#+TITLE: Jastrow Factor #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org Functions for the calculation of the Jastrow factor \(f_{ee}, f_{en}, f_{een}\). These are stored in the ~factor_ee~, ~factor_en~, and ~factor_een~ variables. The ~jastrow~ structure contains all the information required to build these factors along with their derivatives. * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_JASTROW_HPT #define QMCKL_JASTROW_HPT #include #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "n2.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_jastrow_private_func.h" #include "qmckl_jastrow_private_type.h" #+end_src * Context :PROPERTIES: :Name: qmckl_jastrow :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: The following data stored in the context: #+NAME: qmckl_jastrow_args |------------+--------------------------------------------+-----+-------------------------------------------------------------------| | ~int32_t~ | ~uninitialized~ | in | Keeps bit set for uninitialized data | | ~int64_t~ | ~aord_num~ | in | The number of a coeffecients | | ~int64_t~ | ~bord_num~ | in | The number of b coeffecients | | ~int64_t~ | ~cord_num~ | in | The number of c coeffecients | | ~int64_t~ | ~type_nucl_num~ | in | Number of Nucleii types | | ~int64_t~ | ~type_nucl_vector[nucl_num]~ | in | IDs of types of Nucleii | | ~double~ | ~aord_vector[aord_num + 1][type_nucl_num]~ | in | Order of a polynomial coefficients | | ~double~ | ~bord_vector[bord_num + 1]~ | in | Order of b polynomial coefficients | | ~double~ | ~cord_vector[cord_num][type_nucl_num]~ | in | Order of c polynomial coefficients | | ~double~ | ~factor_ee[walk_num]~ | out | Jastrow factor: electron-electron part | | ~uint64_t~ | ~factor_ee_date~ | out | Jastrow factor: electron-electron part | | ~double~ | ~factor_en[walk_num]~ | out | Jastrow factor: electron-nucleus part | | ~uint64_t~ | ~factor_en_date~ | out | Jastrow factor: electron-nucleus part | | ~double~ | ~factor_een[walk_num]~ | out | Jastrow factor: electron-electron-nucleus part | | ~uint64_t~ | ~factor_een_date~ | out | Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_ee_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~uint64_t~ | ~factor_ee_deriv_e_date~ | out | Keep track of the date for the derivative | | ~double~ | ~factor_en_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~uint64_t~ | ~factor_en_deriv_e_date~ | out | Keep track of the date for the en derivative | | ~double~ | ~factor_een_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~uint64_t~ | ~factor_een_deriv_e_date~ | out | Keep track of the date for the een derivative | computed data: |------------+-----------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------| | ~int64_t~ | ~dim_cord_vect~ | Number of unique C coefficients | | ~uint64_t~ | ~dim_cord_vect_date~ | Number of unique C coefficients | | ~double~ | ~asymp_jasb[2]~ | Asymptotic component | | ~uint64_t~ | ~asymp_jasb_date~ | Asymptotic component | | ~double~ | ~cord_vect_full[dim_cord_vect][nucl_num]~ | vector of non-zero coefficients | | ~uint64_t~ | ~cord_vect_full_date~ | Keep track of changes here | | ~int64_t~ | ~lkpm_combined_index[4][dim_cord_vect]~ | Transform l,k,p, and m into consecutive indices | | ~uint64_t~ | ~lkpm_combined_index_date~ | Transform l,k,p, and m into consecutive indices | | ~double~ | ~tmp_c[elec_num][nucl_num][ncord + 1][ncord][walk_num]~ | vector of non-zero coefficients | | ~double~ | ~dtmp_c[elec_num][4][nucl_num][ncord + 1][ncord][walk_num]~ | vector of non-zero coefficients | | ~double~ | ~een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num]~ | The electron-electron rescaled distances raised to the powers defined by cord | | ~uint64_t~ | ~een_rescaled_e_date~ | Keep track of the date of creation | | ~double~ | ~een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num]~ | The electron-electron rescaled distances raised to the powers defined by cord | | ~uint64_t~ | ~een_rescaled_n_date~ | Keep track of the date of creation | | ~double~ | ~een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons | | ~uint64_t~ | ~een_rescaled_e_deriv_e_date~ | Keep track of the date of creation | | ~double~ | ~een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons | | ~uint64_t~ | ~een_rescaled_n_deriv_e_date~ | Keep track of the date of creation | For H2O we have the following data: #+NAME: jastrow_data #+BEGIN_SRC python :results output import numpy as np elec_num = 10 nucl_num = 2 up_num = 5 down_num = 5 nucl_coord = np.array([ [0.000000, 0.000000 ], [0.000000, 0.000000 ], [0.000000, 2.059801 ] ]) elec_coord = [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303], [-0.587812193472177 , -0.128751981129274 , 0.187773606533075], [ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ], [-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ], [ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ], [-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002], [-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867], [ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002], [-0.108090166832043 , 0.189161729653261 , 2.15398313919894], [ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]]; ee_distance_rescaled = [ [ 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.550227800352402 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.919155060185168 ,0.937695909123175 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.893325429242815 ,0.851181978173561 ,0.978501685226877 , 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.982457268305353 ,0.976125002619471 ,0.994349933143149 , 0.844077311588328 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.482407528408731 ,0.414816073699124 ,0.894716035479343 , 0.876540187084407 ,0.978921170036895 ,0.000000000000000E+000, 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.459541909660400 ,0.545007215761510 ,0.883752955884551 , 0.918958134888791 ,0.986386936267237 ,0.362209822236419 , 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.763732576854455 ,0.817282762358449 ,0.801802919535959 , 0.900089095449775 ,0.975704636491453 ,0.707836537586060 , 0.755705808346586 ,0.000000000000000E+000 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.904249454052971 ,0.871097965261373 ,0.982717262706270 , 0.239901207363622 ,0.836519456769083 ,0.896135326270534 , 0.930694340243023 ,0.917708540815567 ,0.000000000000000E+000, 0.000000000000000E+000], [ 0.944400908070716 ,0.922589018494961 ,0.984615718580670 , 0.514328661540623 ,0.692362267147064 ,0.931894098453677 , 0.956034127544344 ,0.931221472309472 ,0.540903688625053 , 0.000000000000000E+000]] en_distance_rescaled = np.transpose(np.array([ [ 0.443570948411811 , 0.467602196999105 , 0.893870160799932 , 0.864347190364447 , 0.976608182392358 , 0.187563183468210 , 0.426404699872689 , 0.665107090128166 , 0.885246991424583 , 0.924902909715270 ], [ 0.899360150637444 , 0.860035135365386 , 0.979659405613798 , 6.140678415933776E-002, 0.835118398056681 , 0.884071658981068 , 0.923860000907362 , 0.905203414522289 , 0.211286300932359 , 0.492104840907350 ]])) # symmetrize it for i in range(elec_num): for j in range(elec_num): ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i] type_nucl_num = 1 aord_num = 5 bord_num = 5 cord_num = 23 dim_cord_vect= 23 type_nucl_vector = [ 1, 1] aord_vector = [ [0.000000000000000E+000], [0.000000000000000E+000], [-0.380512000000000E+000], [-0.157996000000000E+000], [-3.155800000000000E-002], [2.151200000000000E-002]] bord_vector = [ 0.500000000000000E-000, 0.153660000000000E-000, 6.722620000000000E-002, 2.157000000000000E-002, 7.309600000000000E-003, 2.866000000000000E-003] cord_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ] cord_vector_full = [ [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ], [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000, 8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003, -5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002, 1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004, -4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003, 2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003, -4.010475000000000E-002, 6.106710000000000E-003 ], ] lkpm_combined_index = [[1 , 1 , 2 , 0], [0 , 0 , 2 , 1], [1 , 2 , 3 , 0], [2 , 1 , 3 , 0], [0 , 1 , 3 , 1], [1 , 0 , 3 , 1], [1 , 3 , 4 , 0], [2 , 2 , 4 , 0], [0 , 2 , 4 , 1], [3 , 1 , 4 , 0], [1 , 1 , 4 , 1], [2 , 0 , 4 , 1], [0 , 0 , 4 , 2], [1 , 4 , 5 , 0], [2 , 3 , 5 , 0], [0 , 3 , 5 , 1], [3 , 2 , 5 , 0], [1 , 2 , 5 , 1], [4 , 1 , 5 , 0], [2 , 1 , 5 , 1], [0 , 1 , 5 , 2], [3 , 0 , 5 , 1], [1 , 0 , 5 , 2]] kappa = 1.0 kappa_inv = 1.0/kappa #+END_SRC #+RESULTS: jastrow_data ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_jastrow_struct{ int32_t uninitialized; int64_t aord_num; int64_t bord_num; int64_t cord_num; int64_t type_nucl_num; uint64_t asymp_jasb_date; uint64_t tmp_c_date; uint64_t dtmp_c_date; uint64_t factor_ee_date; uint64_t factor_en_date; uint64_t factor_een_date; uint64_t factor_ee_deriv_e_date; uint64_t factor_en_deriv_e_date; uint64_t factor_een_deriv_e_date; int64_t* type_nucl_vector; double * aord_vector; double * bord_vector; double * cord_vector; double * asymp_jasb; double * factor_ee; double * factor_en; double * factor_een; double * factor_ee_deriv_e; double * factor_en_deriv_e; double * factor_een_deriv_e; int64_t dim_cord_vect; uint64_t dim_cord_vect_date; double * cord_vect_full; uint64_t cord_vect_full_date; int64_t* lkpm_combined_index; uint64_t lkpm_combined_index_date; double * tmp_c; double * dtmp_c; double * een_rescaled_e; double * een_rescaled_n; uint64_t een_rescaled_e_date; uint64_t een_rescaled_n_date; double * een_rescaled_e_deriv_e; double * een_rescaled_n_deriv_e; uint64_t een_rescaled_e_deriv_e_date; uint64_t een_rescaled_n_deriv_e_date; bool provided; char * type; } qmckl_jastrow_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_init_jastrow(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_jastrow(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); ctx->jastrow.uninitialized = (1 << 6) - 1; /* Default values */ return QMCKL_SUCCESS; } #+end_src ** Access functions #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_jastrow_aord_num (qmckl_context context, int64_t* const aord_num); qmckl_exit_code qmckl_get_jastrow_bord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_cord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_type_nucl_num (qmckl_context context, int64_t* const type_nucl_num); qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num); qmckl_exit_code qmckl_get_jastrow_aord_vector (qmckl_context context, double * const aord_vector); qmckl_exit_code qmckl_get_jastrow_bord_vector (qmckl_context context, double * const bord_vector); qmckl_exit_code qmckl_get_jastrow_cord_vector (qmckl_context context, double * const cord_vector); #+end_src Along with these core functions, calculation of the jastrow factor requires the following additional information to be set: When all the data for the AOs have been provided, the following function returns ~true~. #+begin_src c :comments org :tangle (eval h_func) bool qmckl_jastrow_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_jastrow_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); return ctx->jastrow.provided; } #+end_src #+NAME:post #+begin_src c :exports none if ( (ctx->jastrow.uninitialized & mask) != 0) { return NULL; } #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_aord_num (const qmckl_context context, int64_t* const aord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (aord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_aord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.aord_num > 0); *aord_num = ctx->jastrow.aord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_bord_num (const qmckl_context context, int64_t* const bord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (bord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_bord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.bord_num > 0); *bord_num = ctx->jastrow.bord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_num (const qmckl_context context, int64_t* const cord_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (cord_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_cord_num", "aord_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.cord_num > 0); *cord_num = ctx->jastrow.cord_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_type_nucl_num (const qmckl_context context, int64_t* const type_nucl_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (type_nucl_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_type_nucl_num", "type_nucl_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 1; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.type_nucl_num > 0); *type_nucl_num = ctx->jastrow.type_nucl_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (const qmckl_context context, int64_t * const type_nucl_vector) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (type_nucl_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_type_nucl_vector", "type_nucl_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 2; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.type_nucl_vector != NULL); memcpy(type_nucl_vector, ctx->jastrow.type_nucl_vector, ctx->jastrow.type_nucl_num*sizeof(int64_t)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_aord_vector (const qmckl_context context, double * const aord_vector) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (aord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_aord_vector", "aord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 3; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.aord_vector != NULL); memcpy(aord_vector, ctx->jastrow.aord_vector, ctx->jastrow.aord_num*sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_bord_vector (const qmckl_context context, double * const bord_vector) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (bord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_bord_vector", "bord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 4; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.bord_vector != NULL); memcpy(bord_vector, ctx->jastrow.bord_vector, ctx->jastrow.bord_num*sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, double * const cord_vector) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; } if (cord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_jastrow_cord_vector", "cord_vector is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int32_t mask = 1 << 5; if ( (ctx->jastrow.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->jastrow.cord_vector != NULL); memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_num*sizeof(double)); return QMCKL_SUCCESS; } #+end_src ** Initialization functions To prepare for the Jastrow and its derivative, all the following functions need to be called. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_jastrow_ord_num (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_num (qmckl_context context, const int64_t type_nucl_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t nucl_num); qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector); qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector); qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector); qmckl_exit_code qmckl_set_jastrow_dependencies (qmckl_context context); #+end_src #+NAME:pre2 #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; #+end_src #+NAME:post2 #+begin_src c :exports none ctx->jastrow.uninitialized &= ~mask; ctx->jastrow.provided = (ctx->jastrow.uninitialized == 0); if (ctx->jastrow.provided) { //qmckl_exit_code rc_ = qmckl_set_jastrow_dependencies(context); //if (rc_ != QMCKL_SUCCESS) return rc_; } return QMCKL_SUCCESS; #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_jastrow_ord_num(qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num) { <> if (aord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "aord_num <= 0"); } if (bord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "bord_num <= 0"); } if (cord_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_ord_num", "cord_num <= 0"); } int32_t mask = 1 << 0; ctx->jastrow.aord_num = aord_num; ctx->jastrow.bord_num = bord_num; ctx->jastrow.cord_num = cord_num; <> } qmckl_exit_code qmckl_set_jastrow_type_nucl_num(qmckl_context context, const int64_t type_nucl_num) { <> if (type_nucl_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_type_nucl_num", "type_nucl_num < 0"); } int32_t mask = 1 << 1; ctx->jastrow.type_nucl_num = type_nucl_num; <> } qmckl_exit_code qmckl_set_jastrow_type_nucl_vector(qmckl_context context, int64_t const * type_nucl_vector, const int64_t nucl_num) { <> int32_t mask = 1 << 2; int64_t type_nucl_num; qmckl_exit_code rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (type_nucl_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_type_nucl_vector", "type_nucl_num is not set"); } if (type_nucl_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_type_nucl_vector", "type_nucl_vector = NULL"); } if (ctx->jastrow.type_nucl_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.type_nucl_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_type_nucl_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = nucl_num * sizeof(int64_t); int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_type_nucl_vector", NULL); } memcpy(new_array, type_nucl_vector, mem_info.size); ctx->jastrow.type_nucl_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double const * aord_vector) { <> int32_t mask = 1 << 3; int64_t aord_num; qmckl_exit_code rc = qmckl_get_jastrow_aord_num(context, &aord_num); if (rc != QMCKL_SUCCESS) return rc; int64_t type_nucl_num; rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (aord_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "aord_num is not set"); } if (aord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_aord_vector", "aord_vector = NULL"); } if (ctx->jastrow.aord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.aord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (aord_num + 1) * type_nucl_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, aord_vector, mem_info.size); ctx->jastrow.aord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double const * bord_vector) { <> int32_t mask = 1 << 4; int64_t bord_num; qmckl_exit_code rc = qmckl_get_jastrow_bord_num(context, &bord_num); if (rc != QMCKL_SUCCESS) return rc; if (bord_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "bord_num is not set"); } if (bord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_bord_vector", "bord_vector = NULL"); } if (ctx->jastrow.bord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.bord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (bord_num + 1) * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, bord_vector, mem_info.size); ctx->jastrow.bord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double const * cord_vector) { <> int32_t mask = 1 << 5; int64_t cord_num; qmckl_exit_code rc = qmckl_get_jastrow_cord_num(context, &cord_num); if (rc != QMCKL_SUCCESS) return rc; int64_t type_nucl_num; rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; if (cord_num == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", "cord_num is not set"); } if (cord_vector == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_jastrow_cord_vector", "cord_vector = NULL"); } if (ctx->jastrow.cord_vector != NULL) { qmckl_exit_code rc = qmckl_free(context, ctx->jastrow.cord_vector); if (rc != QMCKL_SUCCESS) { return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); } } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = cord_num * type_nucl_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_set_jastrow_coefficient", NULL); } memcpy(new_array, cord_vector, mem_info.size); ctx->jastrow.cord_vector = new_array; <> } qmckl_exit_code qmckl_set_jastrow_dependencies(qmckl_context context) { <> /* Check for electron data */ if (!(ctx->electron.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_ee_distance", NULL); } /* Check for nucleus data */ if (!(ctx->nucleus.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_en_distance", NULL); } int32_t mask = 1 << 6; <> } #+end_src When the required information is completely entered, other data structures are computed to accelerate the calculations. The intermediates factors are precontracted using BLAS LEVEL 3 operations for an optimal FLOP count. #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* ----------------------------------- */ /* Check for the necessary information */ /* ----------------------------------- */ /* Check for the electron data 1. elec_num 2. ee_distances_rescaled */ if (!(ctx->electron.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_electron", NULL); } /* Check for the nucleus data 1. nucl_num 2. en_distances_rescaled */ if (!(ctx->nucleus.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_nucleus", NULL); } qmckl_exit_code rc = QMCKL_FAILURE; /* ----------------------------------- */ /* Start calculation of data */ /* ----------------------------------- */ } #+end_src ** Test #+begin_src c :tangle (eval c_test) /* Reference input data */ int64_t walk_num = n2_walk_num; int64_t elec_num = n2_elec_num; int64_t elec_up_num = n2_elec_up_num; int64_t elec_dn_num = n2_elec_dn_num; double rescale_factor_kappa_ee = 1.0; double rescale_factor_kappa_en = 1.0; double nucl_rescale_factor_kappa = 1.0; double* elec_coord = &(n2_elec_coord[0][0][0]); const double* nucl_charge = n2_charge; int64_t nucl_num = n2_nucl_num; double* charge = n2_charge; double* nucl_coord = &(n2_nucl_coord[0][0]); /* Provide Electron data */ qmckl_exit_code rc; assert(!qmckl_electron_provided(context)); int64_t n; rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_electron_provided(context)); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_up_num); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_dn_num); rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == elec_num); double k_ee = 0.; double k_en = 0.; rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == 1.0); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == 1.0); rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee); assert(rc == QMCKL_SUCCESS); assert(k_ee == rescale_factor_kappa_ee); rc = qmckl_get_electron_rescale_factor_en (context, &k_en); assert(rc == QMCKL_SUCCESS); assert(k_en == rescale_factor_kappa_en); int64_t w; rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_walk_num (context, walk_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_electron_walk_num (context, &w); assert(rc == QMCKL_SUCCESS); assert(w == walk_num); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', elec_coord); assert(rc == QMCKL_SUCCESS); double elec_coord2[walk_num*3*elec_num]; rc = qmckl_get_electron_coord (context, 'N', elec_coord2); assert(rc == QMCKL_SUCCESS); for (int64_t i=0 ; i<3*elec_num ; ++i) { assert( elec_coord[i] == elec_coord2[i] ); } /* Provide Nucleus data */ assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_nucleus_num (context, nucl_num); assert(rc == QMCKL_SUCCESS); assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_num (context, &n); assert(rc == QMCKL_SUCCESS); assert(n == nucl_num); double k; rc = qmckl_get_nucleus_rescale_factor (context, &k); assert(rc == QMCKL_SUCCESS); assert(k == 1.0); rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa); assert(rc == QMCKL_SUCCESS); rc = qmckl_get_nucleus_rescale_factor (context, &k); assert(rc == QMCKL_SUCCESS); assert(k == nucl_rescale_factor_kappa); double nucl_coord2[3*nucl_num]; rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0])); assert(rc == QMCKL_SUCCESS); assert(!qmckl_nucleus_provided(context)); rc = qmckl_get_nucleus_coord (context, 'N', nucl_coord2); assert(rc == QMCKL_SUCCESS); for (int64_t k=0 ; k<3 ; ++k) { for (int64_t i=0 ; ijastrow.asymp_jasb, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee kappa is provided */ double rescale_factor_kappa_ee; rc = qmckl_get_electron_rescale_factor_ee(context, &rescale_factor_kappa_ee); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.asymp_jasb_date) { /* Allocate array */ if (ctx->jastrow.asymp_jasb == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 2 * sizeof(double); double* asymp_jasb = (double*) qmckl_malloc(context, mem_info); if (asymp_jasb == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_asymp_jasb", NULL); } ctx->jastrow.asymp_jasb = asymp_jasb; } qmckl_exit_code rc = qmckl_compute_asymp_jasb(context, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, rescale_factor_kappa_ee, ctx->jastrow.asymp_jasb); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.asymp_jasb_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_asymp_jasb :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_asymp_jasb_args | qmckl_context | context | in | Global state | | int64_t | bord_num | in | Number of electrons | | double | bord_vector[bord_num + 1] | in | Number of walkers | | double | rescale_factor_kappa_ee | in | Electron coordinates | | double | asymp_jasb[2] | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_asymp_jasb_f(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: bord_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(out) :: asymp_jasb(2) integer*8 :: i, p double precision :: kappa_inv, x, asym_one kappa_inv = 1.0d0 / rescale_factor_kappa_ee info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif asym_one = bord_vector(1) * kappa_inv / (1.0d0 + bord_vector(2) * kappa_inv) asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/) do i = 1, 2 x = kappa_inv do p = 2, bord_num x = x * kappa_inv asymp_jasb(i) = asymp_jasb(i) + bord_vector(p + 1) * x end do end do end function qmckl_compute_asymp_jasb_f #+end_src #+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_private_func) :comments org qmckl_exit_code qmckl_compute_asymp_jasb ( const qmckl_context context, const int64_t bord_num, const double* bord_vector, const double rescale_factor_kappa_ee, double* const asymp_jasb ); #+end_src #+CALL: generate_c_interface(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_asymp_jasb & (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: bord_num real (c_double ) , intent(in) :: bord_vector(bord_num + 1) real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(out) :: asymp_jasb(2) integer(c_int32_t), external :: qmckl_compute_asymp_jasb_f info = qmckl_compute_asymp_jasb_f & (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) end function qmckl_compute_asymp_jasb #+end_src *** Test #+name: asymp_jasb #+begin_src python :results output :exports none :noweb yes import numpy as np <> asym_one = bord_vector[0] * kappa_inv / (1.0 + bord_vector[1]*kappa_inv) asymp_jasb = np.array([asym_one, 0.5 * asym_one]) for i in range(2): x = kappa_inv for p in range(1,bord_num): x = x * kappa_inv asymp_jasb[i] += bord_vector[p + 1] * x print("asym_one : ", asym_one) print("asymp_jasb[0] : ", asymp_jasb[0]) print("asymp_jasb[1] : ", asymp_jasb[1]) #+end_src #+RESULTS: asymp_jasb : asym_one : 0.6634291325000664 : asymp_jasb[0] : 1.043287918508297 : asymp_jasb[1] : 0.7115733522582638 #+RESULTS: : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); int64_t type_nucl_num = n2_type_nucl_num; int64_t* type_nucl_vector = &(n2_type_nucl_vector[0]); int64_t aord_num = n2_aord_num; int64_t bord_num = n2_bord_num; int64_t cord_num = n2_cord_num; double* aord_vector = &(n2_aord_vector[0][0]); double* bord_vector = &(n2_bord_vector[0]); double* cord_vector = &(n2_cord_vector[0][0]); /* Initialize the Jastrow data */ rc = qmckl_init_jastrow(context); assert(!qmckl_jastrow_provided(context)); /* Set the data */ rc = qmckl_set_jastrow_ord_num(context, aord_num, bord_num, cord_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_type_nucl_num(context, type_nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_type_nucl_vector(context, type_nucl_vector, nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_aord_vector(context, aord_vector); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_bord_vector(context, bord_vector); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_cord_vector(context, cord_vector); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_dependencies(context); assert(rc == QMCKL_SUCCESS); /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double asymp_jasb[2]; rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb); // calculate asymp_jasb assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12); assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12); #+end_src ** Electron-electron component \(f_{ee}\) Calculate the electron-electron jastrow component ~factor_ee~ using the ~asymp_jasb~ componenet and the electron-electron rescaled distances ~ee_distance_rescaled~. \[ f_{ee} = \sum_{i,jjastrow.factor_ee, ctx->electron.walk_num*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee rescaled distance is provided */ rc = qmckl_provide_ee_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_ee_date) { /* Allocate array */ if (ctx->jastrow.factor_ee == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_ee = (double*) qmckl_malloc(context, mem_info); if (factor_ee == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_ee", NULL); } ctx->jastrow.factor_ee = factor_ee; } qmckl_exit_code rc = qmckl_compute_factor_ee(context, ctx->electron.walk_num, ctx->electron.num, ctx->electron.up_num, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, ctx->electron.ee_distance_rescaled, ctx->jastrow.asymp_jasb, ctx->jastrow.factor_ee); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_ee_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_ee :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_ee_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | up_num | in | Number of alpha electrons | | int64_t | bord_num | in | Number of coefficients | | double | bord_vector[bord_num + 1] | in | List of coefficients | | double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | asymp_jasb[2] | in | Electron-electron distances | | double | factor_ee[walk_num] | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, bord_num, & bord_vector, ee_distance_rescaled, asymp_jasb, factor_ee) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num) double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee(walk_num) integer*8 :: i, j, p, ipar, nw double precision :: pow_ser, x, spin_fact, power_ser info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif factor_ee = 0.0d0 do nw =1, walk_num do j = 1, elec_num do i = 1, j - 1 x = ee_distance_rescaled(nw,i,j) power_ser = 0.0d0 spin_fact = 1.0d0 ipar = 1 do p = 2, bord_num x = x * ee_distance_rescaled(nw,i,j) power_ser = power_ser + bord_vector(p + 1) * x end do if(j .LE. up_num .OR. i .GT. up_num) then spin_fact = 0.5d0 ipar = 2 endif factor_ee(nw) = factor_ee(nw) + spin_fact * bord_vector(1) * & ee_distance_rescaled(nw,i,j) / & (1.0d0 + bord_vector(2) * & ee_distance_rescaled(nw,i,j)) & -asymp_jasb(ipar) + power_ser end do end do end do end function qmckl_compute_factor_ee_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_ee_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_ee ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t up_num, const int64_t bord_num, const double* bord_vector, const double* ee_distance_rescaled, const double* asymp_jasb, double* const factor_ee ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_ee_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_ee & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & asymp_jasb, & factor_ee) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: up_num integer (c_int64_t) , intent(in) , value :: bord_num real (c_double ) , intent(in) :: bord_vector(bord_num + 1) real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: asymp_jasb(2) real (c_double ) , intent(out) :: factor_ee(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_ee_f info = qmckl_compute_factor_ee_f & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & asymp_jasb, & factor_ee) end function qmckl_compute_factor_ee #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> factor_ee = 0.0 for i in range(0,elec_num): for j in range(0,i): x = ee_distance_rescaled[i][j] pow_ser = 0.0 spin_fact = 1.0 ipar = 0 for p in range(1,bord_num): x = x * ee_distance_rescaled[i][j] pow_ser = pow_ser + bord_vector[p + 1] * x if(i < up_num or j >= up_num): spin_fact = 0.5 ipar = 1 factor_ee = factor_ee + spin_fact * bord_vector[0] * ee_distance_rescaled[i][j] \ / (1.0 + bord_vector[1] * ee_distance_rescaled[i][j]) \ - asymp_jasb[ipar] + pow_ser print("factor_ee :",factor_ee) #+end_src #+RESULTS: : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 : factor_ee : -4.282760865958113 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double factor_ee[walk_num]; rc = qmckl_get_jastrow_factor_ee(context, factor_ee); // calculate factor_ee assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12); #+end_src ** Electron-electron component derivative \(f'_{ee}\) Calculate the derivative of the ~factor_ee~ using the ~ee_distance_rescaled~ and the electron-electron rescaled distances derivatives ~ee_distance_rescaled_deriv_e~. There are four components, the gradient which has 3 components in the \(x, y, z\) directions and the laplacian as the last component. TODO: Add equation *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_ee_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee rescaled distance is provided */ rc = qmckl_provide_ee_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if ee rescaled distance deriv e is provided */ rc = qmckl_provide_ee_distance_rescaled_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_ee_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_ee_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double); double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_ee_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_ee_deriv_e", NULL); } ctx->jastrow.factor_ee_deriv_e = factor_ee_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_ee_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->electron.up_num, ctx->jastrow.bord_num, ctx->jastrow.bord_vector, ctx->electron.ee_distance_rescaled, ctx->electron.ee_distance_rescaled_deriv_e, ctx->jastrow.asymp_jasb, ctx->jastrow.factor_ee_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_ee_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_ee_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_ee_deriv_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | up_num | in | Number of alpha electrons | | int64_t | bord_num | in | Number of coefficients | | double | bord_vector[bord_num + 1] | in | List of coefficients | | double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | ee_distance_rescaled_deriv_e[walk_num][4][elec_num][elec_num] | in | Electron-electron distances | | double | asymp_jasb[2] | in | Electron-electron distances | | double | factor_ee_deriv_e[walk_num][4][elec_num] | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, up_num, bord_num, & bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, & asymp_jasb, factor_ee_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num) double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num) double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num) integer*8 :: i, j, p, ipar, nw, ii double precision :: x, spin_fact, y double precision :: den, invden, invden2, invden3, xinv double precision :: lap1, lap2, lap3, third double precision, dimension(3) :: pow_ser_g double precision, dimension(4) :: dx info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (bord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif factor_ee_deriv_e = 0.0d0 third = 1.0d0 / 3.0d0 do nw =1, walk_num do j = 1, elec_num do i = 1, elec_num x = ee_distance_rescaled(nw, i, j) if(abs(x) < 1.0d-18) cycle pow_ser_g = 0.0d0 spin_fact = 1.0d0 den = 1.0d0 + bord_vector(2) * x invden = 1.0d0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0d0 / (x + 1.0d-18) ipar = 1 do ii = 1, 4 dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, i, j) end do if((i .LE. up_num .AND. j .LE. up_num ) .OR. & (i .GT. up_num .AND. j .GT. up_num)) then spin_fact = 0.5d0 endif lap1 = 0.0d0 lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 x = ee_distance_rescaled(nw, i, j) if(abs(x) < 1.0d-18) cycle do p = 2, bord_num y = p * bord_vector(p + 1) * x pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y x = x * ee_distance_rescaled(nw, i, j) end do lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii) factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + spin_fact * bord_vector(1) * & dx(ii) * invden2 + pow_ser_g(ii) end do ii = 4 lap2 = lap2 * dx(ii) * third lap3 = lap3 + den * dx(ii) lap3 = lap3 * (spin_fact * bord_vector(1) * invden3) factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + lap1 + lap2 + lap3 end do end do end do end function qmckl_compute_factor_ee_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_ee_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t up_num, const int64_t bord_num, const double* bord_vector, const double* ee_distance_rescaled, const double* ee_distance_rescaled_deriv_e, const double* asymp_jasb, double* const factor_ee_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_ee_deriv_e & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & ee_distance_rescaled_deriv_e, & asymp_jasb, & factor_ee_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: up_num integer (c_int64_t) , intent(in) , value :: bord_num real (c_double ) , intent(in) :: bord_vector(bord_num + 1) real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,4,walk_num) real (c_double ) , intent(in) :: asymp_jasb(2) real (c_double ) , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_f info = qmckl_compute_factor_ee_deriv_e_f & (context, & walk_num, & elec_num, & up_num, & bord_num, & bord_vector, & ee_distance_rescaled, & ee_distance_rescaled_deriv_e, & asymp_jasb, & factor_ee_deriv_e) end function qmckl_compute_factor_ee_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float) for j in range(elec_num): for i in range(elec_num): rij_inv = 1.0 / elec_dist[i, j] for ii in range(3): elec_dist_deriv_e[ii, i, j] = (elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv elec_dist_deriv_e[:, j, j] = 0.0 ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float) for j in range(elec_num): for i in range(elec_num): f = 1.0 - kappa * ee_distance_rescaled[i][j] for ii in range(4): ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j] ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \ (-kappa * ee_distance_rescaled_deriv_e[0][i][j] * ee_distance_rescaled_deriv_e[0][i][j]) + \ (-kappa * ee_distance_rescaled_deriv_e[1][i][j] * ee_distance_rescaled_deriv_e[1][i][j]) + \ (-kappa * ee_distance_rescaled_deriv_e[2][i][j] * ee_distance_rescaled_deriv_e[2][i][j]) for ii in range(4): ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f third = 1.0 / 3.0 factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(4),dtype=float) for j in range(elec_num): for i in range(elec_num): x = ee_distance_rescaled[j][i] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(4),dtype=float) spin_fact = 1.0 den = 1.0 + bord_vector[1] * ee_distance_rescaled[j][i] invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (ee_distance_rescaled[j][i] + 1.0E-18) ipar = 1 for ii in range(4): dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i] if((i <= (up_num-1) and j <= (up_num-1) ) or \ (i > (up_num-1) and j > (up_num-1))): spin_fact = 0.5 lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = ee_distance_rescaled[j][i] if x < 1e-18: continue for p in range(2,bord_num+1): y = p * bord_vector[(p-1) + 1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * ee_distance_rescaled[j][i] lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii] factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (spin_fact * bord_vector[0] * invden3) factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3 print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0]) print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0]) print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0]) print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0]) print(factor_ee_deriv_e) #+end_src #+RESULTS: #+begin_example asym_one : 0.43340325572525706 asymp_jasb[0] : 0.5323750557252571 asymp_jasb[1] : 0.31567342786262853 factor_ee_deriv_e[0][0]: 0.16364894652107934 factor_ee_deriv_e[1][0]: -0.6927548119830084 factor_ee_deriv_e[2][0]: 0.073267755223968 factor_ee_deriv_e[3][0]: 1.5111672803213185 [[ 0.16364895 0.60354957 -0.19825547 0.02359797 -0.13123153 -0.18789233 0.07762515 -0.42459184 0.27920265 -0.2056531 ] [-0.69275481 0.15690393 0.09831069 0.18490587 0.04361723 0.3250686 0.12657961 -0.01736522 -0.40149005 0.17622416] [ 0.07326776 -0.27532276 0.22396943 0.18771633 -0.34506246 0.07298062 0.63302352 -0.00910198 -0.30238713 -0.25908332] [ 1.51116728 1.5033247 0.00325003 2.89377255 0.1338393 2.15893795 1.74732003 0.23561147 2.67455607 0.82810434]] #+end_example #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); // calculate factor_ee_deriv_e double factor_ee_deriv_e[walk_num][4][elec_num]; rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0])); // check factor_ee_deriv_e assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][1][0]+0.6927548119830084 ) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][2][0]-0.073267755223968 ) < 1.e-12); assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12); #+end_src ** Electron-nucleus component \(f_{en}\) Calculate the electron-electron jastrow component ~factor_en~ using the ~aord_vector~ coeffecients and the electron-nucleus rescaled distances ~en_distance_rescaled~. \[ f_{en} = \sum_{i,jjastrow.factor_en, ctx->electron.walk_num*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_en_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_en_date) { /* Allocate array */ if (ctx->jastrow.factor_en == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_en = (double*) qmckl_malloc(context, mem_info); if (factor_en == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_en", NULL); } ctx->jastrow.factor_en = factor_en; } qmckl_exit_code rc = qmckl_compute_factor_en(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.aord_num, ctx->jastrow.aord_vector, ctx->electron.en_distance_rescaled, ctx->jastrow.factor_en); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_en_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_en :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_en_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nucleii | | int64_t | type_nucl_num | in | Number of unique nuclei | | int64_t | type_nucl_vector[type_nucl_num] | in | IDs of unique nucleii | | int64_t | aord_num | in | Number of coefficients | | double | aord_vector[aord_num + 1][type_nucl_num] | in | List of coefficients | | double | en_distance_rescaled[walk_num][nucl_num][elec_num] | in | Electron-nucleus distances | | double | factor_en[walk_num] | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_en_f(context, walk_num, elec_num, nucl_num, type_nucl_num, & type_nucl_vector, aord_num, aord_vector, & en_distance_rescaled, factor_en) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(type_nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num) double precision , intent(out) :: factor_en(walk_num) integer*8 :: i, a, p, ipar, nw double precision :: x, spin_fact, power_ser info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (aord_num <= 0) then info = QMCKL_INVALID_ARG_7 return endif factor_en = 0.0d0 do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num x = en_distance_rescaled(nw, i, a) power_ser = 0.0d0 do p = 2, aord_num x = x * en_distance_rescaled(nw, i, a) power_ser = power_ser + aord_vector(p + 1, type_nucl_vector(a)) * x end do factor_en(nw) = factor_en(nw) + aord_vector(1, type_nucl_vector(a)) * & en_distance_rescaled(nw, i, a) / & (1.0d0 + aord_vector(2, type_nucl_vector(a)) * & en_distance_rescaled(nw, i, a)) & + power_ser end do end do end do end function qmckl_compute_factor_en_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_en_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_en ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const int64_t aord_num, const double* aord_vector, const double* en_distance_rescaled, double* const factor_en ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_en_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_en & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & factor_en) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(type_nucl_num) integer (c_int64_t) , intent(in) , value :: aord_num real (c_double ) , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num) real (c_double ) , intent(out) :: factor_en(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_en_f info = qmckl_compute_factor_en_f & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & factor_en) end function qmckl_compute_factor_en #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> factor_en = 0.0 for a in range(0,nucl_num): for i in range(0,elec_num): x = en_distance_rescaled[i][a] pow_ser = 0.0 for p in range(2,aord_num+1): x = x * en_distance_rescaled[i][a] pow_ser = pow_ser + aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x factor_en = factor_en + aord_vector[0][type_nucl_vector[a]-1] * en_distance_rescaled[i][a] \ / (1.0 + aord_vector[1][type_nucl_vector[a]-1] * en_distance_rescaled[i][a]) \ + pow_ser print("factor_en :",factor_en) #+end_src #+RESULTS: : factor_en : -5.865822569188727 #+begin_src c :tangle (eval c_test) ///* Check if Jastrow is properly initialized */ //assert(qmckl_jastrow_provided(context)); // //double factor_en[walk_num]; //rc = qmckl_get_jastrow_factor_en(context, factor_en); // //// calculate factor_en //assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12); #+end_src ** Electron-nucleus component derivative \(f'_{en}\) Calculate the electron-electron jastrow component ~factor_en_deriv_e~ derivative with respect to the electron coordinates using the ~en_distance_rescaled~ and ~en_distance_rescaled_deriv_e~ which are already calculated previously. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_en_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; memcpy(factor_en_deriv_e, ctx->jastrow.factor_en_deriv_e, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_en_distance_rescaled(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_en_distance_rescaled_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_en_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_en_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double); double* factor_en_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_en_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_en_deriv_e", NULL); } ctx->jastrow.factor_en_deriv_e = factor_en_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_en_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.aord_num, ctx->jastrow.aord_vector, ctx->electron.en_distance_rescaled, ctx->electron.en_distance_rescaled_deriv_e, ctx->jastrow.factor_en_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_en_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_en_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_en_deriv_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nucleii | | int64_t | type_nucl_num | in | Number of unique nuclei | | int64_t | type_nucl_vector[type_nucl_num] | in | IDs of unique nucleii | | int64_t | aord_num | in | Number of coefficients | | double | aord_vector[aord_num + 1][type_nucl_num] | in | List of coefficients | | double | en_distance_rescaled[walk_num][nucl_num][elec_num] | in | Electron-nucleus distances | | double | en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num] | in | Electron-nucleus distance derivatives | | double | factor_en_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, nucl_num, type_nucl_num, & type_nucl_vector, aord_num, aord_vector, & en_distance_rescaled, en_distance_rescaled_deriv_e, factor_en_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(type_nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num) double precision , intent(in) :: en_distance_rescaled_deriv_e(walk_num, 4, elec_num, nucl_num) double precision , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num) integer*8 :: i, a, p, ipar, nw, ii double precision :: x, spin_fact, den, invden, invden2, invden3, xinv double precision :: y, lap1, lap2, lap3, third double precision, dimension(3) :: power_ser_g double precision, dimension(4) :: dx info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (aord_num <= 0) then info = QMCKL_INVALID_ARG_7 return endif factor_en_deriv_e = 0.0d0 third = 1.0d0 / 3.0d0 do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num x = en_distance_rescaled(nw, i, a) if(abs(x) < 1.0d-18) continue power_ser_g = 0.0d0 den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x invden = 1.0d0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0d0 / x do ii = 1, 4 dx(ii) = en_distance_rescaled_deriv_e(nw, ii, i, a) end do lap1 = 0.0d0 lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 x = en_distance_rescaled(nw, i, a) do p = 2, aord_num y = p * aord_vector(p + 1, type_nucl_vector(a)) * x power_ser_g(ii) = power_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y x = x * en_distance_rescaled(nw, i, a) end do lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii) factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + aord_vector(1, type_nucl_vector(a)) & * dx(ii) * invden2 & + power_ser_g(ii) end do ii = 4 lap2 = lap2 * dx(ii) * third lap3 = lap3 + den * dx(ii) lap3 = lap3 * aord_vector(1, type_nucl_vector(a)) * invden3 factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + lap1 + lap2 + lap3 end do end do end do end function qmckl_compute_factor_en_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_en_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const int64_t aord_num, const double* aord_vector, const double* en_distance_rescaled, const double* en_distance_rescaled_deriv_e, double* const factor_en_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_en_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & en_distance_rescaled_deriv_e, & factor_en_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(type_nucl_num) integer (c_int64_t) , intent(in) , value :: aord_num real (c_double ) , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num) real (c_double ) , intent(in) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,4,walk_num) real (c_double ) , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_en_deriv_e_f info = qmckl_compute_factor_en_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & type_nucl_num, & type_nucl_vector, & aord_num, & aord_vector, & en_distance_rescaled, & en_distance_rescaled_deriv_e, & factor_en_deriv_e) end function qmckl_compute_factor_en_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for j in range(nucl_num): elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): rij_inv = 1.0 / elnuc_dist[i, a] for ii in range(3): elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): f = 1.0 - kappa * en_distance_rescaled[i][a] for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f third = 1.0 / 3.0 factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(3),dtype=float) for a in range(nucl_num): for i in range(elec_num): x = en_distance_rescaled[i][a] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(3),dtype=float) den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (x + 1.0E-18) for ii in range(4): dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = en_distance_rescaled[i][a] if x < 1e-18: continue for p in range(2,aord_num+1): y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * en_distance_rescaled[i][a] lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) #+end_src #+RESULTS: : factor_en_deriv_e[0][0]: 0.11609919541763383 : factor_en_deriv_e[1][0]: -0.23301394780804574 : factor_en_deriv_e[2][0]: 0.17548337641865783 : factor_en_deriv_e[3][0]: -0.9667363412285741 #+begin_src c :tangle (eval c_test) ///* Check if Jastrow is properly initialized */ //assert(qmckl_jastrow_provided(context)); // //// calculate factor_en_deriv_e //double factor_en_deriv_e[walk_num][4][elec_num]; //rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0])); // //// check factor_en_deriv_e //assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12); #+end_src ** Electron-electron rescaled distances for each order ~een_rescaled_e~ stores the table of the rescaled distances between all pairs of electrons and raised to the power \(p\) defined by ~cord_num~: \[ C_{ij,p} = \left( 1 - \exp{-\kappa C_{ij}} \right)^p \] where \(C_{ij}\) is the matrix of electron-electron distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_ee_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_e", NULL); } ctx->jastrow.een_rescaled_e = een_rescaled_e; } qmckl_exit_code rc = qmckl_compute_een_rescaled_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_ee, ctx->electron.ee_distance, ctx->jastrow.een_rescaled_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | cord_num | in | Order of polynomials | | double | rescale_factor_kappa_ee | in | Factor to rescale ee distances | | double | ee_distance[walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & ee_distance, een_rescaled_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(out) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) double precision,dimension(:,:),allocatable :: een_rescaled_e_ij double precision :: x integer*8 :: i, j, k, l, nw allocate(een_rescaled_e_ij(elec_num * (elec_num - 1) / 2, cord_num + 1)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_e = 0.0d0 do nw = 1, walk_num een_rescaled_e_ij = 0.0d0 een_rescaled_e_ij(:, 1) = 1.0d0 k = 0 do j = 1, elec_num do i = 1, j - 1 k = k + 1 een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_kappa_ee * ee_distance(i, j, nw)) end do end do do l = 2, cord_num do k = 1, elec_num * (elec_num - 1)/2 een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2) end do end do ! prepare the actual een table een_rescaled_e(0, :, :, nw) = 1.0d0 do l = 1, cord_num k = 0 do j = 1, elec_num do i = 1, j - 1 k = k + 1 x = een_rescaled_e_ij(k, l + 1) een_rescaled_e(l, i, j, nw) = x een_rescaled_e(l, j, i, nw) = x end do end do end do end do end function qmckl_compute_een_rescaled_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_een_rescaled_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t cord_num, const double rescale_factor_kappa_ee, const double* ee_distance, double* const een_rescaled_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_een_rescaled_e & (context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_een_rescaled_e_f info = qmckl_compute_een_rescaled_e_f & (context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e) end function qmckl_compute_een_rescaled_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij[:,0] = 1.0 k = 0 for j in range(elec_num): for i in range(j): een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) k = k + 1 for l in range(2, cord_num + 1): for k in range(elec_num * (elec_num - 1)//2): een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) een_rescaled_e[:,:,0] = 1.0 for l in range(1,cord_num+1): k = 0 for j in range(elec_num): for i in range(j): x = een_rescaled_e_ij[k, l] een_rescaled_e[i, j, l] = x een_rescaled_e[j, i, l] = x k = k + 1 print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2]) print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2]) print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e[0, 3, 1] = 0.1066745707571846 : een_rescaled_e[0, 4, 1] = 0.01754273169464735 : een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e[1, 5, 2] = 0.3424402276009091 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); // // //double een_rescaled_e[walk_num][elec_num][elec_num][(cord_num + 1)]; //rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0])); // //// value of (0,2,1) //assert(fabs(een_rescaled_e[0][0][2][1]-0.08084493981483197) < 1.e-12); //assert(fabs(een_rescaled_e[0][0][3][1]-0.1066745707571846) < 1.e-12); //assert(fabs(een_rescaled_e[0][0][4][1]-0.01754273169464735) < 1.e-12); //assert(fabs(een_rescaled_e[0][1][3][2]-0.02214680362033448) < 1.e-12); //assert(fabs(een_rescaled_e[0][1][4][2]-0.0005700154999202759) < 1.e-12); //assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12); #+end_src ** Electron-electron rescaled distances for each order and derivatives ~een_rescaled_e~ stores the table of the rescaled distances between all pairs of electrons and raised to the power \(p\) defined by ~cord_num~. Here we take its derivatives required for the een jastrow. TODO: write formulae *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_e_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_e_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_e_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_e_deriv_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_e_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_e_deriv_e", NULL); } ctx->jastrow.een_rescaled_e_deriv_e = een_rescaled_e_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_rescaled_e_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_ee, ctx->electron.coord_new, ctx->electron.ee_distance, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_e_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_e_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_e_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_e_deriv_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | cord_num | in | Order of polynomials | | double | rescale_factor_kappa_ee | in | Factor to rescale ee distances | | double | coord_new[walk_num][3][elec_num] | in | Electron coordinates | | double | ee_distance[walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-electron distances | | double | een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & coord_new, ee_distance, een_rescaled_e, een_rescaled_e_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) double precision , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e double precision :: x, rij_inv, kappa_l integer*8 :: i, j, k, l, nw, ii allocate(elec_dist_deriv_e(4,elec_num,elec_num)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_e_deriv_e = 0.0d0 do nw = 1, walk_num do j = 1, elec_num do i = 1, elec_num rij_inv = 1.0d0 / ee_distance(i, j, nw) do ii = 1, 3 elec_dist_deriv_e(ii, i, j) = (coord_new(i, ii, nw) - coord_new(j, ii, nw)) * rij_inv end do elec_dist_deriv_e(4, i, j) = 2.0d0 * rij_inv end do elec_dist_deriv_e(:, j, j) = 0.0d0 end do ! prepare the actual een table do l = 1, cord_num kappa_l = - dble(l) * rescale_factor_kappa_ee do j = 1, elec_num do i = 1, elec_num do ii = 1, 4 een_rescaled_e_deriv_e(l, i, ii, j, nw) = kappa_l * elec_dist_deriv_e(ii, i, j) end do een_rescaled_e_deriv_e(l, i, 4, j, nw) = een_rescaled_e_deriv_e(l, i, 4, j, nw) & + een_rescaled_e_deriv_e(l, i, 1, j, nw) * een_rescaled_e_deriv_e(l, i, 1, j, nw) & + een_rescaled_e_deriv_e(l, i, 2, j, nw) * een_rescaled_e_deriv_e(l, i, 2, j, nw) & + een_rescaled_e_deriv_e(l, i, 3, j, nw) * een_rescaled_e_deriv_e(l, i, 3, j, nw) do ii = 1, 4 een_rescaled_e_deriv_e(l, i, ii, j, nw) = een_rescaled_e_deriv_e(l, i, ii, j, nw) * & een_rescaled_e(l, i, j, nw) end do end do end do end do end do end function qmckl_compute_factor_een_rescaled_e_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_rescaled_e_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t cord_num, const double rescale_factor_kappa_ee, const double* coord_new, const double* ee_distance, const double* een_rescaled_e, double* const een_rescaled_e_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_rescaled_e_deriv_e & (context, & walk_num, & elec_num, & cord_num, & rescale_factor_kappa_ee, & coord_new, & ee_distance, & een_rescaled_e, & een_rescaled_e_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_e_deriv_e_f info = qmckl_compute_factor_een_rescaled_e_deriv_e_f & (context, & walk_num, & elec_num, & cord_num, & rescale_factor_kappa_ee, & coord_new, & ee_distance, & een_rescaled_e, & een_rescaled_e_deriv_e) end function qmckl_compute_factor_een_rescaled_e_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij[:,0] = 1.0 k = 0 for j in range(elec_num): for i in range(j): een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) k = k + 1 for l in range(2, cord_num + 1): for k in range(elec_num * (elec_num - 1)//2): een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) een_rescaled_e[:,:,0] = 1.0 for l in range(1,cord_num+1): k = 0 for j in range(elec_num): for i in range(j): x = een_rescaled_e_ij[k, l] een_rescaled_e[i, j, l] = x een_rescaled_e[j, i, l] = x k = k + 1 print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2]) print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2]) print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e[0, 3, 1] = 0.1066745707571846 : een_rescaled_e[0, 4, 1] = 0.01754273169464735 : een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e[1, 5, 2] = 0.3424402276009091 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); #+end_src ** Electron-nucleus rescaled distances for each order ~een_rescaled_n~ stores the table of the rescaled distances between electrons and nucleii raised to the power \(p\) defined by ~cord_num~: \[ C_{ia,p} = \left( 1 - \exp{-\kappa C_{ia}} \right)^p \] where \(C_{ia}\) is the matrix of electron-nucleus distances. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_n(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_en_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_n_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_n == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_n = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_n == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_n", NULL); } ctx->jastrow.een_rescaled_n = een_rescaled_n; } qmckl_exit_code rc = qmckl_compute_een_rescaled_n(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_en, ctx->electron.en_distance, ctx->jastrow.een_rescaled_n); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_n_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_een_rescaled_n :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_rescaled_n_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of atoms | | int64_t | cord_num | in | Order of polynomials | | double | rescale_factor_kappa_en | in | Factor to rescale ee distances | | double | en_distance[walk_num][elec_num][nucl_num] | in | Electron-nucleus distances | | double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_n_f(context, walk_num, elec_num, nucl_num, cord_num, rescale_factor_kappa_en, & en_distance, een_rescaled_n) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_en double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) double precision , intent(out) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) double precision :: x integer*8 :: i, a, k, l, nw info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_n = 0.0d0 do nw = 1, walk_num ! prepare the actual een table een_rescaled_n(0, :, :, nw) = 1.0d0 do a = 1, nucl_num do i = 1, elec_num een_rescaled_n(1, a, i, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw)) end do end do do l = 2, cord_num do a = 1, nucl_num do i = 1, elec_num een_rescaled_n(l, a, i, nw) = een_rescaled_n(l - 1, a, i, nw) * een_rescaled_n(1, a, i, nw) end do end do end do end do end function qmckl_compute_een_rescaled_n_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_een_rescaled_n ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const double rescale_factor_kappa_en, const double* en_distance, double* const een_rescaled_n ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_een_rescaled_n & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & en_distance, & een_rescaled_n) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_een_rescaled_n_f info = qmckl_compute_een_rescaled_n_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & en_distance, & een_rescaled_n) end function qmckl_compute_een_rescaled_n #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_n[0, 2, 1] = 0.10612983920006765 : een_rescaled_n[0, 3, 1] = 0.135652809635553 : een_rescaled_n[0, 4, 1] = 0.023391817607642338 : een_rescaled_n[1, 3, 2] = 0.880957224822116 : een_rescaled_n[1, 4, 2] = 0.027185942659395074 : een_rescaled_n[1, 5, 2] = 0.01343938025140174 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); // //double een_rescaled_n[walk_num][elec_num][nucl_num][(cord_num + 1)]; //rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0])); // //// value of (0,2,1) //assert(fabs(een_rescaled_n[0][2][0][1]-0.10612983920006765) < 1.e-12); //assert(fabs(een_rescaled_n[0][3][0][1]-0.135652809635553) < 1.e-12); //assert(fabs(een_rescaled_n[0][4][0][1]-0.023391817607642338) < 1.e-12); //assert(fabs(een_rescaled_n[0][3][1][2]-0.880957224822116) < 1.e-12); //assert(fabs(een_rescaled_n[0][4][1][2]-0.027185942659395074) < 1.e-12); //assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order and derivatives ~een_rescaled_n_deriv_e~ stores the table of the rescaled distances between electrons and nucleii raised to the power \(p\) defined by ~cord_num~: *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_een_rescaled_n_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n_deriv_e, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if ee distance is provided */ qmckl_exit_code rc = qmckl_provide_en_distance(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if ee distance is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.een_rescaled_n_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.een_rescaled_n_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double); double* een_rescaled_n_deriv_e = (double*) qmckl_malloc(context, mem_info); if (een_rescaled_n_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_een_rescaled_n_deriv_e", NULL); } ctx->jastrow.een_rescaled_n_deriv_e = een_rescaled_n_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_rescaled_n_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->electron.rescale_factor_kappa_en, ctx->electron.coord_new, ctx->nucleus.coord, ctx->electron.en_distance, ctx->jastrow.een_rescaled_n, ctx->jastrow.een_rescaled_n_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.een_rescaled_n_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een_rescaled_n_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_compute_factor_een_rescaled_n_deriv_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of atoms | | int64_t | cord_num | in | Order of polynomials | | double | rescale_factor_kappa_en | in | Factor to rescale ee distances | | double | coord_new[walk_num][3][elec_num] | in | Electron coordinates | | double | coord[3][nucl_num] | in | Nuclear coordinates | | double | en_distance[walk_num][elec_num][nucl_num] | in | Electron-nucleus distances | | double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus distances | | double | een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f(context, walk_num, elec_num, nucl_num, & cord_num, rescale_factor_kappa_en, & coord_new, coord, en_distance, een_rescaled_n, een_rescaled_n_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_en double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: coord(nucl_num,3) double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) double precision , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) double precision , intent(out) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) double precision,dimension(:,:,:),allocatable :: elnuc_dist_deriv_e double precision :: x, ria_inv, kappa_l integer*8 :: i, a, k, l, nw, ii allocate(elnuc_dist_deriv_e(4, elec_num, nucl_num)) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif ! Prepare table of exponentiated distances raised to appropriate power een_rescaled_n_deriv_e = 0.0d0 do nw = 1, walk_num ! prepare the actual een table do a = 1, nucl_num do i = 1, elec_num ria_inv = 1.0d0 / en_distance(i, a, nw) do ii = 1, 3 elnuc_dist_deriv_e(ii, i, a) = (coord_new(i, ii, nw) - coord(a, ii)) * ria_inv end do elnuc_dist_deriv_e(4, i, a) = 2.0d0 * ria_inv end do end do do l = 0, cord_num kappa_l = - dble(l) * rescale_factor_kappa_en do a = 1, nucl_num do i = 1, elec_num do ii = 1, 4 een_rescaled_n_deriv_e(l, a, ii, i, nw) = kappa_l * elnuc_dist_deriv_e(ii, i, a) end do een_rescaled_n_deriv_e(l, a, 4, i, nw) = een_rescaled_n_deriv_e(l, a, 4, i, nw) & + een_rescaled_n_deriv_e(l, a, 1, i, nw) * een_rescaled_n_deriv_e(l, a, 1, i, nw) & + een_rescaled_n_deriv_e(l, a, 2, i, nw) * een_rescaled_n_deriv_e(l, a, 2, i, nw) & + een_rescaled_n_deriv_e(l, a, 3, i, nw) * een_rescaled_n_deriv_e(l, a, 3, i, nw) do ii = 1, 4 een_rescaled_n_deriv_e(l, a, ii, i, nw) = een_rescaled_n_deriv_e(l, a, ii, i, nw) * & een_rescaled_n(l, a, i, nw) end do end do end do end do end do end function qmckl_compute_factor_een_rescaled_n_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_rescaled_n_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const double rescale_factor_kappa_en, const double* coord_new, const double* coord, const double* en_distance, const double* een_rescaled_n, double* const een_rescaled_n_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_rescaled_n_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & coord_new, & coord, & en_distance, & een_rescaled_n, & een_rescaled_n_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: coord(nucl_num,3) real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_n_deriv_e_f info = qmckl_compute_factor_een_rescaled_n_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & rescale_factor_kappa_en, & coord_new, & coord, & en_distance, & een_rescaled_n, & een_rescaled_n_deriv_e) end function qmckl_compute_factor_een_rescaled_n_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_n[0, 2, 1] = 0.10612983920006765 : een_rescaled_n[0, 3, 1] = 0.135652809635553 : een_rescaled_n[0, 4, 1] = 0.023391817607642338 : een_rescaled_n[1, 3, 2] = 0.880957224822116 : een_rescaled_n[1, 4, 2] = 0.027185942659395074 : een_rescaled_n[1, 5, 2] = 0.01343938025140174 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); #+end_src ** Prepare for electron-electron-nucleus Jastrow \(f_{een}\) Prepare ~cord_vect_full~ and ~lkpm_combined_index~ tables required for the calculation of the three-body jastrow ~factor_een~ and its derivative ~factor_een_deriv_e~. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect); qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full); qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); *dim_cord_vect = ctx->jastrow.dim_cord_vect; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->jastrow.dim_cord_vect * ctx->nucleus.num; memcpy(cord_vect_full, ctx->jastrow.cord_vect_full, sze * sizeof(double)); return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_dim_cord_vect(context); if (rc != QMCKL_SUCCESS) return rc; rc = qmckl_provide_cord_vect_full(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); size_t sze = ctx->jastrow.dim_cord_vect * 4; memcpy(lkpm_combined_index, ctx->jastrow.lkpm_combined_index, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context); qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context); qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->date > ctx->jastrow.dim_cord_vect_date) { qmckl_exit_code rc = qmckl_compute_dim_cord_vect(context, ctx->jastrow.cord_num, &(ctx->jastrow.dim_cord_vect)); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.dim_cord_vect_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.cord_vect_full_date) { /* Allocate array */ if (ctx->jastrow.cord_vect_full == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->jastrow.dim_cord_vect * ctx->nucleus.num * sizeof(double); double* cord_vect_full = (double*) qmckl_malloc(context, mem_info); if (cord_vect_full == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_cord_vect_full", NULL); } ctx->jastrow.cord_vect_full = cord_vect_full; } qmckl_exit_code rc = qmckl_compute_cord_vect_full(context, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_vect_full); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.cord_vect_full_date = ctx->date; } return QMCKL_SUCCESS; } qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if dim_cord_vect is provided */ qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.lkpm_combined_index_date) { /* Allocate array */ if (ctx->jastrow.lkpm_combined_index == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(int64_t); int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info); if (lkpm_combined_index == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_lkpm_combined_index", NULL); } ctx->jastrow.lkpm_combined_index = lkpm_combined_index; } qmckl_exit_code rc = qmckl_compute_lkpm_combined_index(context, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.lkpm_combined_index); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.lkpm_combined_index_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute dim_cord_vect :PROPERTIES: :Name: qmckl_compute_dim_cord_vect :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_dim_cord_vect_args | qmckl_context | context | in | Global state | | int64_t | cord_num | in | Order of polynomials | | int64_t | dim_cord_vect | out | dimension of cord_vect_full table | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_dim_cord_vect_f(context, cord_num, dim_cord_vect) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: cord_num integer*8 , intent(out) :: dim_cord_vect double precision :: x integer*8 :: i, a, k, l, p, lmax info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif dim_cord_vect = 0 do p = 2, cord_num do k = p - 1, 0, -1 if (k .ne. 0) then lmax = p - k else lmax = p - k - 2 endif do l = lmax, 0, -1 if (iand(p - k - l, 1_8) == 1) cycle dim_cord_vect = dim_cord_vect + 1 end do end do end do end function qmckl_compute_dim_cord_vect_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_dim_cord_vect ( const qmckl_context context, const int64_t cord_num, int64_t* const dim_cord_vect ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_dim_cord_vect & (context, cord_num, dim_cord_vect) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(out) :: dim_cord_vect integer(c_int32_t), external :: qmckl_compute_dim_cord_vect_f info = qmckl_compute_dim_cord_vect_f & (context, cord_num, dim_cord_vect) end function qmckl_compute_dim_cord_vect #+end_src *** Compute cord_vect_full :PROPERTIES: :Name: qmckl_compute_cord_vect_full :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_cord_vect_full_args | qmckl_context | context | in | Global state | | int64_t | nucl_num | in | Number of atoms | | int64_t | cord_num | in | Order of polynomials | | int64_t | dim_cord_vect | in | dimension of cord full table | | int64_t | type_nucl_num | in | dimension of cord full table | | int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table | | double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table | | double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, & type_nucl_vector, cord_vector, cord_vect_full) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(in) :: type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: cord_vector(cord_num, type_nucl_num) double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) double precision :: x integer*8 :: i, a, k, l, nw info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (type_nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (dim_cord_vect <= 0) then info = QMCKL_INVALID_ARG_5 return endif do a = 1, nucl_num cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a)) end do end function qmckl_compute_cord_vect_full_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_cord_vect_full ( const qmckl_context context, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const int64_t type_nucl_num, const int64_t* type_nucl_vector, const double* cord_vector, double* const cord_vect_full ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_cord_vect_full & (context, & nucl_num, & cord_num, & dim_cord_vect, & type_nucl_num, & type_nucl_vector, & cord_vector, & cord_vect_full) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) real (c_double ) , intent(in) :: cord_vector(type_nucl_num,cord_num) real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f info = qmckl_compute_cord_vect_full_f & (context, & nucl_num, & cord_num, & dim_cord_vect, & type_nucl_num, & type_nucl_vector, & cord_vector, & cord_vect_full) end function qmckl_compute_cord_vect_full #+end_src *** Compute lkpm_combined_index :PROPERTIES: :Name: qmckl_compute_lkpm_combined_index :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_lkpm_combined_index_args | qmckl_context | context | in | Global state | | int64_t | cord_num | in | Order of polynomials | | int64_t | dim_cord_vect | in | dimension of cord full table | | int64_t | lpkm_combined_index[4][dim_cord_vect] | out | Full list of combined indices | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_lkpm_combined_index_f(context, cord_num, dim_cord_vect, & lkpm_combined_index) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(out) :: lkpm_combined_index(dim_cord_vect, 4) double precision :: x integer*8 :: i, a, k, l, kk, p, lmax, m info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (dim_cord_vect <= 0) then info = QMCKL_INVALID_ARG_3 return endif kk = 0 do p = 2, cord_num do k = p - 1, 0, -1 if (k .ne. 0) then lmax = p - k else lmax = p - k - 2 end if do l = lmax, 0, -1 if (iand(p - k - l, 1_8) .eq. 1) cycle m = (p - k - l)/2 kk = kk + 1 lkpm_combined_index(kk, 1) = l lkpm_combined_index(kk, 2) = k lkpm_combined_index(kk, 3) = p lkpm_combined_index(kk, 4) = m end do end do end do end function qmckl_compute_lkpm_combined_index_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_lkpm_combined_index ( const qmckl_context context, const int64_t cord_num, const int64_t dim_cord_vect, int64_t* const lpkm_combined_index ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_lkpm_combined_index & (context, cord_num, dim_cord_vect, lpkm_combined_index) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect integer (c_int64_t) , intent(out) :: lpkm_combined_index(dim_cord_vect,4) integer(c_int32_t), external :: qmckl_compute_lkpm_combined_index_f info = qmckl_compute_lkpm_combined_index_f & (context, cord_num, dim_cord_vect, lpkm_combined_index) end function qmckl_compute_lkpm_combined_index #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n[:,:,0] = 1.0 for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a]) for l in range(2,cord_num+1): for a in range(nucl_num): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+end_src #+RESULTS: : een_rescaled_n[0, 2, 1] = 0.10612983920006765 : een_rescaled_n[0, 3, 1] = 0.135652809635553 : een_rescaled_n[0, 4, 1] = 0.023391817607642338 : een_rescaled_n[1, 3, 2] = 0.880957224822116 : een_rescaled_n[1, 4, 2] = 0.027185942659395074 : een_rescaled_n[1, 5, 2] = 0.01343938025140174 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); // #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~ using the above prepared tables. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_een(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * ctx->electron.num; memcpy(factor_een, ctx->jastrow.factor_een, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_cord_vect_full(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_lkpm_combined_index(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_een_date) { /* Allocate array */ if (ctx->jastrow.factor_een == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walk_num * sizeof(double); double* factor_een = (double*) qmckl_malloc(context, mem_info); if (factor_een == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_een", NULL); } ctx->jastrow.factor_een = factor_een; } qmckl_exit_code rc = qmckl_compute_factor_een(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.cord_vect_full, ctx->jastrow.lkpm_combined_index, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.factor_een); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_een_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nucleii | | int64_t | cord_num | in | order of polynomials | | int64_t | dim_cord_vect | in | dimension of full coefficient vector | | double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector | | int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices | | double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled | | double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor | | double | factor_een[walk_num] | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, & cord_vect_full, lkpm_combined_index, & een_rescaled_e, een_rescaled_n, factor_een) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) double precision , intent(out) :: factor_een(walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw double precision :: accu, accu2, cn info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(1, n) k = lkpm_combined_index(2, n) p = lkpm_combined_index(3, n) m = lkpm_combined_index(4, n) do a = 1, nucl_num accu2 = 0.0d0 cn = cord_vect_full(n, a) do j = 1, elec_num accu = 0.0d0 do i = 1, elec_num accu = accu + een_rescaled_e(nw, i, j, k) * & een_rescaled_n(nw, i, a, m) end do accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l) end do factor_een(nw) = factor_een(nw) + accu2 + cn end do end do end do end function qmckl_compute_factor_een_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* een_rescaled_e, const double* een_rescaled_n, double* const factor_een ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: factor_een(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_f info = qmckl_compute_factor_een_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & factor_een) end function qmckl_compute_factor_een #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for j in range(nucl_num): elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): rij_inv = 1.0 / elnuc_dist[i, a] for ii in range(3): elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): f = 1.0 - kappa * en_distance_rescaled[i][a] for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f third = 1.0 / 3.0 factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(3),dtype=float) for a in range(nucl_num): for i in range(elec_num): x = en_distance_rescaled[i][a] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(3),dtype=float) den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (x + 1.0E-18) for ii in range(4): dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = en_distance_rescaled[i][a] if x < 1e-18: continue for p in range(2,aord_num+1): y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * en_distance_rescaled[i][a] lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) #+end_src #+RESULTS: : factor_en_deriv_e[0][0]: 0.11609919541763383 : factor_en_deriv_e[1][0]: -0.23301394780804574 : factor_en_deriv_e[2][0]: 0.17548337641865783 : factor_en_deriv_e[3][0]: -0.9667363412285741 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ //assert(qmckl_jastrow_provided(context)); // //// calculate factor_en_deriv_e //double factor_een[walk_num]; //rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0])); //// check factor_en_deriv_e //assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) derivative Calculate the electron-electron-nuclear three-body jastrow component ~factor_een_deriv_e~ using the above prepared tables. TODO: write equations. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_factor_een_deriv_e(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); int64_t sze = ctx->electron.walk_num * ctx->electron.num; memcpy(factor_een_deriv_e, ctx->jastrow.factor_een_deriv_e, sze*sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context) { qmckl_exit_code rc; if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; assert (ctx != NULL); /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance is provided */ rc = qmckl_provide_een_rescaled_e_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_een_rescaled_n_deriv_e(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_cord_vect_full(context); if(rc != QMCKL_SUCCESS) return rc; /* Check if en rescaled distance derivatives is provided */ rc = qmckl_provide_lkpm_combined_index(context); if(rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->date > ctx->jastrow.factor_een_deriv_e_date) { /* Allocate array */ if (ctx->jastrow.factor_een_deriv_e == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = 4 * ctx->electron.num * ctx->electron.walk_num * sizeof(double); double* factor_een_deriv_e = (double*) qmckl_malloc(context, mem_info); if (factor_een_deriv_e == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_provide_factor_een_deriv_e", NULL); } ctx->jastrow.factor_een_deriv_e = factor_een_deriv_e; } qmckl_exit_code rc = qmckl_compute_factor_een_deriv_e(context, ctx->electron.walk_num, ctx->electron.num, ctx->nucleus.num, ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.cord_vect_full, ctx->jastrow.lkpm_combined_index, ctx->jastrow.een_rescaled_e, ctx->jastrow.een_rescaled_n, ctx->jastrow.een_rescaled_e_deriv_e, ctx->jastrow.een_rescaled_n_deriv_e, ctx->jastrow.factor_een_deriv_e); if (rc != QMCKL_SUCCESS) { return rc; } ctx->jastrow.factor_een_deriv_e_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_factor_een_deriv_e :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_factor_een_deriv_e_args | qmckl_context | context | in | Global state | | int64_t | walk_num | in | Number of walkers | | int64_t | elec_num | in | Number of electrons | | int64_t | nucl_num | in | Number of nucleii | | int64_t | cord_num | in | order of polynomials | | int64_t | dim_cord_vect | in | dimension of full coefficient vector | | double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector | | int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices | | double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled | | double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor | | double | een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] | in | Electron-nucleus rescaled | | double | een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor | | double | factor_een_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, & cord_vect_full, lkpm_combined_index, & een_rescaled_e, een_rescaled_n, & een_rescaled_e_deriv_e, een_rescaled_n_deriv_e, factor_een_deriv_e) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num) double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw double precision :: accu, accu2, cn double precision :: daccu(1:4), daccu2(1:4) info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (cord_num <= 0) then info = QMCKL_INVALID_ARG_5 return endif factor_een_deriv_e = 0.0d0 do nw =1, walk_num do n = 1, dim_cord_vect l = lkpm_combined_index(1, n) k = lkpm_combined_index(2, n) p = lkpm_combined_index(3, n) m = lkpm_combined_index(4, n) do a = 1, nucl_num cn = cord_vect_full(n, a) do j = 1, elec_num accu = 0.0d0 accu2 = 0.0d0 daccu = 0.0d0 daccu2 = 0.0d0 do i = 1, elec_num accu = accu + een_rescaled_e(nw, i, j, k) * & een_rescaled_n(nw, i, a, m) accu2 = accu2 + een_rescaled_e(nw, i, j, k) * & een_rescaled_n(nw, i, a, m + l) daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & een_rescaled_n(nw, i, a, m) daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & een_rescaled_n(nw, i, a, m + l) end do factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + & (accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) & + daccu(1:4) * een_rescaled_n(nw, j, a, m + l) & + daccu2(1:4) * een_rescaled_n(nw, j, a, m) & + accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( & daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + & daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + & daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + & daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + & daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + & daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn end do end do end do end do end function qmckl_compute_factor_een_deriv_e_f #+end_src #+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_factor_een_deriv_e ( const qmckl_context context, const int64_t walk_num, const int64_t elec_num, const int64_t nucl_num, const int64_t cord_num, const int64_t dim_cord_vect, const double* cord_vect_full, const int64_t* lkpm_combined_index, const double* een_rescaled_e, const double* een_rescaled_n, const double* een_rescaled_e_deriv_e, const double* een_rescaled_n_deriv_e, double* const factor_een_deriv_e ); #+end_src #+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_factor_een_deriv_e & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & een_rescaled_e_deriv_e, & een_rescaled_n_deriv_e, & factor_een_deriv_e) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: walk_num integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_f info = qmckl_compute_factor_een_deriv_e_f & (context, & walk_num, & elec_num, & nucl_num, & cord_num, & dim_cord_vect, & cord_vect_full, & lkpm_combined_index, & een_rescaled_e, & een_rescaled_n, & een_rescaled_e_deriv_e, & een_rescaled_n_deriv_e, & factor_een_deriv_e) end function qmckl_compute_factor_een_deriv_e #+end_src *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np <> kappa = 1.0 elec_coord = np.array(elec_coord)[0] nucl_coord = np.array(nucl_coord) elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) for i in range(elec_num): for j in range(nucl_num): elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): rij_inv = 1.0 / elnuc_dist[i, a] for ii in range(3): elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) for a in range(nucl_num): for i in range(elec_num): f = 1.0 - kappa * en_distance_rescaled[i][a] for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) for ii in range(4): en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f third = 1.0 / 3.0 factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) dx = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(3),dtype=float) for a in range(nucl_num): for i in range(elec_num): x = en_distance_rescaled[i][a] if abs(x) < 1e-18: continue pow_ser_g = np.zeros(shape=(3),dtype=float) den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x invden = 1.0 / den invden2 = invden * invden invden3 = invden2 * invden xinv = 1.0 / (x + 1.0E-18) for ii in range(4): dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] lap1 = 0.0 lap2 = 0.0 lap3 = 0.0 for ii in range(3): x = en_distance_rescaled[i][a] if x < 1e-18: continue for p in range(2,aord_num+1): y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap2 = lap2 + y x = x * en_distance_rescaled[i][a] lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ dx[ii] * invden2 + pow_ser_g[ii] ii = 3 lap2 = lap2 * dx[ii] * third lap3 = lap3 + den * dx[ii] lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) #+end_src #+RESULTS: : factor_en_deriv_e[0][0]: 0.11609919541763383 : factor_en_deriv_e[1][0]: -0.23301394780804574 : factor_en_deriv_e[2][0]: 0.17548337641865783 : factor_en_deriv_e[3][0]: -0.9667363412285741 #+begin_src c :tangle (eval c_test) ///* Check if Jastrow is properly initialized */ //assert(qmckl_jastrow_provided(context)); // //// calculate factor_en_deriv_e //double factor_een[walk_num]; //rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0])); // //// check factor_en_deriv_e //assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12); //assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12); #+end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) rc = qmckl_context_destroy(context); assert (rc == QMCKL_SUCCESS); return 0; } #+end_src # -*- mode: org -*- # vim: syntax=c