym_one = bord_vector[0] * kappa_inv / (1.0 + bord_vector[1] * kappa_inv); asymp_jasb[0] = asym_one; asymp_jasb[1] = 0.5 * asym_one; for (int i = 0 ; i <= 1; ++i) { x = kappa_inv; for (int p = 1; p < bord_num; ++p){ x = x * kappa_inv; asymp_jasb[i] = asymp_jasb[i] + bord_vector[p + 1] * x; } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_asymp_jasb ( const qmckl_context context, const int64_t bord_num, const double* bord_vector, const double rescale_factor_kappa_ee, double* const asymp_jasb ); #+end_src *** Test #+name: asymp_jasb #+begin_src python :results output :exports none :noweb yes import numpy as np <> asym_one = bord_vector[0] * kappa_inv / (1.0 + bord_vector[1]*kappa_inv) asymp_jasb = np.array([asym_one, 0.5 * asym_one]) for i in range(2): x = kappa_inv for p in range(1,bord_num): x = x * kappa_inv asymp_jasb[i] += bord_vector[p + 1] * x print("asym_one : ", asym_one) print("asymp_jasb[0] : ", asymp_jasb[0]) print("asymp_jasb[1] : ", asymp_jasb[1]) #+end_src #+RESULTS: asymp_jasb : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); int64_t type_nucl_num = n2_type_nucl_num; int64_t* type_nucl_vector = &(n2_type_nucl_vector[0]); int64_t aord_num = n2_aord_num; int64_t bord_num = n2_bord_num; int64_t cord_num = n2_cord_num; double* aord_vector = &(n2_aord_vector[0][0]); double* bord_vector = &(n2_bord_vector[0]); double* cord_vector = &(n2_cord_vector[0][0]); int64_t dim_cord_vect=0; /* Initialize the Jastrow data */ rc = qmckl_init_jastrow(context); assert(!qmckl_jastrow_provided(context)); /* Set the data */ rc = qmckl_set_jastrow_ord_num(context, aord_num, bord_num, cord_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_type_nucl_num(context, type_nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_type_nucl_vector(context, type_nucl_vector, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_aord_vector(context, aord_vector,(aord_num+1)*type_nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_bord_vector(context, bord_vector,(bord_num+1)); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_cord_vector(context, cord_vector,dim_cord_vect*type_nucl_num); assert(rc == QMCKL_SUCCESS); /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double asymp_jasb[2]; rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb,2); // calculate asymp_jasb assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12); assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12); #+end_src ** Electron-electron component \(f_{ee}\) Calculate the electron-electron jastrow component ~factor_ee~ using the ~asymp_jasb~ componenet and the electron-electron rescaled distances ~ee_distance_rescaled~. \[ f_{ee} = \sum_{i,jelectron.walk_num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_ee", "Array too small. Expected walk_num"); } memcpy(factor_ee, ctx->jastrow.factor_ee, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee rescaled distance is provided */ rc = qmckl_provide_ee_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_ee_date) { /* Allocate array */ if (ctx->jastrow.factor_ee == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_ee = (double*) qmckl_malloc(context, mem_info); if (factor_ee == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_ee", NULL); } ctx->jastrow.factor_ee = factor_ee; } qmckl_exit_code rc = qmckl_compute_factor_ee(context, ctx->electron.walk_num, ctx->electron.num, ctx->electron.up_num, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, ctx->electron.ee_distance_rescaled, ctx->jastrow.asymp_jasb, ctx->jastrow.factor_ee); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_ee_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_ee :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_ee_args | Variable | Type | In/Out | Description | |------------------------+----------------------------------------+--------+-----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~up_num~ | ~int64_t~ | in | Number of alpha electrons | | ~bord_num~ | ~int64_t~ | in | Number of coefficients | | ~bord_vector~ | ~double[bord_num+1]~ | in | List of coefficients | | ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~asymp_jasb~ | ~double[2]~ | in | Electron-electron distances | | ~factor_ee~ | ~double[walk_num]~ | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, bord_num, & bord_vector, ee_distance_rescaled, asymp_jasb, factor_ee) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num, walk_num) double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee(walk_num) integer*8 :: i, j, p, ipar, nw double precision :: x, power_ser, spin_fact info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif factor_ee = 0.0d0 do nw =1, walk_num do j = 1, elec_num do i = 1, j - 1 x = ee_distance_rescaled(i,j,nw) power_ser = 0.0d0 spin_fact = 1.0d0 ipar = 1 do p = 2, bord_num x = x * ee_distance_rescaled(i,j,nw) power_ser = power_ser + bord_vector(p + 1) * x end do if(j <= up_num .OR. i > up_num) then spin_fact = 0.5d0 ipar = 2 endif factor_ee(nw) = factor_ee(nw) + spin_fact * bord_vector(1) * & ee_distance_rescaled(i,j,nw) / & (1.0d0 + bord_vector(2) * & ee_distance_rescaled(i,j,nw)) & -asymp_jasb(ipar) + power_ser end do end do end do end function qmckl_compute_factor_ee_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_factor_ee ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t up_num, const int64_t bord_num, const double* bord_vector, const double* ee_distance_rescaled, const double* asymp_jasb, double* const factor_ee ) { int ipar; // can we use a smaller integer? double x, x1, spin_fact, power_ser; if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num <= 0) { return QMCKL_INVALID_ARG_2; } if (elec_num <= 0) { return QMCKL_INVALID_ARG_3; } if (bord_num <= 0) { return QMCKL_INVALID_ARG_4; } for (int nw = 0; nw < walk_num; ++nw) { factor_ee[nw] = 0.0; // put init array here. for (int i = 0; i < elec_num; ++i ) { for (int j = 0; j < i; ++j) { //x = ee_distance_rescaled[j * (walk_num * elec_num) + i * (walk_num) + nw]; x = ee_distance_rescaled[j + i * elec_num + nw*(elec_num * elec_num)]; x1 = x; power_ser = 0.0; spin_fact = 1.0; ipar = 0; // index of asymp_jasb for (int p = 1; p < bord_num; ++p) { x = x * x1; power_ser = power_ser + bord_vector[p + 1] * x; } if(i < up_num || j >= up_num) { spin_fact = 0.5; ipar = 1; } factor_ee[nw] = factor_ee[nw] + spin_fact * bord_vector[0] * \ x1 / \ (1.0 + bord_vector[1] * \ x1) \ -asymp_jasb[ipar] + power_ser; } } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_factor_ee_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_ee ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t up_num, const int64_t bord_num, const double* bord_vector, const double* ee_distance_rescaled, const double* asymp_jasb, double* const factor_ee ); #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> factor_ee = 0.0 for i in range(0,elec_num): for j in range(0,i): x = ee_distance_rescaled[i][j] pow_ser = 0.0 spin_fact = 1.0 ipar = 0 for p in range(1,bord_num): x = x * ee_distance_rescaled[i][j] pow_ser = pow_ser + bord_vector[p + 1] * x if(i < up_num or j >= up_num): spin_fact = 0.5 ipar = 1 factor_ee = factor_ee + spin_fact * bord_vector[0] * ee_distance_rescaled[i][j] \ / (1.0 + bord_vector[1] * ee_distance_rescaled[i][j]) \ - asymp_jasb[ipar] + pow_ser print("factor_ee :",factor_ee) #+end_src #+RESULTS: : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 : factor_ee : -4.282760865958113 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double factor_ee[walk_num]; rc = qmckl_get_jastrow_factor_ee(context, factor_ee, walk_num); // calculate factor_ee assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12); #+end_src ** Electron-electron component derivative \(f'_{ee}\) Calculate the derivative of the ~factor_ee~ using the ~ee_distance_rescaled~ and the electron-electron rescaled distances derivatives ~ee_distance_rescaled_deriv_e~. There are four components, the gradient which has 3 components in the \(x, y, z\) directions and the laplacian as the last component. TODO: Add equation *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_ee_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_ee_deriv_e", "Array too small. Expected 4*walk_num*elec_num"); } memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee rescaled distance is provided */ rc = qmckl_provide_ee_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if ee rescaled distance deriv e is provided */ rc = qmckl_provide_ee_distance_rescaled_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_ee_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_ee_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double); double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_ee_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_ee_deriv_e", NULL); } ctx->jastrow.factor_ee_deriv_e = factor_ee_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_ee_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->electron.up_num, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, ctx->electron.ee_distance_rescaled, ctx->electron.ee_distance_rescaled_deriv_e, ctx->jastrow.asymp_jasb, ctx->jastrow.factor_ee_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_ee_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_ee_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_ee_deriv_e_args | Variable | Type | In/Out | Description | |--------------------------------+-------------------------------------------+--------+-----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~up_num~ | ~int64_t~ | in | Number of alpha electrons | | ~bord_num~ | ~int64_t~ | in | Number of coefficients | | ~bord_vector~ | ~double[bord_num+1]~ | in | List of coefficients | | ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~ee_distance_rescaled_deriv_e~ | ~double[walk_num][4][elec_num][elec_num]~ | in | Electron-electron distances | | ~asymp_jasb~ | ~double[2]~ | in | Electron-electron distances | | ~factor_ee_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_ee_deriv_e_f( & context, walk_num, elec_num, up_num, bord_num, & bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, & asymp_jasb, factor_ee_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num,walk_num) double precision , intent(in) :: ee_distance_rescaled_deriv_e(4,elec_num, elec_num,walk_num) !TODO double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num) integer*8 :: i, j, p, ipar, nw, ii double precision :: x, spin_fact, y double precision :: den, invden, invden2, invden3, xinv double precision :: lap1, lap2, lap3, third double precision, dimension(3) :: pow_ser_g double precision, dimension(4) :: dx info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif factor_ee_deriv_e = 0.0d0 third = 1.0d0 / 3.0d0 do nw =1, walk_num do j = 1, elec_num do i = 1, elec_num x = ee_distance_rescaled(i,j,nw) if(abs(x) < 1.0d-18) cycle pow_ser_g = 0.0d0 spin_fact = 1.0d0 den = 1.0d0 + bord_vector(2) * x invden = 1.0d0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0d0 / (x + 1.0d-18) ipar = 1 dx(1) = ee_distance_rescaled_deriv_e(1, i, j, nw) dx(2) = ee_distance_rescaled_deriv_e(2, i, j, nw) dx(3) = ee_distance_rescaled_deriv_e(3, i, j, nw) dx(4) = ee_distance_rescaled_deriv_e(4, i, j, nw) if((i .LE. up_num .AND. j .LE. up_num ) .OR. & (i .GT. up_num .AND. j .GT. up_num)) then spin_fact = 0.5d0 endif lap1 = 0.0d0 lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 x = ee_distance_rescaled(i, j, nw) if(abs(x) < 1.0d-18) cycle do p = 2, bord_num y = p * bord_vector(p + 1) * x pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y x = x * ee_distance_rescaled(i, j, nw) end do lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii) factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + spin_fact * bord_vector(1) * & dx(ii) * invden2 + pow_ser_g(ii) end do ii = 4 lap2 = lap2 * dx(ii) * third lap3 = lap3 + den * dx(ii) lap3 = lap3 * (spin_fact * bord_vector(1) * invden3) factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + lap1 + lap2 + lap3 end do end do end do end function qmckl_compute_factor_ee_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_ee_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t up_num, const int64_t bord_num, const double* bord_vector, const double* ee_distance_rescaled, const double* ee_distance_rescaled_deriv_e, const double* asymp_jasb, double* const factor_ee_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_ee_deriv_e & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & ee_distance_rescaled_deriv_e, & asymp_jasb, & factor_ee_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: up_num integer (c_int64_t) , intent(in) , value :: bord_num real (c_double ) , intent(in) :: bord_vector(bord_num + 1) real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,4,walk_num) real (c_double ) , intent(in) :: asymp_jasb(2) real (c_double ) , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_f info = qmckl_compute_factor_ee_deriv_e_f & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & ee_distance_rescaled_deriv_e, & asymp_jasb, & factor_ee_deriv_e) end function qmckl_compute_factor_ee_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float) for j in range(elec_num): for i in range(elec_num): rij_inv = 1.0 / elec_dist[i, j] for ii in range(3): elec_dist_deriv_e[ii, i, j] = (elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv elec_dist_deriv_e[:, j, j] = 0.0 ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float) for j in range(elec_num): for i in range(elec_num): f = 1.0 - kappa * ee_distance_rescaled[i][j] for ii in range(4): ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j] ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \ (-kappa * ee_distance_rescaled_deriv_e[0][i][j] * ee_distance_rescaled_deriv_e[0][i][j]) + \ (-kappa * ee_distance_rescaled_deriv_e[1][i][j] * ee_distance_rescaled_deriv_e[1][i][j]) + \ (-kappa * ee_distance_rescaled_deriv_e[2][i][j] * ee_distance_rescaled_deriv_e[2][i][j]) for ii in range(4): ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f third = 1.0 / 3.0 factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(4),dtype=float) for j in range(elec_num): for i in range(elec_num): x = ee_distance_rescaled[j][i] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(4),dtype=float) spin_fact = 1.0 den = 1.0 + bord_vector[1] * ee_distance_rescaled[j][i] invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (ee_distance_rescaled[j][i] + 1.0E-18) ipar = 1 for ii in range(4): dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i] if((i <= (up_num-1) and j <= (up_num-1) ) or \ (i > (up_num-1) and j > (up_num-1))): spin_fact = 0.5 lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = ee_distance_rescaled[j][i] if x < 1e-18: continue for p in range(2,bord_num+1): y = p * bord_vector[(p-1) + 1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * ee_distance_rescaled[j][i] lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii] factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (spin_fact * bord_vector[0] * invden3) factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3 print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0]) print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0]) print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0]) print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0]) #+end_src #+RESULTS: : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 : factor_ee_deriv_e[0][0]: 0.16364894652107934 : factor_ee_deriv_e[1][0]: -0.6927548119830084 : factor_ee_deriv_e[2][0]: 0.073267755223968 : factor_ee_deriv_e[3][0]: 1.5111672803213185 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); // calculate factor_ee_deriv_e double factor_ee_deriv_e[walk_num][4][elec_num]; rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0]),walk_num*4*elec_num); // check factor_ee_deriv_e assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][1][0]+0.6927548119830084 ) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][2][0]-0.073267755223968 ) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12); #+end_src ** Electron-nucleus component \(f_{en}\) Calculate the electron-electron jastrow component ~factor_en~ using the ~aord_vector~ coeffecients and the electron-nucleus rescaled distances ~en_distance_rescaled~. \[ f_{en} = \sum_{i,jelectron.walk_num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_en", "Array too small. Expected walk_num"); } memcpy(factor_en, ctx->jastrow.factor_en, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_en_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_en_date) { /* Allocate array */ if (ctx->jastrow.factor_en == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_en = (double*) qmckl_malloc(context, mem_info); if (factor_en == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_en", NULL); } ctx->jastrow.factor_en = factor_en; } qmckl_exit_code rc = qmckl_compute_factor_en(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.aord_num, ctx->jastrow.aord_vector, ctx->electron.en_distance_rescaled, ctx->jastrow.factor_en); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_en_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_en :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_en_args | Variable | Type | In/Out | Description | |------------------------+----------------------------------------+--------+----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei | | ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nucleii | | ~aord_num~ | ~int64_t~ | in | Number of coefficients | | ~aord_vector~ | ~double[aord_num+1][type_nucl_num]~ | in | List of coefficients | | ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances | | ~factor_en~ | ~double[walk_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_en_f( & context, walk_num, elec_num, nucl_num, type_nucl_num, & type_nucl_vector, aord_num, aord_vector, & en_distance_rescaled, factor_en) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num) double precision , intent(out) :: factor_en(walk_num) integer*8 :: i, a, p, nw double precision :: x, power_ser info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (aord_num <= 0) then info = QMCKL_INVALID_ARG_7 return endif factor_en = 0.0d0 do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num x = en_distance_rescaled(i, a, nw) power_ser = 0.0d0 do p = 2, aord_num x = x * en_distance_rescaled(i, a, nw) power_ser = power_ser + aord_vector(p + 1, type_nucl_vector(a)) * x end do factor_en(nw) = factor_en(nw) + aord_vector(1, type_nucl_vector(a)) * & en_distance_rescaled(i, a, nw) / & (1.0d0 + aord_vector(2, type_nucl_vector(a)) * & en_distance_rescaled(i, a, nw)) & + power_ser end do end do end do end function qmckl_compute_factor_en_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_factor_en ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const int64_t aord_num, const double* aord_vector, const double* en_distance_rescaled, double* const factor_en ) { double x, x1, power_ser; if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num <= 0) { return QMCKL_INVALID_ARG_2; } if (elec_num <= 0) { return QMCKL_INVALID_ARG_3; } if (nucl_num <= 0) { return QMCKL_INVALID_ARG_4; } if (type_nucl_num <= 0) { return QMCKL_INVALID_ARG_5; } if (type_nucl_vector == NULL) { return QMCKL_INVALID_ARG_6; } if (aord_num <= 0) { return QMCKL_INVALID_ARG_7; } if (aord_vector == NULL) { return QMCKL_INVALID_ARG_8; } if (en_distance_rescaled == NULL) { return QMCKL_INVALID_ARG_9; } if (factor_en == NULL) { return QMCKL_INVALID_ARG_10; } for (int nw = 0; nw < walk_num; ++nw ) { // init array factor_en[nw] = 0.0; for (int a = 0; a < nucl_num; ++a ) { for (int i = 0; i < elec_num; ++i ) { // x = ee_distance_rescaled[j * (walk_num * elec_num) + i * (walk_num) + nw]; x = en_distance_rescaled[i + a * elec_num + nw * (elec_num * nucl_num)]; x1 = x; power_ser = 0.0; for (int p = 2; p < aord_num+1; ++p) { x = x * x1; power_ser = power_ser + aord_vector[(p+1)-1 + (type_nucl_vector[a]-1) * aord_num] * x; } factor_en[nw] = factor_en[nw] + aord_vector[0 + (type_nucl_vector[a]-1)*aord_num] * x1 / \ (1.0 + aord_vector[1 + (type_nucl_vector[a]-1) * aord_num] * x1) + \ power_ser; } } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_factor_en_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_en ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const int64_t aord_num, const double* aord_vector, const double* en_distance_rescaled, double* const factor_en ); #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> factor_en = 0.0 for a in range(0,nucl_num): for i in range(0,elec_num): x = en_distance_rescaled[i][a] pow_ser = 0.0 for p in range(2,aord_num+1): x = x * en_distance_rescaled[i][a] pow_ser = pow_ser + aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x factor_en = factor_en + aord_vector[0][type_nucl_vector[a]-1] * en_distance_rescaled[i][a] \ / (1.0 + aord_vector[1][type_nucl_vector[a]-1] * en_distance_rescaled[i][a]) \ + pow_ser print("factor_en :",factor_en) #+end_src #+RESULTS: : factor_en : -5.865822569188727 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double factor_en[walk_num]; rc = qmckl_get_jastrow_factor_en(context, factor_en,walk_num); // calculate factor_en assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12); #+end_src ** Electron-nucleus component derivative \(f'_{en}\) Calculate the electron-electron jastrow component ~factor_en_deriv_e~ derivative with respect to the electron coordinates using the ~en_distance_rescaled~ and ~en_distance_rescaled_deriv_e~ which are already calculated previously. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_en_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_en_deriv_e", "Array too small. Expected 4*walk_num*elec_num"); } memcpy(factor_en_deriv_e, ctx->jastrow.factor_en_deriv_e, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_en_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_en_distance_rescaled_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_en_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_en_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double); double* factor_en_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_en_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_en_deriv_e", NULL); } ctx->jastrow.factor_en_deriv_e = factor_en_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_en_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.aord_num, ctx->jastrow.aord_vector, ctx->electron.en_distance_rescaled, ctx->electron.en_distance_rescaled_deriv_e, ctx->jastrow.factor_en_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_en_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_en_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_en_deriv_e_args | Variable | Type | In/Out | Description | |--------------------------------+-------------------------------------------+--------+---------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei | | ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nucleii | | ~aord_num~ | ~int64_t~ | in | Number of coefficients | | ~aord_vector~ | ~double[aord_num+1][type_nucl_num]~ | in | List of coefficients | | ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances | | ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][nucl_num][elec_num]~ | in | Electron-nucleus distance derivatives | | ~factor_en_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_en_deriv_e_f( & context, walk_num, elec_num, nucl_num, type_nucl_num, & type_nucl_vector, aord_num, aord_vector, & en_distance_rescaled, en_distance_rescaled_deriv_e, factor_en_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num) double precision , intent(in) :: en_distance_rescaled_deriv_e(4, elec_num, nucl_num, walk_num) double precision , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num) integer*8 :: i, a, p, ipar, nw, ii double precision :: x, den, invden, invden2, invden3, xinv double precision :: y, lap1, lap2, lap3, third double precision, dimension(3) :: power_ser_g double precision, dimension(4) :: dx info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (aord_num <= 0) then info = QMCKL_INVALID_ARG_7 return endif factor_en_deriv_e = 0.0d0 third = 1.0d0 / 3.0d0 do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num x = en_distance_rescaled(i,a,nw) if(abs(x) < 1.0d-18) continue power_ser_g = 0.0d0 den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x invden = 1.0d0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0d0 / x do ii = 1, 4 dx(ii) = en_distance_rescaled_deriv_e(ii,i,a,nw) end do lap1 = 0.0d0 lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 x = en_distance_rescaled(i, a, nw) do p = 2, aord_num y = p * aord_vector(p + 1, type_nucl_vector(a)) * x power_ser_g(ii) = power_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y x = x * en_distance_rescaled(i, a, nw) end do lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii) factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + aord_vector(1, type_nucl_vector(a)) & ,* dx(ii) * invden2 & + power_ser_g(ii) end do ii = 4 lap2 = lap2 * dx(ii) * third lap3 = lap3 + den * dx(ii) lap3 = lap3 * aord_vector(1, type_nucl_vector(a)) * invden3 factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + lap1 + lap2 + lap3 end do end do end do end function qmckl_compute_factor_en_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_en_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const int64_t aord_num, const double* aord_vector, const double* en_distance_rescaled, const double* en_distance_rescaled_deriv_e, double* const factor_en_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_en_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & en_distance_rescaled_deriv_e, & factor_en_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) integer (c_int64_t) , intent(in) , value :: aord_num real (c_double ) , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num) real (c_double ) , intent(in) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,4,walk_num) real (c_double ) , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_en_deriv_e_f info = qmckl_compute_factor_en_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & en_distance_rescaled_deriv_e, & factor_en_deriv_e) end function qmckl_compute_factor_en_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for j in range(nucl_num): elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): rij_inv = 1.0 / elnuc_dist[i, a] for ii in range(3): elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): f = 1.0 - kappa * en_distance_rescaled[i][a] for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f third = 1.0 / 3.0 factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(3),dtype=float) for a in range(nucl_num): for i in range(elec_num): x = en_distance_rescaled[i][a] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(3),dtype=float) den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (x + 1.0E-18) for ii in range(4): dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = en_distance_rescaled[i][a] if x < 1e-18: continue for p in range(2,aord_num+1): y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * en_distance_rescaled[i][a] lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) #+end_src #+RESULTS: : factor_en_deriv_e[0][0]: 0.11609919541763383 : factor_en_deriv_e[1][0]: -0.23301394780804574 : factor_en_deriv_e[2][0]: 0.17548337641865783 : factor_en_deriv_e[3][0]: -0.9667363412285741 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); // calculate factor_en_deriv_e double factor_en_deriv_e[walk_num][4][elec_num]; rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0]),walk_num*4*elec_num); // check factor_en_deriv_e assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12); assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12); assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12); assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12); #+end_src ** Electron-electron rescaled distances for each order ~een_rescaled_e~ stores the table of the rescaled distances between all pairs of electrons and raised to the power \(p\) defined by ~cord_num~: \[ C_{ij,p} = \left( 1 - \exp{-\kappa C_{ij}} \right)^p \] where \(C_{ij}\) is the matrix of electron-electron distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een_rescaled_e", "Array too small. Expected ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)"); } memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_ee_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_e", NULL); } ctx->jastrow.een_rescaled_e = een_rescaled_e; } qmckl_exit_code rc = qmckl_compute_een_rescaled_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_ee, ctx->electron.ee_distance, ctx->jastrow.een_rescaled_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_e_args | Variable | Type | In/Out | Description | |---------------------------+----------------------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_e_f( & context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & ee_distance, een_rescaled_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) double precision,dimension(:,:),allocatable :: een_rescaled_e_ij double precision :: x integer*8 :: i, j, k, l, nw allocate(een_rescaled_e_ij(elec_num * (elec_num - 1) / 2, cord_num + 1)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_e = 0.0d0 do nw = 1, walk_num een_rescaled_e_ij = 0.0d0 een_rescaled_e_ij(:, 1) = 1.0d0 k = 0 do j = 1, elec_num do i = 1, j - 1 k = k + 1 een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_kappa_ee * ee_distance(i, j, nw)) end do end do do l = 2, cord_num do k = 1, elec_num * (elec_num - 1)/2 een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2) end do end do ! prepare the actual een table een_rescaled_e(:, :, 0, nw) = 1.0d0 do l = 1, cord_num k = 0 do j = 1, elec_num do i = 1, j - 1 k = k + 1 x = een_rescaled_e_ij(k, l + 1) een_rescaled_e(i, j, l, nw) = x een_rescaled_e(j, i, l, nw) = x end do end do end do do l = 0, cord_num do j = 1, elec_num een_rescaled_e(j, j, l, nw) = 0.0d0 end do end do end do end function qmckl_compute_een_rescaled_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_een_rescaled_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t cord_num, const double rescale_factor_kappa_ee, const double* ee_distance, double* const een_rescaled_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_een_rescaled_e & (context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & ee_distance, een_rescaled_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_een_rescaled_e_f info = qmckl_compute_een_rescaled_e_f & (context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e) end function qmckl_compute_een_rescaled_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij[:,0] = 1.0 k = 0 for j in range(elec_num): for i in range(j): een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) k = k + 1 for l in range(2, cord_num + 1): for k in range(elec_num * (elec_num - 1)//2): een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) een_rescaled_e[:,:,0] = 1.0 for l in range(1,cord_num+1): k = 0 for j in range(elec_num): for i in range(j): x = een_rescaled_e_ij[k, l] een_rescaled_e[i, j, l] = x een_rescaled_e[j, i, l] = x k = k + 1 for l in range(0,cord_num+1): for j in range(0, elec_num): een_rescaled_e[j,j,l] = 0.0 print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2]) print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2]) print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e[0, 3, 1] = 0.1066745707571846 : een_rescaled_e[0, 4, 1] = 0.017542731694647366 : een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e[1, 5, 2] = 0.3424402276009091 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double een_rescaled_e[walk_num][(cord_num + 1)][elec_num][elec_num]; rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0]),elec_num*elec_num*(cord_num+1)*walk_num); // value of (0,2,1) assert(fabs(een_rescaled_e[0][1][0][2]-0.08084493981483197) < 1.e-12); assert(fabs(een_rescaled_e[0][1][0][3]-0.1066745707571846) < 1.e-12); assert(fabs(een_rescaled_e[0][1][0][4]-0.01754273169464735) < 1.e-12); assert(fabs(een_rescaled_e[0][2][1][3]-0.02214680362033448) < 1.e-12); assert(fabs(een_rescaled_e[0][2][1][4]-0.0005700154999202759) < 1.e-12); assert(fabs(een_rescaled_e[0][2][1][5]-0.3424402276009091) < 1.e-12); #+end_src ** Electron-electron rescaled distances for each order and derivatives ~een_rescaled_e_deriv_e~ stores the table of the derivatives of the rescaled distances between all pairs of electrons and raised to the power \(p\) defined by ~cord_num~. Here we take its derivatives required for the een jastrow. TODO: write formulae *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_e_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een_deriv_e", "Array too small. Expected ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)"); } memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_e_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_e_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_e_deriv_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_e_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_e_deriv_e", NULL); } ctx->jastrow.een_rescaled_e_deriv_e = een_rescaled_e_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_rescaled_e_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_ee, ctx->electron.coord_new.data, ctx->electron.ee_distance, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_e_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_e_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_e_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_e_deriv_e_args | Variable | Type | In/Out | Description | |---------------------------+-------------------------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f( & context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & coord_new, ee_distance, een_rescaled_e, een_rescaled_e_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) double precision , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e double precision :: x, rij_inv, kappa_l integer*8 :: i, j, k, l, nw, ii allocate(elec_dist_deriv_e(4,elec_num,elec_num)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_e_deriv_e = 0.0d0 do nw = 1, walk_num do j = 1, elec_num do i = 1, elec_num rij_inv = 1.0d0 / ee_distance(i, j, nw) do ii = 1, 3 elec_dist_deriv_e(ii, i, j) = (coord_new(i, ii, nw) - coord_new(j, ii, nw)) * rij_inv end do elec_dist_deriv_e(4, i, j) = 2.0d0 * rij_inv end do elec_dist_deriv_e(:, j, j) = 0.0d0 end do ! prepare the actual een table do l = 1, cord_num kappa_l = - dble(l) * rescale_factor_kappa_ee do j = 1, elec_num do i = 1, elec_num een_rescaled_e_deriv_e(i, 1, j, l, nw) = kappa_l * elec_dist_deriv_e(1, i, j) een_rescaled_e_deriv_e(i, 2, j, l, nw) = kappa_l * elec_dist_deriv_e(2, i, j) een_rescaled_e_deriv_e(i, 3, j, l, nw) = kappa_l * elec_dist_deriv_e(3, i, j) een_rescaled_e_deriv_e(i, 4, j, l, nw) = kappa_l * elec_dist_deriv_e(4, i, j) een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) & + een_rescaled_e_deriv_e(i, 1, j, l, nw) * een_rescaled_e_deriv_e(i, 1, j, l, nw) & + een_rescaled_e_deriv_e(i, 2, j, l, nw) * een_rescaled_e_deriv_e(i, 2, j, l, nw) & + een_rescaled_e_deriv_e(i, 3, j, l, nw) * een_rescaled_e_deriv_e(i, 3, j, l, nw) een_rescaled_e_deriv_e(i, 1, j, l, nw) = een_rescaled_e_deriv_e(i, 1, j, l, nw) * & een_rescaled_e(i, j, l, nw) een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 2, j, l, nw) * & een_rescaled_e(i, j, l, nw) een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 3, j, l, nw) * & een_rescaled_e(i, j, l, nw) een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) * & een_rescaled_e(i, j, l, nw) end do end do end do end do end function qmckl_compute_factor_een_rescaled_e_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_rescaled_e_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t cord_num, const double rescale_factor_kappa_ee, const double* coord_new, const double* ee_distance, const double* een_rescaled_e, double* const een_rescaled_e_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_rescaled_e_deriv_e & (context, & walk_num, & elec_num, & cord_num, & rescale_factor_kappa_ee, & coord_new, & ee_distance, & een_rescaled_e, & een_rescaled_e_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_e_deriv_e_f info = qmckl_compute_factor_een_rescaled_e_deriv_e_f & (context, & walk_num, & elec_num, & cord_num, & rescale_factor_kappa_ee, & coord_new, & ee_distance, & een_rescaled_e, & een_rescaled_e_deriv_e) end function qmckl_compute_factor_een_rescaled_e_deriv_e #+end_src *** Test #+name: een_e_deriv_e #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float) for j in range(elec_num): for i in range(elec_num): rij_inv = 1.0 / elec_dist[i, j] for ii in range(3): elec_dist_deriv_e[ii, i, j] = -(elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv elec_dist_deriv_e[:, j, j] = 0.0 kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij[:,0] = 1.0 k = 0 for j in range(elec_num): for i in range(j): een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) k = k + 1 for l in range(2, cord_num + 1): for k in range(elec_num * (elec_num - 1)//2): een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) een_rescaled_e[:,:,0] = 1.0 for l in range(1,cord_num+1): k = 0 for j in range(elec_num): for i in range(j): x = een_rescaled_e_ij[k, l] een_rescaled_e[i, j, l] = x een_rescaled_e[j, i, l] = x k = k + 1 een_rescaled_e_deriv_e = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float) for l in range(0,cord_num+1): kappa_l = -1.0 * kappa * l for j in range(0,elec_num): for i in range(0,elec_num): for ii in range(0,4): een_rescaled_e_deriv_e[i,ii,j,l] = kappa_l * elec_dist_deriv_e[ii,i,j] een_rescaled_e_deriv_e[i,3,j,l] = een_rescaled_e_deriv_e[i,3,j,l] + \ een_rescaled_e_deriv_e[i,0,j,l] * een_rescaled_e_deriv_e[i,0,j,l] + \ een_rescaled_e_deriv_e[i,1,j,l] * een_rescaled_e_deriv_e[i,1,j,l] + \ een_rescaled_e_deriv_e[i,2,j,l] * een_rescaled_e_deriv_e[i,2,j,l] for ii in range(0,4): een_rescaled_e_deriv_e[i,ii,j,l] = een_rescaled_e_deriv_e[i,ii,j,l] * een_rescaled_e[i,j,l] #print(" een_rescaled_e_deriv_e[1, 1, 3, 1] = ",een_rescaled_e_deriv_e[0, 0, 2, 1]) #print(" een_rescaled_e_deriv_e[1, 1, 4, 1] = ",een_rescaled_e_deriv_e[0, 0, 3, 1]) #print(" een_rescaled_e_deriv_e[1, 1, 5, 1] = ",een_rescaled_e_deriv_e[0, 0, 4, 1]) #print(" een_rescaled_e_deriv_e[2, 1, 4, 2] = ",een_rescaled_e_deriv_e[1, 0, 3, 2]) #print(" een_rescaled_e_deriv_e[2, 1, 5, 2] = ",een_rescaled_e_deriv_e[1, 0, 4, 2]) #print(" een_rescaled_e_deriv_e[2, 1, 6, 2] = ",een_rescaled_e_deriv_e[1, 0, 5, 2]) #+end_src #+RESULTS: een_e_deriv_e : een_rescaled_e_deriv_e[1, 1, 3, 1] = 0.05991352796887283 : een_rescaled_e_deriv_e[1, 1, 4, 1] = 0.011714035071545248 : een_rescaled_e_deriv_e[1, 1, 5, 1] = 0.00441398875758468 : een_rescaled_e_deriv_e[2, 1, 4, 2] = 0.013553180060167595 : een_rescaled_e_deriv_e[2, 1, 5, 2] = 0.00041342909359870457 : een_rescaled_e_deriv_e[2, 1, 6, 2] = 0.5880599146214673 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); double een_rescaled_e_deriv_e[walk_num][(cord_num + 1)][elec_num][4][elec_num]; size_max=walk_num*(cord_num + 1)*elec_num*4*elec_num; rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0]),size_max); // value of (0,0,0,2,1) assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][2] + 0.05991352796887283 ) < 1.e-12); assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][3] + 0.011714035071545248 ) < 1.e-12); assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][4] + 0.00441398875758468 ) < 1.e-12); assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][3] + 0.013553180060167595 ) < 1.e-12); assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][4] + 0.00041342909359870457) < 1.e-12); assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][5] + 0.5880599146214673 ) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order ~een_rescaled_n~ stores the table of the rescaled distances between electrons and nucleii raised to the power \(p\) defined by ~cord_num~: \[ C_{ia,p} = \left( 1 - \exp{-\kappa C_{ia}} \right)^p \] where \(C_{ia}\) is the matrix of electron-nucleus distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_n(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een_deriv_e", "Array too small. Expected ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)"); } memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_en_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_n_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_n == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_n = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_n == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_n", NULL); } ctx->jastrow.een_rescaled_n = een_rescaled_n; } qmckl_exit_code rc = qmckl_compute_een_rescaled_n(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_en, ctx->electron.en_distance, ctx->jastrow.een_rescaled_n); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_n_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_n :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_n_args | Variable | Type | In/Out | Description | |---------------------------+----------------------------------------------------+--------+-------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of atoms | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_en~ | ~double~ | in | Factor to rescale ee distances | | ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances | | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_n_f( & context, walk_num, elec_num, nucl_num, cord_num, rescale_factor_kappa_en, & en_distance, een_rescaled_n) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_en double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) double precision , intent(out) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) double precision :: x integer*8 :: i, a, k, l, nw info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_n = 0.0d0 do nw = 1, walk_num ! prepare the actual een table een_rescaled_n(:, :, 0, nw) = 1.0d0 do a = 1, nucl_num do i = 1, elec_num een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw)) end do end do do l = 2, cord_num do a = 1, nucl_num do i = 1, elec_num een_rescaled_n(i, a, l, nw) = een_rescaled_n(i, a, l - 1, nw) * een_rescaled_n(i, a, 1, nw) end do end do end do end do end function qmckl_compute_een_rescaled_n_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_een_rescaled_n ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const double rescale_factor_kappa_en, const double* en_distance, double* const een_rescaled_n ) { if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num <= 0) { return QMCKL_INVALID_ARG_2; } if (elec_num <= 0) { return QMCKL_INVALID_ARG_3; } if (nucl_num <= 0) { return QMCKL_INVALID_ARG_4; } if (cord_num <= 0) { return QMCKL_INVALID_ARG_5; } // Prepare table of exponentiated distances raised to appropriate power for (int i = 0; i < (walk_num*(cord_num+1)*nucl_num*elec_num); ++i) { een_rescaled_n[i] = 17.0; } for (int nw = 0; nw < walk_num; ++nw) { for (int a = 0; a < nucl_num; ++a) { for (int i = 0; i < elec_num; ++i) { // prepare the actual een table //een_rescaled_n(:, :, 0, nw) = 1.0d0 een_rescaled_n[i + a * elec_num + 0 + nw * elec_num*nucl_num*(cord_num+1)] = 1.0; //een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw)) een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] = exp(-rescale_factor_kappa_en * \ en_distance[i + a*elec_num + nw*elec_num*nucl_num]); } } for (int l = 2; l < (cord_num+1); ++l){ for (int a = 0; a < nucl_num; ++a) { for (int i = 0; i < elec_num; ++i) { een_rescaled_n[i + a*elec_num + l*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] = een_rescaled_n[i + a*elec_num + (l-1)*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] *\ een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)]; } } } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_een_rescaled_n ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const double rescale_factor_kappa_en, const double* en_distance, double* const een_rescaled_n ); #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_n[0, 2, 1] = 0.10612983920006765 : een_rescaled_n[0, 3, 1] = 0.135652809635553 : een_rescaled_n[0, 4, 1] = 0.023391817607642338 : een_rescaled_n[1, 3, 2] = 0.880957224822116 : een_rescaled_n[1, 4, 2] = 0.027185942659395074 : een_rescaled_n[1, 5, 2] = 0.01343938025140174 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double een_rescaled_n[walk_num][(cord_num + 1)][nucl_num][elec_num]; size_max=walk_num*(cord_num + 1)*nucl_num*elec_num; rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]),size_max); // value of (0,2,1) assert(fabs(een_rescaled_n[0][1][0][2]-0.10612983920006765) < 1.e-12); assert(fabs(een_rescaled_n[0][1][0][3]-0.135652809635553) < 1.e-12); assert(fabs(een_rescaled_n[0][1][0][4]-0.023391817607642338) < 1.e-12); assert(fabs(een_rescaled_n[0][2][1][3]-0.880957224822116) < 1.e-12); assert(fabs(een_rescaled_n[0][2][1][4]-0.027185942659395074) < 1.e-12); assert(fabs(een_rescaled_n[0][2][1][5]-0.01343938025140174) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order and derivatives ~een_rescaled_n_deriv_e~ stores the table of the rescaled distances between electrons and nucleii raised to the power \(p\) defined by ~cord_num~: *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_n_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een_deriv_e", "Array too small. Expected ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)"); } memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_en_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if ee distance is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_n_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_n_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_n_deriv_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_n_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_n_deriv_e", NULL); } ctx->jastrow.een_rescaled_n_deriv_e = een_rescaled_n_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_rescaled_n_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_en, ctx->electron.coord_new.data, ctx->nucleus.coord.data, ctx->electron.en_distance, ctx->jastrow.een_rescaled_n, ctx->jastrow.een_rescaled_n_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_n_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een_rescaled_n_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_compute_factor_een_rescaled_n_deriv_e_args | Variable | Type | In/Out | Description | |---------------------------+-------------------------------------------------------+--------+-------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of atoms | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_en~ | ~double~ | in | Factor to rescale ee distances | | ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances | | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus distances | | ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f( & context, walk_num, elec_num, nucl_num, & cord_num, rescale_factor_kappa_en, & coord_new, coord, en_distance, een_rescaled_n, een_rescaled_n_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_en double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: coord(nucl_num,3) double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) double precision , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) double precision , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) double precision,dimension(:,:,:),allocatable :: elnuc_dist_deriv_e double precision :: x, ria_inv, kappa_l integer*8 :: i, a, k, l, nw, ii allocate(elnuc_dist_deriv_e(4, elec_num, nucl_num)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_n_deriv_e = 0.0d0 do nw = 1, walk_num ! prepare the actual een table do a = 1, nucl_num do i = 1, elec_num ria_inv = 1.0d0 / en_distance(i, a, nw) do ii = 1, 3 elnuc_dist_deriv_e(ii, i, a) = (coord_new(i, ii, nw) - coord(a, ii)) * ria_inv end do elnuc_dist_deriv_e(4, i, a) = 2.0d0 * ria_inv end do end do do l = 0, cord_num kappa_l = - dble(l) * rescale_factor_kappa_en do a = 1, nucl_num do i = 1, elec_num een_rescaled_n_deriv_e(i, 1, a, l, nw) = kappa_l * elnuc_dist_deriv_e(1, i, a) een_rescaled_n_deriv_e(i, 2, a, l, nw) = kappa_l * elnuc_dist_deriv_e(2, i, a) een_rescaled_n_deriv_e(i, 3, a, l, nw) = kappa_l * elnuc_dist_deriv_e(3, i, a) een_rescaled_n_deriv_e(i, 4, a, l, nw) = kappa_l * elnuc_dist_deriv_e(4, i, a) een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) & + een_rescaled_n_deriv_e(i, 1, a, l, nw) * een_rescaled_n_deriv_e(i, 1, a, l, nw) & + een_rescaled_n_deriv_e(i, 2, a, l, nw) * een_rescaled_n_deriv_e(i, 2, a, l, nw) & + een_rescaled_n_deriv_e(i, 3, a, l, nw) * een_rescaled_n_deriv_e(i, 3, a, l, nw) een_rescaled_n_deriv_e(i, 1, a, l, nw) = een_rescaled_n_deriv_e(i, 1, a, l, nw) * & een_rescaled_n(i, a, l, nw) een_rescaled_n_deriv_e(i, 2, a, l, nw) = een_rescaled_n_deriv_e(i, 2, a, l, nw) * & een_rescaled_n(i, a, l, nw) een_rescaled_n_deriv_e(i, 3, a, l, nw) = een_rescaled_n_deriv_e(i, 3, a, l, nw) * & een_rescaled_n(i, a, l, nw) een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) * & een_rescaled_n(i, a, l, nw) end do end do end do end do end function qmckl_compute_factor_een_rescaled_n_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_rescaled_n_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const double rescale_factor_kappa_en, const double* coord_new, const double* coord, const double* en_distance, const double* een_rescaled_n, double* const een_rescaled_n_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_rescaled_n_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & coord_new, & coord, & en_distance, & een_rescaled_n, & een_rescaled_n_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: coord(nucl_num,3) real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_n_deriv_e_f info = qmckl_compute_factor_een_rescaled_n_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & coord_new, & coord, & en_distance, & een_rescaled_n, & een_rescaled_n_deriv_e) end function qmckl_compute_factor_een_rescaled_n_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): rij_inv = 1.0 / elnuc_dist[i, a] for ii in range(3): elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] een_rescaled_n_deriv_e = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float) for l in range(0,cord_num+1): kappa_l = -1.0 * kappa * l for j in range(0,elec_num): for a in range(0,nucl_num): for ii in range(0,4): een_rescaled_n_deriv_e[j,ii,a,l] = kappa_l * elnuc_dist_deriv_e[ii,j,a] een_rescaled_n_deriv_e[j,3,a,l] = een_rescaled_n_deriv_e[j,3,a,l] + \ een_rescaled_n_deriv_e[j,0,a,l] * een_rescaled_n_deriv_e[j,0,a,l] + \ een_rescaled_n_deriv_e[j,1,a,l] * een_rescaled_n_deriv_e[j,1,a,l] + \ een_rescaled_n_deriv_e[j,2,a,l] * een_rescaled_n_deriv_e[j,2,a,l] for ii in range(0,4): een_rescaled_n_deriv_e[j,ii,a,l] = een_rescaled_n_deriv_e[j,ii,a,l] * een_rescaled_n[a,j,l] print(" een_rescaled_n_deriv_e[1, 1, 3, 1] = ",een_rescaled_n_deriv_e[2, 0, 0, 1]) print(" een_rescaled_n_deriv_e[1, 1, 4, 1] = ",een_rescaled_n_deriv_e[3, 0, 0, 1]) print(" een_rescaled_n_deriv_e[1, 1, 5, 1] = ",een_rescaled_n_deriv_e[4, 0, 0, 1]) print(" een_rescaled_n_deriv_e[2, 1, 4, 2] = ",een_rescaled_n_deriv_e[3, 0, 1, 2]) print(" een_rescaled_n_deriv_e[2, 1, 5, 2] = ",een_rescaled_n_deriv_e[4, 0, 1, 2]) print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2]) #+end_src #+RESULTS: : een_rescaled_n_deriv_e[1, 1, 3, 1] = -0.07633444246999128 : een_rescaled_n_deriv_e[1, 1, 4, 1] = 0.00033282346259738276 : een_rescaled_n_deriv_e[1, 1, 5, 1] = -0.004775370547333061 : een_rescaled_n_deriv_e[2, 1, 4, 2] = 0.1362654644223866 : een_rescaled_n_deriv_e[2, 1, 5, 2] = -0.0231253431662794 : een_rescaled_n_deriv_e[2, 1, 6, 2] = 0.001593334817691633 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double een_rescaled_n_deriv_e[walk_num][(cord_num + 1)][nucl_num][4][elec_num]; size_max=walk_num*(cord_num + 1)*nucl_num*4*elec_num; rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0]),size_max); // value of (0,2,1) assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][2]+0.07633444246999128 ) < 1.e-12); assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][3]-0.00033282346259738276) < 1.e-12); assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][4]+0.004775370547333061 ) < 1.e-12); assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][3]-0.1362654644223866 ) < 1.e-12); assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][4]+0.0231253431662794 ) < 1.e-12); assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][5]-0.001593334817691633 ) < 1.e-12); #+end_src ** Prepare for electron-electron-nucleus Jastrow \(f_{een}\) Prepare ~cord_vect_full~ and ~lkpm_combined_index~ tables required for the calculation of the three-body jastrow ~factor_een~ and its derivative ~factor_een_deriv_e~. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect); qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full); qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index); qmckl_exit_code qmckl_get_jastrow_tmp_c(qmckl_context context, double* const tmp_c); qmckl_exit_code qmckl_get_jastrow_dtmp_c(qmckl_context context, double* const dtmp_c); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); *dim_cord_vect = ctx->jastrow.dim_cord_vect; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->jastrow.dim_cord_vect * ctx->nucleus.num; memcpy(cord_vect_full, ctx->jastrow.cord_vect_full, sze * sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->jastrow.dim_cord_vect * 4; memcpy(lkpm_combined_index, ctx->jastrow.lkpm_combined_index, sze * sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_tmp_c(qmckl_context context, double* const tmp_c) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_tmp_c(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1) * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(tmp_c, ctx->jastrow.tmp_c, sze * sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_dtmp_c(qmckl_context context, double* const dtmp_c) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_dtmp_c(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1) *4* ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num; memcpy(dtmp_c, ctx->jastrow.dtmp_c, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context); qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context); qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context); qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context); qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->date > ctx->jastrow.dim_cord_vect_date) { qmckl_exit_code rc = qmckl_compute_dim_cord_vect(context, ctx->jastrow.cord_num, &(ctx->jastrow.dim_cord_vect)); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.dim_cord_vect_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.cord_vect_full_date) { /* Allocate array */ if (ctx->jastrow.cord_vect_full == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->jastrow.dim_cord_vect * ctx->nucleus.num * sizeof(double); double* cord_vect_full = (double*) qmckl_malloc(context, mem_info); if (cord_vect_full == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_cord_vect_full", NULL); } ctx->jastrow.cord_vect_full = cord_vect_full; } qmckl_exit_code rc = qmckl_compute_cord_vect_full(context, ctx->nucleus.num, ctx->jastrow.dim_cord_vect, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_vect_full); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.cord_vect_full_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.lkpm_combined_index_date) { /* Allocate array */ if (ctx->jastrow.lkpm_combined_index == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(int64_t); int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info); if (lkpm_combined_index == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_lkpm_combined_index", NULL); } ctx->jastrow.lkpm_combined_index = lkpm_combined_index; } qmckl_exit_code rc = qmckl_compute_lkpm_combined_index(context, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.lkpm_combined_index); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.lkpm_combined_index_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.tmp_c_date) { /* Allocate array */ if (ctx->jastrow.tmp_c == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1) ,* ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* tmp_c = (double*) qmckl_malloc(context, mem_info); if (tmp_c == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_tmp_c", NULL); } ctx->jastrow.tmp_c = tmp_c; } /* Choose the correct compute function (depending on offload type) */ bool default_compute = true; #ifdef HAVE_OPENACC_OFFLOAD if(ctx->jastrow.offload_type == OFFLOAD_OPENACC) { qmckl_exit_code rc = qmckl_compute_tmp_c_acc_offload(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.tmp_c); default_compute = false; if (rc != QMCKL_SUCCESS) { return rc; } } #endif #ifdef HAVE_CUBLAS_OFFLOAD if(ctx->jastrow.offload_type == OFFLOAD_CUBLAS) { qmckl_exit_code rc = qmckl_compute_tmp_c_cublas_offload(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.tmp_c); default_compute = false; if (rc != QMCKL_SUCCESS) { return rc; } } #endif if(default_compute) { qmckl_exit_code rc = qmckl_compute_tmp_c(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.tmp_c); if (rc != QMCKL_SUCCESS) { return rc; } } ctx->jastrow.tmp_c_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.dtmp_c_date) { /* Allocate array */ if (ctx->jastrow.dtmp_c == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1) ,* 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double); double* dtmp_c = (double*) qmckl_malloc(context, mem_info); if (dtmp_c == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_dtmp_c", NULL); } ctx->jastrow.dtmp_c = dtmp_c; } /* Choose the correct compute function (depending on offload type) */ bool default_compute = true; #ifdef HAVE_OPENACC_OFFLOAD if(ctx->jastrow.offload_type == OFFLOAD_OPENACC) { qmckl_exit_code rc = qmckl_compute_dtmp_c_acc_offload(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e_deriv_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.dtmp_c); default_compute = false; if (rc != QMCKL_SUCCESS) { return rc; } } #endif #ifdef HAVE_CUBLAS_OFFLOAD if(ctx->jastrow.offload_type == OFFLOAD_CUBLAS) { qmckl_exit_code rc = qmckl_compute_dtmp_c_cublas_offload(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e_deriv_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.dtmp_c); default_compute = false; if (rc != QMCKL_SUCCESS) { return rc; } } #endif if(default_compute) { qmckl_exit_code rc = qmckl_compute_dtmp_c(context, ctx->jastrow.cord_num, ctx->electron.num, ctx->nucleus.num, ctx->electron.walk_num, ctx->jastrow.een_rescaled_e_deriv_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.dtmp_c); if (rc != QMCKL_SUCCESS) { return rc; } } ctx->jastrow.dtmp_c_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute dim_cord_vect :PROPERTIES: :Name: qmckl_compute_dim_cord_vect :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_dim_cord_vect_args | Variable | Type | In/Out | Description | |-----------------+-----------------+--------+-----------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | out | dimension of cord_vect_full table | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_dim_cord_vect_f( & context, cord_num, dim_cord_vect) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: cord_num integer*8 , intent(out) :: dim_cord_vect double precision :: x integer*8 :: i, a, k, l, p, lmax info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif dim_cord_vect = 0 do p = 2, cord_num do k = p - 1, 0, -1 if (k .ne. 0) then lmax = p - k else lmax = p - k - 2 endif do l = lmax, 0, -1 if (iand(p - k - l, 1_8) == 1) cycle dim_cord_vect = dim_cord_vect + 1 end do end do end do end function qmckl_compute_dim_cord_vect_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_dim_cord_vect ( const qmckl_context context, const int64_t cord_num, int64_t* const dim_cord_vect){ int lmax; if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (cord_num <= 0) { return QMCKL_INVALID_ARG_2; } *dim_cord_vect = 0; for (int p=2; p <= cord_num; ++p){ for (int k=p-1; k >= 0; --k) { if (k != 0) { lmax = p - k; } else { lmax = p - k - 2; } for (int l = lmax; l >= 0; --l) { if ( ((p - k - l) & 1)==1) continue; *dim_cord_vect=*dim_cord_vect+1; } } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_dim_cord_vect ( const qmckl_context context, const int64_t cord_num, int64_t* const dim_cord_vect ); #+end_src *** Compute cord_vect_full :PROPERTIES: :Name: qmckl_compute_cord_vect_full :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_cord_vect_full_args | Variable | Type | In/Out | Description | |--------------------+----------------------------------------+--------+------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~nucl_num~ | ~int64_t~ | in | Number of atoms | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of cord full table | | ~type_nucl_num~ | ~int64_t~ | in | dimension of cord full table | | ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | dimension of cord full table | | ~cord_vector~ | ~double[dim_cord_vect][type_nucl_num]~ | in | dimension of cord full table | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | out | Full list of coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_cord_vect_full_f( & context, nucl_num, dim_cord_vect, type_nucl_num, & type_nucl_vector, cord_vector, cord_vect_full) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(in) :: type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: cord_vector(type_nucl_num, dim_cord_vect) double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) double precision :: x integer*8 :: i, a, k, l, nw info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (type_nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (dim_cord_vect <= 0) then info = QMCKL_INVALID_ARG_5 return endif do a = 1, nucl_num cord_vect_full(a,1:dim_cord_vect) = cord_vector(type_nucl_vector(a),1:dim_cord_vect) end do end function qmckl_compute_cord_vect_full_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_cord_vect_full ( const qmckl_context context, const int64_t nucl_num, const int64_t dim_cord_vect, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const double* cord_vector, double* const cord_vect_full ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_cord_vect_full & (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) real (c_double ) , intent(in) :: cord_vector(type_nucl_num,dim_cord_vect) real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f info = qmckl_compute_cord_vect_full_f & (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) end function qmckl_compute_cord_vect_full #+end_src *** Compute lkpm_combined_index :PROPERTIES: :Name: qmckl_compute_lkpm_combined_index :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_lkpm_combined_index_args | Variable | Type | In/Out | Description | |-----------------------+-----------------------------+--------+-------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of cord full table | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | out | Full list of combined indices | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_lkpm_combined_index_f( & context, cord_num, dim_cord_vect, lkpm_combined_index) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(out) :: lkpm_combined_index(dim_cord_vect, 4) double precision :: x integer*8 :: i, a, k, l, kk, p, lmax, m info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (dim_cord_vect <= 0) then info = QMCKL_INVALID_ARG_3 return endif kk = 0 do p = 2, cord_num do k = p - 1, 0, -1 if (k .ne. 0) then lmax = p - k else lmax = p - k - 2 end if do l = lmax, 0, -1 if (iand(p - k - l, 1_8) .eq. 1) cycle m = (p - k - l)/2 kk = kk + 1 lkpm_combined_index(kk, 1) = l lkpm_combined_index(kk, 2) = k lkpm_combined_index(kk, 3) = p lkpm_combined_index(kk, 4) = m end do end do end do end function qmckl_compute_lkpm_combined_index_f #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_lkpm_combined_index ( const qmckl_context context, const int64_t cord_num, const int64_t dim_cord_vect, int64_t* const lkpm_combined_index ) { int kk, lmax, m; if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (cord_num <= 0) { return QMCKL_INVALID_ARG_2; } if (dim_cord_vect <= 0) { return QMCKL_INVALID_ARG_3; } /* */ kk = 0; for (int p = 2; p <= cord_num; ++p) { for (int k=(p-1); k >= 0; --k) { if (k != 0) { lmax = p - k; } else { lmax = p - k - 2; } for (int l=lmax; l >= 0; --l) { if (((p - k - l) & 1) == 1) continue; m = (p - k - l)/2; lkpm_combined_index[kk ] = l; lkpm_combined_index[kk + dim_cord_vect] = k; lkpm_combined_index[kk + 2*dim_cord_vect] = p; lkpm_combined_index[kk + 3*dim_cord_vect] = m; kk = kk + 1; } } } return QMCKL_SUCCESS; } #+end_src #+CALL: generate_c_header(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_lkpm_combined_index ( const qmckl_context context, const int64_t cord_num, const int64_t dim_cord_vect, int64_t* const lkpm_combined_index ); #+end_src *** Compute tmp_c :PROPERTIES: :Name: qmckl_compute_tmp_c :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_tmp_c_args | Variable | Type | In/Out | Description | |------------------+------------------------------------------------------------------+--------+-----------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron rescaled factor | | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_tmp_c_doc_f( & context, cord_num, elec_num, nucl_num, & walk_num, een_rescaled_e, een_rescaled_n, tmp_c) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num) double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision :: x integer*8 :: i, j, a, l, kk, p, lmax, nw character :: TransA, TransB double precision :: alpha, beta integer*8 :: M, N, K, LDA, LDB, LDC TransA = 'N' TransB = 'N' alpha = 1.0d0 beta = 0.0d0 info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif M = elec_num N = nucl_num*(cord_num + 1) K = elec_num LDA = size(een_rescaled_e,1) LDB = size(een_rescaled_n,1) LDC = size(tmp_c,1) do nw=1, walk_num do i=0, cord_num-1 info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha, & een_rescaled_e(1,1,i,nw),LDA*1_8, & een_rescaled_n(1,1,0,nw),LDB*1_8, & beta, & tmp_c(1,1,0,i,nw),LDC) end do end do end function qmckl_compute_tmp_c_doc_f #+end_src #+CALL: generate_c_interface(table=qmckl_factor_tmp_c_args,rettyp=get_value("FRetType"),fname="qmckl_compute_tmp_c_doc") #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_tmp_c_doc & (context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) integer(c_int32_t), external :: qmckl_compute_tmp_c_doc_f info = qmckl_compute_tmp_c_doc_f & (context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c) end function qmckl_compute_tmp_c_doc #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes qmckl_exit_code qmckl_compute_tmp_c_hpc ( const qmckl_context context, const int64_t cord_num, const int64_t elec_num, const int64_t nucl_num, const int64_t walk_num, const double* een_rescaled_e, const double* een_rescaled_n, double* const tmp_c ) { if (context == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (cord_num <= 0) { return QMCKL_INVALID_ARG_2; } if (elec_num <= 0) { return QMCKL_INVALID_ARG_3; } if (nucl_num <= 0) { return QMCKL_INVALID_ARG_4; } if (walk_num <= 0) { return QMCKL_INVALID_ARG_5; } qmckl_exit_code info = QMCKL_SUCCESS; const char TransA = 'N'; const char TransB = 'N'; const double alpha = 1.0; const double beta = 0.0; const int64_t M = elec_num; const int64_t N = nucl_num*(cord_num + 1); const int64_t K = elec_num; const int64_t LDA = elec_num; const int64_t LDB = elec_num; const int64_t LDC = elec_num; const int64_t af = elec_num*elec_num; const int64_t bf = elec_num*nucl_num*(cord_num+1); const int64_t cf = bf; for (int64_t nw=0; nw < walk_num; ++nw) { for (int64_t i=0; i> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij[:,0] = 1.0 k = 0 for j in range(elec_num): for i in range(j): een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) k = k + 1 for l in range(2, cord_num + 1): for k in range(elec_num * (elec_num - 1)//2): een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) een_rescaled_e[:,:,0] = 1.0 for l in range(1,cord_num+1): k = 0 for j in range(elec_num): for i in range(j): x = een_rescaled_e_ij[k, l] een_rescaled_e[i, j, l] = x een_rescaled_e[j, i, l] = x k = k + 1 for l in range(0,cord_num+1): for j in range(0, elec_num): een_rescaled_e[j,j,l] = 0.0 lkpm_of_cindex = np.array(lkpm_combined_index).T #+end_src #+RESULTS: helper_funcs #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double tmp_c[walk_num][cord_num][cord_num+1][nucl_num][elec_num]; rc = qmckl_get_jastrow_tmp_c(context, &(tmp_c[0][0][0][0][0])); double dtmp_c[walk_num][cord_num][cord_num+1][nucl_num][4][elec_num]; rc = qmckl_get_jastrow_dtmp_c(context, &(dtmp_c[0][0][0][0][0][0])); assert(fabs(tmp_c[0][0][1][0][0] - 2.7083473948352403) < 1e-12); assert(fabs(dtmp_c[0][1][0][0][0][0] - 0.237440520852232) < 1e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~ using the above prepared tables. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_een(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een", "Array too small. Expected walk_num"); } memcpy(factor_een, ctx->jastrow.factor_een, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_cord_vect_full(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_lkpm_combined_index(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if tmp_c is provided */ rc = qmckl_provide_tmp_c(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_een_date) { /* Allocate array */ if (ctx->jastrow.factor_een == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_een = (double*) qmckl_malloc(context, mem_info); if (factor_een == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_een", NULL); } ctx->jastrow.factor_een = factor_een; } qmckl_exit_code rc = qmckl_compute_factor_een(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.cord_vect_full, ctx->jastrow.lkpm_combined_index, ctx->jastrow.tmp_c, ctx->jastrow.een_rescaled_n, ctx->jastrow.factor_een); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_een_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute naive :PROPERTIES: :Name: qmckl_compute_factor_een_naive :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_naive_args | Variable | Type | In/Out | Description | |-----------------------+----------------------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~cord_num~ | ~int64_t~ | in | order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled | | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | | ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_naive_f( & context, walk_num, elec_num, nucl_num, cord_num,& dim_cord_vect, cord_vect_full, lkpm_combined_index, & een_rescaled_e, een_rescaled_n, factor_een) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num) double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) double precision , intent(out) :: factor_een(walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw double precision :: accu, accu2, cn info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(n, 1) k = lkpm_combined_index(n, 2) p = lkpm_combined_index(n, 3) m = lkpm_combined_index(n, 4) do a = 1, nucl_num accu2 = 0.0d0 cn = cord_vect_full(a, n) do j = 1, elec_num accu = 0.0d0 do i = 1, elec_num accu = accu + een_rescaled_e(k,i,j,nw) * & een_rescaled_n(m,a,i,nw) !if(nw .eq. 1) then ! print *,l,k,p,m,j,i,een_rescaled_e(k,i,j,nw), een_rescaled_n(m,a,i,nw), accu !endif end do accu2 = accu2 + accu * een_rescaled_n(m + l,a,j,nw) !print *, l,m,nw,accu, accu2, een_rescaled_n(m + l, a, j, nw), cn, factor_een(nw) end do factor_een(nw) = factor_een(nw) + accu2 * cn end do end do end do end function qmckl_compute_factor_een_naive_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_naive ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* een_rescaled_e, const double* een_rescaled_n, double* const factor_een ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_naive & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: factor_een(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_naive_f info = qmckl_compute_factor_een_naive_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) end function qmckl_compute_factor_een_naive #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_args | Variable | Type | In/Out | Description | |-----------------------+------------------------------------------------------------------+---------------------------------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~cord_num~ | ~int64_t~ | in | order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | vector of non-zero coefficients | | | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_f( & context, walk_num, elec_num, nucl_num, cord_num, & dim_cord_vect, cord_vect_full, lkpm_combined_index, & tmp_c, een_rescaled_n, factor_een) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: factor_een(walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw double precision :: accu, accu2, cn info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(n, 1) k = lkpm_combined_index(n, 2) p = lkpm_combined_index(n, 3) m = lkpm_combined_index(n, 4) do a = 1, nucl_num cn = cord_vect_full(a, n) if(cn == 0.d0) cycle accu = 0.0d0 do j = 1, elec_num accu = accu + een_rescaled_n(j,a,m,nw) * tmp_c(j,a,m+l,k,nw) end do factor_een(nw) = factor_een(nw) + accu * cn end do end do end do end function qmckl_compute_factor_een_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* een_rescaled_e, const double* een_rescaled_n, double* const factor_een ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: factor_een(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_f info = qmckl_compute_factor_een_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) end function qmckl_compute_factor_een #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> kappa = 1.0 factor_een = 0.0 for n in range(0, dim_cord_vect): l = lkpm_of_cindex[0,n] k = lkpm_of_cindex[1,n] p = lkpm_of_cindex[2,n] m = lkpm_of_cindex[3,n] for a in range(0, nucl_num): accu2 = 0.0 cn = cord_vector_full[a][n] for j in range(0, elec_num): accu = 0.0 for i in range(0, elec_num): accu = accu + een_rescaled_e[i,j,k] * \ een_rescaled_n[a,i,m] accu2 = accu2 + accu * een_rescaled_n[a,j,m+l] factor_een = factor_een + accu2 * cn print("factor_een:",factor_een) #+end_src #+RESULTS: : factor_een: -0.37407972141304213 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double factor_een[walk_num]; rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]),walk_num); assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) derivative Calculate the electron-electron-nuclear three-body jastrow component ~factor_een_deriv_e~ using the above prepared tables. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e, const int64_t size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e, const int64_t size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_een_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; if (size_max < sze) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_jastrow_factor_een_deriv_e", "Array too small. Expected 4*walk_num*elec_num"); } memcpy(factor_een_deriv_e, ctx->jastrow.factor_een_deriv_e, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_cord_vect_full(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_lkpm_combined_index(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if tmp_c is provided */ rc = qmckl_provide_tmp_c(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if dtmp_c is provided */ rc = qmckl_provide_dtmp_c(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_een_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_een_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* factor_een_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_een_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_een_deriv_e", NULL); } ctx->jastrow.factor_een_deriv_e = factor_een_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.cord_vect_full, ctx->jastrow.lkpm_combined_index, ctx->jastrow.tmp_c, ctx->jastrow.dtmp_c, ctx->jastrow.een_rescaled_n, ctx->jastrow.een_rescaled_n_deriv_e, ctx->jastrow.factor_een_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_een_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute Naive :PROPERTIES: :Name: qmckl_compute_factor_een_deriv_e_naive :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_deriv_e_naive_args | Variable | Type | In/Out | Description | |--------------------------+-------------------------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~cord_num~ | ~int64_t~ | in | order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled | | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | | ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled | | ~een_rescaled_n_deriv_e~ | ~double[walk_num][elec_num][4][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | | ~factor_een_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_deriv_e_naive_f( & context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, & cord_vect_full, lkpm_combined_index, een_rescaled_e, een_rescaled_n, & een_rescaled_e_deriv_e, een_rescaled_n_deriv_e, factor_een_deriv_e)& result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect, 4) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num) double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num) double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num) double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw double precision :: accu, accu2, cn double precision :: daccu(1:4), daccu2(1:4) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een_deriv_e = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(n, 1) k = lkpm_combined_index(n, 2) p = lkpm_combined_index(n, 3) m = lkpm_combined_index(n, 4) do a = 1, nucl_num cn = cord_vect_full(a, n) do j = 1, elec_num accu = 0.0d0 accu2 = 0.0d0 daccu = 0.0d0 daccu2 = 0.0d0 do i = 1, elec_num accu = accu + een_rescaled_e(k, i, j, nw) * & een_rescaled_n(m, a, i, nw) accu2 = accu2 + een_rescaled_e(k, i, j, nw) * & een_rescaled_n(m + l, a, i, nw) daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * & een_rescaled_n(m, a, i, nw) daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * & een_rescaled_n(m + l, a, i, nw) end do factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + & (accu * een_rescaled_n_deriv_e(m + l, a, 1:4, j, nw) & + daccu(1:4) * een_rescaled_n(m + l, a, j, nw) & + daccu2(1:4) * een_rescaled_n(m, a, j, nw) & + accu2 * een_rescaled_n_deriv_e(m, a, 1:4, j, nw)) * cn factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( & daccu (1) * een_rescaled_n_deriv_e(m + l, a, 1, j, nw) + & daccu (2) * een_rescaled_n_deriv_e(m + l, a, 2, j, nw) + & daccu (3) * een_rescaled_n_deriv_e(m + l, a, 3, j, nw) + & daccu2(1) * een_rescaled_n_deriv_e(m, a, 1, j, nw ) + & daccu2(2) * een_rescaled_n_deriv_e(m, a, 2, j, nw ) + & daccu2(3) * een_rescaled_n_deriv_e(m, a, 3, j, nw ) ) * cn end do end do end do end do end function qmckl_compute_factor_een_deriv_e_naive_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_deriv_e_naive ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* een_rescaled_e, const double* een_rescaled_n, const double* een_rescaled_e_deriv_e, const double* een_rescaled_n_deriv_e, double* const factor_een_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_deriv_e_naive & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & een_rescaled_e_deriv_e, & een_rescaled_n_deriv_e, & factor_een_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_naive_f info = qmckl_compute_factor_een_deriv_e_naive_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & een_rescaled_e_deriv_e, & een_rescaled_n_deriv_e, & factor_een_deriv_e) end function qmckl_compute_factor_een_deriv_e_naive #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_deriv_e_args | Variable | Type | In/Out | Description | |--------------------------+---------------------------------------------------------------------+--------+------------------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~cord_num~ | ~int64_t~ | in | order of polynomials | | ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector | | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | in | Temporary intermediate tensor | | ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num]~ | in | vector of non-zero coefficients | | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | in | Derivative of Electron-nucleus rescaled factor | | ~factor_een_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Derivative of Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_deriv_e_f( & context, walk_num, elec_num, nucl_num, & cord_num, dim_cord_vect, cord_vect_full, lkpm_combined_index, & tmp_c, dtmp_c, een_rescaled_n, een_rescaled_n_deriv_e, factor_een_deriv_e)& result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision , intent(in) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(in) :: een_rescaled_n_deriv_e(elec_num, 4, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw, ii double precision :: accu, accu2, cn info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een_deriv_e = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(n, 1) k = lkpm_combined_index(n, 2) p = lkpm_combined_index(n, 3) m = lkpm_combined_index(n, 4) do a = 1, nucl_num cn = cord_vect_full(a, n) if(cn == 0.d0) cycle do ii = 1, 4 do j = 1, elec_num factor_een_deriv_e(j,ii,nw) = factor_een_deriv_e(j,ii,nw) + (& tmp_c(j,a,m,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m+l,nw) + & (dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(j,a,m+l,nw) + & (dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(j,a,m ,nw) + & tmp_c(j,a,m+l,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m,nw) & ) * cn end do end do cn = cn + cn do j = 1, elec_num factor_een_deriv_e(j,4,nw) = factor_een_deriv_e(j,4,nw) + (& (dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m+l,nw) + & (dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m+l,nw) + & (dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m+l,nw) + & (dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m ,nw) + & (dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m ,nw) + & (dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m ,nw) & ) * cn end do end do end do end do end function qmckl_compute_factor_een_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* tmp_c, const double* dtmp_c, const double* een_rescaled_n, const double* een_rescaled_n_deriv_e, double* const factor_een_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & tmp_c, & dtmp_c, & een_rescaled_n, & een_rescaled_n_deriv_e, & factor_een_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) real (c_double ) , intent(in) :: dtmp_c(elec_num,4,nucl_num,0:cord_num,0:cord_num-1,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_f info = qmckl_compute_factor_een_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & tmp_c, & dtmp_c, & een_rescaled_n, & een_rescaled_n_deriv_e, & factor_een_deriv_e) end function qmckl_compute_factor_een_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> <> kappa = 1.0 factor_een = 0.0 daccu = np.zeros(4, dtype=float) daccu2 = np.zeros(4, dtype=float) een_rescaled_e_deriv_e_t = een_rescaled_e_deriv_e.T print(een_rescaled_e_deriv_e_t.shape) for n in range(0, dim_cord_vect): l = lkpm_of_cindex[0,n] k = lkpm_of_cindex[1,n] p = lkpm_of_cindex[2,n] m = lkpm_of_cindex[3,n] for a in range(0, nucl_num): cn = cord_vector_full[a][n] for j in range(0, elec_num): accu = 0.0 accu2 = 0.0 daccu = 0.0 daccu2 = 0.0 for i in range(0, elec_num): accu = accu + een_rescaled_e[i,j,k] * \ een_rescaled_n[a,i,m] accu2 = accu2 + een_rescaled_e[i,j,k] * \ een_rescaled_n[a,i,m+l] # daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \ # een_rescaled_n[a,i,m] # daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \ # een_rescaled_n[a,i,m] accu2 = accu2 + accu * een_rescaled_n[a,j,m+l] # factor_een = factor_een + accu2 * cn print("factor_een:",factor_een) #+end_src #+RESULTS: : (6, 10, 4, 10) : factor_een: 0.0 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double factor_een_deriv_e[4][walk_num][elec_num]; rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0][0]),4*walk_num*elec_num); assert(fabs(factor_een_deriv_e[0][0][0] + 0.0005481671107226865) < 1e-12); #+end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src #+begin_src c :tangle (eval h_private_func) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) rc = qmckl_context_destroy(context); assert (rc == QMCKL_SUCCESS); return 0; } #+end_src # -*- mode: org -*- # vim: syntax=c