#+TITLE: Electrons #+SETUPFILE: ../tools/theme.setup #+INCLUDE: ../tools/lib.org In conventional QMC simulations, up-spin and down-spin electrons are different. The ~electron~ data structure contains the number of up-spin and down-spin electrons, and the electron coordinates. The electrons are stored as points in the following order: for each walker, first up-spin electrons and then down-spin electrons. If the points are set with the ='N'= flag, the order of the components is =[ (x,y,z), (x,y,z), ... ]= Using the ='T'= flage, it is =[ (x,x,x,...), (y,y,y,...), (z,z,z,...) ]= # TODO: replace the qmckl_matrix by qmckl_point data structures. # TODO: in provide funcions, replace the way to check that dimensions # have changed * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") #+end_src #+begin_src c :tangle (eval h_private_type) #ifndef QMCKL_ELECTRON_HPT #define QMCKL_ELECTRON_HPT #include #include "qmckl_point_private_type.h" #+end_src #+begin_src c :tangle (eval h_private_func) #ifndef QMCKL_ELECTRON_HPF #define QMCKL_ELECTRON_HPF #+end_src #+begin_src c :tangle (eval c_test) :noweb yes #include "qmckl.h" #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "chbrclf.h" int main() { qmckl_context context; context = qmckl_context_create(); #+end_src #+begin_src c :tangle (eval c) #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_STDINT_H #include #elif HAVE_INTTYPES_H #include #endif #include #include #include #include #include #include #include "qmckl.h" #include "qmckl_context_private_type.h" #include "qmckl_memory_private_type.h" #include "qmckl_memory_private_func.h" #include "qmckl_electron_private_func.h" #+end_src * Context The following data stored in the context: | Variable | Type | Description | |---------------------------+--------------------+--------------------------------------| | ~uninitialized~ | ~int32_t~ | Keeps bit set for uninitialized data | | ~num~ | ~int64_t~ | Total number of electrons | | ~up_num~ | ~int64_t~ | Number of up-spin electrons | | ~down_num~ | ~int64_t~ | Number of down-spin electrons | | ~provided~ | ~bool~ | If true, ~electron~ is valid | | ~walker~ | ~qmckl_point~ | Current set of walkers | | ~walker_old~ | ~qmckl_point~ | Previous set of walkers | Computed data: | Variable | Type | Description | |---------------------+--------------------------------+--------------------------------------------------------------| | ~ee_distance~ | ~double[walker.num][num][num]~ | Electron-electron distances | | ~ee_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~en_distance~ | ~double[num][nucl_num]~ | Electron-nucleus distances | | ~en_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances | | ~ee_potential~ | ~double[walker.num]~ | Electron-electron potential energy | | ~ee_potential_date~ | ~uint64_t~ | Last modification date of the electron-electron potential | | ~en_potential~ | ~double[walker.num]~ | Electron-nucleus potential energy | | ~en_potential_date~ | ~int64_t~ | Date when the electron-nucleus potential energy was computed | ** Data structure #+begin_src c :comments org :tangle (eval h_private_type) typedef struct qmckl_walker_struct { int64_t num; qmckl_point_struct point; } qmckl_walker; typedef struct qmckl_electron_struct { int64_t num; int64_t up_num; int64_t down_num; qmckl_walker walker; qmckl_walker walker_old; uint64_t ee_distance_date; uint64_t en_distance_date; uint64_t ee_potential_date; uint64_t en_potential_date; double* ee_distance; double* en_distance; double* ee_potential; double* en_potential; int32_t uninitialized; bool provided; } qmckl_electron_struct; #+end_src The ~uninitialized~ integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and ~provided == true~. Some values are initialized by default, and are not concerned by this mechanism. #+begin_src c :comments org :tangle (eval h_private_func) qmckl_exit_code qmckl_init_electron(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) qmckl_exit_code qmckl_init_electron(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); ctx->electron.uninitialized = (1 << 1) - 1; return QMCKL_SUCCESS; } #+end_src #+begin_src c :comments org :tangle (eval h_func) bool qmckl_electron_provided (const qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none bool qmckl_electron_provided(const qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return false; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); return ctx->electron.provided; } #+end_src ** Initialization functions To set the data relative to the electrons in the context, the following functions need to be called. When the data structure is initialized, the internal ~coord_new~ and ~coord_old~ arrays are both not allocated. #+begin_src c :comments org :tangle (eval h_func) qmckl_exit_code qmckl_set_electron_num (qmckl_context context, const int64_t up_num, const int64_t down_num); qmckl_exit_code qmckl_set_electron_coord (qmckl_context context, const char transp, const int64_t walk_num, const double* coord, const int64_t size_max); #+end_src #+NAME:pre2 #+begin_src c :exports none if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; if (mask != 0 && !(ctx->electron.uninitialized & mask)) { return qmckl_failwith( context, QMCKL_ALREADY_SET, "qmckl_set_electron_*", NULL); } #+end_src #+NAME:post #+begin_src c :exports none ctx->electron.uninitialized &= ~mask; ctx->electron.provided = (ctx->electron.uninitialized == 0); return QMCKL_SUCCESS; #+end_src To set the number of electrons, we give the number of up-spin and down-spin electrons to the context and we set the number of walkers. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_num(qmckl_context context, const int64_t up_num, const int64_t down_num) { int32_t mask = 1 << 0; <> if (up_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_num", "up_num <= 0"); } if (down_num < 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_num", "down_num < 0"); } ctx->electron.up_num = up_num; ctx->electron.down_num = down_num; ctx->electron.num = up_num + down_num; <> } #+end_src #+begin_src f90 :comments org :tangle (eval fh_func) :noweb yes interface integer(c_int32_t) function qmckl_set_electron_num(context, alpha, beta) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: alpha integer (c_int64_t) , intent(in) , value :: beta end function end interface #+end_src The following function sets the electron coordinates of all the walkers. When this is done, the pointers to the old and new sets of coordinates are swapped, and the new coordinates are overwritten. This can be done only when the data relative to electrons have been set. ~size_max~ should be equal equal or geater than ~elec_num * walker.num * 3~, to be symmetric with ~qmckl_get_electron_coord~. Important: changing the electron coordinates increments the date in the context. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_set_electron_coord(qmckl_context context, const char transp, const int64_t walk_num, const double* coord, const int64_t size_max) { int32_t mask = 0; <> if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_set_electron_coord", "transp should be 'N' or 'T'"); } if (walk_num <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_set_electron_coord", "walk_num <= 0"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_4, "qmckl_set_electron_coord", "coord is a null pointer"); } const int64_t elec_num = ctx->electron.num; if (elec_num == 0L) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_electron_coord", "elec_num is not set"); } /* Swap pointers */ qmckl_walker tmp = ctx->electron.walker_old; ctx->electron.walker_old = ctx->electron.walker; ctx->electron.walker = tmp; memcpy(&(ctx->point), &(ctx->electron.walker.point), sizeof(qmckl_point_struct)); qmckl_exit_code rc; rc = qmckl_set_point(context, transp, walk_num*elec_num, coord, size_max); if (rc != QMCKL_SUCCESS) return rc; ctx->electron.walker.num = walk_num; memcpy(&(ctx->electron.walker.point), &(ctx->point), sizeof(qmckl_point_struct)); // If it is the first time we set the electrons, we set also walkers_old. if (ctx->electron.walker_old.num == 0) { qmckl_set_electron_coord(context, transp, walk_num, coord, size_max); } return QMCKL_SUCCESS; } #+end_src #+begin_src f90 :comments org :tangle (eval fh_func) :noweb yes interface integer(c_int32_t) function qmckl_set_electron_coord(context, transp, walk_num, coord, size_max) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transp integer (c_int64_t) , intent(in) , value :: walk_num real(c_double) , intent(in) :: coord(*) integer (c_int64_t) , intent(in) , value :: size_max end function end interface #+end_src ** Access functions Access functions return ~QMCKL_SUCCESS~ when the data has been successfully retrieved. It returnes ~QMCKL_INVALID_CONTEXT~ when the context is not a valid context, and ~QMCKL_NOT_PROVIDED~ when the data has not been provided. If the function returns successfully, the variable pointed by the pointer given in argument contains the requested data. Otherwise, this variable is untouched. *** Number of electrons #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num); qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num); qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_num (const qmckl_context context, int64_t* const num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_num", "num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.num > (int64_t) 0); ,*num = ctx->electron.num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_up_num (const qmckl_context context, int64_t* const up_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (up_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_up_num", "up_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.up_num > (int64_t) 0); ,*up_num = ctx->electron.up_num; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_get_electron_down_num (const qmckl_context context, int64_t* const down_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (down_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_down_num", "down_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); int32_t mask = 1 << 0; if ( (ctx->electron.uninitialized & mask) != 0) { return QMCKL_NOT_PROVIDED; } assert (ctx->electron.down_num >= (int64_t) 0); ,*down_num = ctx->electron.down_num; return QMCKL_SUCCESS; } #+end_src *** Number of walkers A walker is a set of electron coordinates that are arguments of the wave function. ~walk_num~ is the number of walkers. #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_walk_num (const qmckl_context context, int64_t* const walk_num) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } if (walk_num == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_walk_num", "walk_num is a null pointer"); } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); ,*walk_num = ctx->electron.walker.num; return QMCKL_SUCCESS; } #+end_src *** Electron coordinates Returns the current electron coordinates. The pointer is assumed to point on a memory block of size ~size_max~ \ge ~3 * elec_num * walker.num~. The order of the indices is: | | Normal | Transposed | |---------+----------------------------+----------------------------| | C | ~[walker.num*elec_num][3]~ | ~[3][walker.num*elec_num]~ | | Fortran | ~(3,walker.num*elec_num)~ | ~(walker.num*elec_num, 3)~ | #+begin_src c :comments org :tangle (eval h_func) :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord, const int64_t size_max); #+end_src As the ~walker~ attribute is equal to ~points~, returning the current electron coordinates is equivalent to returning the current points. #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_coord (const qmckl_context context, const char transp, double* const coord, const int64_t size_max) { if (transp != 'N' && transp != 'T') { return qmckl_failwith( context, QMCKL_INVALID_ARG_2, "qmckl_get_electron_coord", "transp should be 'N' or 'T'"); } if (coord == NULL) { return qmckl_failwith( context, QMCKL_INVALID_ARG_3, "qmckl_get_electron_coord", "coord is a null pointer"); } if (size_max <= 0) { return qmckl_failwith( context, QMCKL_INVALID_ARG_4, "qmckl_get_electron_coord", "size_max should be > 0"); } if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_INVALID_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!ctx->electron.provided) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_get_electron_coord", NULL); } assert (ctx->point.num == ctx->electron.walker.point.num); assert (ctx->point.coord.data == ctx->electron.walker.point.coord.data); return qmckl_get_point(context, transp, coord, size_max); } #+end_src #+begin_src f90 :comments org :tangle (eval fh_func) :noweb yes interface integer(c_int32_t) function qmckl_get_electron_coord(context, transp, coord, size_max) bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: transp real(c_double) , intent(in) :: coord(*) integer (c_int64_t) , intent(in) , value :: size_max end function end interface #+end_src ** Test #+begin_src python :results output :exports none import numpy as np #+end_src #+begin_src c :tangle (eval c_test) /* Reference input data */ int64_t walk_num = chbrclf_walk_num; int64_t elec_num = chbrclf_elec_num; int64_t elec_up_num = chbrclf_elec_up_num; int64_t elec_dn_num = chbrclf_elec_dn_num; int64_t nucl_num = chbrclf_nucl_num; double* charge = chbrclf_charge; double* nucl_coord = &(chbrclf_nucl_coord[0][0]); double* elec_coord = &(chbrclf_elec_coord[0][0][0]); /* --- */ qmckl_exit_code rc; assert(!qmckl_electron_provided(context)); int64_t n; rc = qmckl_get_electron_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_up_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_get_electron_down_num (context, &n); assert(rc == QMCKL_NOT_PROVIDED); rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num); qmckl_check(context, rc); assert(qmckl_electron_provided(context)); rc = qmckl_get_electron_up_num (context, &n); qmckl_check(context, rc); assert(n == elec_up_num); rc = qmckl_get_electron_down_num (context, &n); qmckl_check(context, rc); assert(n == elec_dn_num); rc = qmckl_get_electron_num (context, &n); qmckl_check(context, rc); assert(n == elec_num); int64_t w = 0; rc = qmckl_get_electron_walk_num (context, &w); qmckl_check(context, rc); assert(w == 0); assert(qmckl_electron_provided(context)); rc = qmckl_set_electron_coord (context, 'N', walk_num, elec_coord, walk_num*elec_num*3); qmckl_check(context, rc); rc = qmckl_get_electron_walk_num (context, &w); qmckl_check(context, rc); assert(w == walk_num); double elec_coord2[walk_num*3*elec_num]; rc = qmckl_get_electron_coord (context, 'N', elec_coord2, walk_num*3*elec_num); qmckl_check(context, rc); for (int64_t i=0 ; i<3*elec_num*walk_num ; ++i) { printf("%f %f\n", elec_coord[i], elec_coord2[i]); assert( elec_coord[i] == elec_coord2[i] ); } #+end_src * Computation The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored. ** Electron-electron distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance); #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_electron_ee_distance(context, distance) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double ) , intent(out) :: distance(*) end function end interface #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walker.num; memcpy(distance, ctx->electron.ee_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); /* Compute if necessary */ if (ctx->point.date > ctx->electron.ee_distance_date) { if (ctx->electron.walker.num > ctx->electron.walker_old.num) { free(ctx->electron.ee_distance); ctx->electron.ee_distance = NULL; } /* Allocate array */ if (ctx->electron.ee_distance == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.num * ctx->electron.num * ctx->electron.walker.num * sizeof(double); double* ee_distance = (double*) qmckl_malloc(context, mem_info); if (ee_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_distance", NULL); } ctx->electron.ee_distance = ee_distance; } qmckl_exit_code rc = qmckl_compute_ee_distance(context, ctx->electron.num, ctx->electron.walker.num, ctx->electron.walker.point.coord.data, ctx->electron.ee_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_distance_args | Variable | Type | In/Out | Description | |---------------+----------------------------------------+--------+-----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | out | Electron-electron distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_distance_f(context, elec_num, walk_num, coord, ee_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: coord(elec_num,walk_num,3) double precision , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer*8 :: k, i, j double precision :: x, y, z info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif do k=1,walk_num info = qmckl_distance(context, 'T', 'T', elec_num, elec_num, & coord(1,k,1), elec_num * walk_num, & coord(1,k,1), elec_num * walk_num, & ee_distance(1,1,k), elec_num) if (info /= QMCKL_SUCCESS) then exit endif end do end function qmckl_compute_ee_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_ee_distance ( const qmckl_context context, const int64_t elec_num, const int64_t walk_num, const double* coord, double* const ee_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_distance & (context, elec_num, walk_num, coord, ee_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: coord(elec_num,3,walk_num) real (c_double ) , intent(out) :: ee_distance(elec_num,elec_num,walk_num) integer(c_int32_t), external :: qmckl_compute_ee_distance_f info = qmckl_compute_ee_distance_f & (context, elec_num, walk_num, coord, ee_distance) end function qmckl_compute_ee_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-elec_1_w1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-elec_2_w1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_2_w1-elec_1_w1) ) print ( "[0][0][1] : ", np.linalg.norm(elec_1_w2-elec_1_w2) ) print ( "[0][1][1] : ", np.linalg.norm(elec_1_w2-elec_2_w2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-elec_1_w2) ) #+end_src #+RESULTS: : [0][0][0] : 0.0 : [0][1][0] : 7.152322512964209 : [1][0][0] : 7.152322512964209 : [0][0][1] : 0.0 : [0][1][1] : 6.5517646321055665 : [1][0][1] : 6.5517646321055665 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); double ee_distance[walk_num * elec_num * elec_num]; rc = qmckl_get_electron_ee_distance(context, ee_distance); // (e1,e2,w) // (0,0,0) == 0. assert(ee_distance[0] == 0.); // (1,0,0) == (0,1,0) assert(ee_distance[1] == ee_distance[elec_num]); // value of (1,0,0) assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12); // (0,0,1) == 0. assert(ee_distance[elec_num*elec_num] == 0.); // (1,0,1) == (0,1,1) assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]); // value of (1,0,1) assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12); #+end_src ** Electron-electron potential ~ee_potential~ is given by \[ \mathcal{V}_{ee} = \sum_{i=1}^{N_e}\sum_{j>i}^{N_e}\frac{1}{r_{ij}} \] where \(\mathcal{V}_{ee}\) is the ~ee~ potential and \[r_{ij}\] the ~ee~ distance. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_ee_potential(qmckl_context context, double* const ee_potential); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_ee_potential(qmckl_context context, double* const ee_potential) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_ee_potential(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->electron.walker.num * sizeof(double); memcpy(ee_potential, ctx->electron.ee_potential, sze); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_potential(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_ee_potential(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!ctx->electron.provided) return QMCKL_NOT_PROVIDED; qmckl_exit_code rc = qmckl_provide_ee_distance(context); if (rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->point.date > ctx->electron.ee_potential_date) { if (ctx->electron.walker.num > ctx->electron.walker_old.num) { free(ctx->electron.ee_potential); } /* Allocate array */ if (ctx->electron.ee_potential == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walker.num * sizeof(double); double* ee_potential = (double*) qmckl_malloc(context, mem_info); if (ee_potential == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_ee_potential", NULL); } ctx->electron.ee_potential = ee_potential; } rc = qmckl_compute_ee_potential(context, ctx->electron.num, ctx->electron.walker.num, ctx->electron.ee_distance, ctx->electron.ee_potential); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.ee_potential_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_ee_potential :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_ee_potential_args | Variable | Type | In/Out | Description | |----------------+----------------------------------------+--------+-----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~ee_potential~ | ~double[walk_num]~ | out | Electron-electron potential | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_ee_potential_f(context, elec_num, walk_num, & ee_distance, ee_potential) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(out) :: ee_potential(walk_num) integer*8 :: nw, i, j info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif ee_potential = 0.0d0 do nw=1,walk_num do j=2,elec_num do i=1,j-1 if (dabs(ee_distance(i,j,nw)) > 1e-5) then ee_potential(nw) = ee_potential(nw) + 1.0d0/(ee_distance(i,j,nw)) endif end do end do end do end function qmckl_compute_ee_potential_f #+end_src #+CALL: generate_c_header(table=qmckl_ee_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_ee_potential ( const qmckl_context context, const int64_t elec_num, const int64_t walk_num, const double* ee_distance, double* const ee_potential ); #+end_src #+CALL: generate_c_interface(table=qmckl_ee_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_ee_potential & (context, elec_num, walk_num, ee_distance, ee_potential) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(out) :: ee_potential(walk_num) integer(c_int32_t), external :: qmckl_compute_ee_potential_f info = qmckl_compute_ee_potential_f & (context, elec_num, walk_num, ee_distance, ee_potential) end function qmckl_compute_ee_potential #+end_src *** Test #+begin_src c :tangle (eval c_test) double ee_potential[walk_num]; rc = qmckl_get_electron_ee_potential(context, &(ee_potential[0])); qmckl_check(context, rc); #+end_src ** Electron-nucleus distances *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance); #+end_src #+begin_src f90 :tangle (eval fh_func) :comments org :exports none interface integer(c_int32_t) function qmckl_get_electron_en_distance(context, distance) & bind(C) use, intrinsic :: iso_c_binding import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double ) , intent(out) :: distance(*) end function end interface #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_distance(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->point.num * ctx->nucleus.num; memcpy(distance, ctx->electron.en_distance, sze * sizeof(double)); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_distance(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!(ctx->nucleus.provided)) { return qmckl_failwith( context, QMCKL_NOT_PROVIDED, "qmckl_provide_en_distance", NULL); } /* Compute if necessary */ if (ctx->point.date > ctx->electron.en_distance_date) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->point.num * ctx->nucleus.num * sizeof(double); if (ctx->electron.en_distance != NULL) { qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero; qmckl_exit_code rc = qmckl_get_malloc_info(context, ctx->electron.en_distance, &mem_info_test); /* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the memory was not allocated with qmckl_malloc */ if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) { rc = qmckl_free(context, ctx->electron.en_distance); assert (rc == QMCKL_SUCCESS); ctx->electron.en_distance = NULL; } } /* Allocate array */ if (ctx->electron.en_distance == NULL) { double* en_distance = (double*) qmckl_malloc(context, mem_info); if (en_distance == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_distance", NULL); } ctx->electron.en_distance = en_distance; } qmckl_exit_code rc = qmckl_compute_en_distance(context, ctx->point.num, ctx->nucleus.num, ctx->point.coord.data, ctx->nucleus.coord.data, ctx->electron.en_distance); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_distance_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_distance :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_distance_args | Variable | Type | In/Out | Description | |---------------+-------------------------------+--------+----------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~point_num~ | ~int64_t~ | in | Number of points | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~elec_coord~ | ~double[3][point_num]~ | in | Electron coordinates | | ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~en_distance~ | ~double[point_num][nucl_num]~ | out | Electron-nucleus distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_distance_f(context, point_num, nucl_num, elec_coord, nucl_coord, en_distance) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: point_num integer*8 , intent(in) :: nucl_num double precision , intent(in) :: elec_coord(point_num,3) double precision , intent(in) :: nucl_coord(nucl_num,3) double precision , intent(out) :: en_distance(nucl_num,point_num) integer*8 :: k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (point_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (nucl_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif info = qmckl_distance(context, 'T', 'T', nucl_num, point_num, & nucl_coord, nucl_num, & elec_coord, point_num, & en_distance, nucl_num) end function qmckl_compute_en_distance_f #+end_src #+begin_src c :tangle (eval h_private_func) :comments org :exports none qmckl_exit_code qmckl_compute_en_distance ( const qmckl_context context, const int64_t point_num, const int64_t nucl_num, const double* elec_coord, const double* nucl_coord, double* const en_distance ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_distance_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_distance & (context, point_num, nucl_num, elec_coord, nucl_coord, en_distance) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: elec_coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) real (c_double ) , intent(out) :: en_distance(nucl_num,point_num) integer(c_int32_t), external :: qmckl_compute_en_distance_f info = qmckl_compute_en_distance_f & (context, point_num, nucl_num, elec_coord, nucl_coord, en_distance) end function qmckl_compute_en_distance #+end_src *** Test #+begin_src python :results output :exports none import numpy as np elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ]) elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ]) elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ]) elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ]) nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] ) nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] ) print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-nucl_1) ) print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-nucl_2) ) print ( "[0][0][1] : ", np.linalg.norm(elec_2_w1-nucl_1) ) print ( "[1][0][0] : ", np.linalg.norm(elec_1_w2-nucl_1) ) print ( "[1][1][0] : ", np.linalg.norm(elec_1_w2-nucl_2) ) print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-nucl_1) ) #+end_src #+RESULTS: : [0][0][0] : 7.546738741619978 : [0][1][0] : 8.77102435246984 : [0][0][1] : 3.698922010513608 : [1][0][0] : 5.824059436060509 : [1][1][0] : 7.080482110317645 : [1][0][1] : 3.1804527583077356 #+begin_src c :tangle (eval c_test) assert(!qmckl_nucleus_provided(context)); assert(qmckl_electron_provided(context)); rc = qmckl_set_nucleus_num (context, nucl_num); qmckl_check(context, rc); rc = qmckl_set_nucleus_charge (context, charge, nucl_num); qmckl_check(context, rc); rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord, 3*nucl_num); qmckl_check(context, rc); assert(qmckl_nucleus_provided(context)); double en_distance[walk_num][elec_num][nucl_num]; rc = qmckl_get_electron_en_distance(context, &(en_distance[0][0][0])); qmckl_check(context, rc); // (e,n,w) in Fortran notation // (1,1,1) assert(fabs(en_distance[0][0][0] - 7.546738741619978) < 1.e-12); // (1,2,1) assert(fabs(en_distance[0][0][1] - 8.77102435246984) < 1.e-12); // (2,1,1) assert(fabs(en_distance[0][1][0] - 3.698922010513608) < 1.e-12); // (1,1,2) assert(fabs(en_distance[1][0][0] - 5.824059436060509) < 1.e-12); // (1,2,2) assert(fabs(en_distance[1][0][1] - 7.080482110317645) < 1.e-12); // (2,1,2) assert(fabs(en_distance[1][1][0] - 3.1804527583077356) < 1.e-12); #+end_src ** Electron-nucleus potential ~en_potential~ stores the ~en~ potential energy \[ \mathcal{V}_{en} = -\sum_{i=1}^{N_e}\sum_{A=1}^{N_n}\frac{Z_A}{r_{iA}} \] where \(\mathcal{V}_{en}\) is the ~en~ potential, \[r_{iA}\] the ~en~ distance and \[Z_A\] is the nuclear charge. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes qmckl_exit_code qmckl_get_electron_en_potential(qmckl_context context, double* const en_potential); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_get_electron_en_potential(qmckl_context context, double* const en_potential) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_exit_code rc; rc = qmckl_provide_en_potential(context); if (rc != QMCKL_SUCCESS) return rc; qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); size_t sze = ctx->electron.walker.num * sizeof(double); memcpy(en_potential, ctx->electron.en_potential, sze); return QMCKL_SUCCESS; } #+end_src *** Provide :noexport: #+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_potential(qmckl_context context); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none qmckl_exit_code qmckl_provide_en_potential(qmckl_context context) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; } qmckl_context_struct* const ctx = (qmckl_context_struct*) context; assert (ctx != NULL); if (!ctx->electron.provided) return QMCKL_NOT_PROVIDED; if (!ctx->nucleus.provided) return QMCKL_NOT_PROVIDED; qmckl_exit_code rc = qmckl_provide_en_distance(context); if (rc != QMCKL_SUCCESS) return rc; /* Compute if necessary */ if (ctx->point.date > ctx->electron.en_potential_date) { if (ctx->electron.walker.num > ctx->electron.walker_old.num) { free(ctx->electron.en_potential); ctx->electron.en_potential = NULL; } /* Allocate array */ if (ctx->electron.en_potential == NULL) { qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = ctx->electron.walker.num * sizeof(double); double* en_potential = (double*) qmckl_malloc(context, mem_info); if (en_potential == NULL) { return qmckl_failwith( context, QMCKL_ALLOCATION_FAILED, "qmckl_en_potential", NULL); } ctx->electron.en_potential = en_potential; } rc = qmckl_compute_en_potential(context, ctx->electron.num, ctx->nucleus.num, ctx->electron.walker.num, ctx->nucleus.charge.data, ctx->electron.en_distance, ctx->electron.en_potential); if (rc != QMCKL_SUCCESS) { return rc; } ctx->electron.en_potential_date = ctx->date; } return QMCKL_SUCCESS; } #+end_src *** Compute :PROPERTIES: :Name: qmckl_compute_en_potential :CRetType: qmckl_exit_code :FRetType: qmckl_exit_code :END: #+NAME: qmckl_en_potential_args | Variable | Type | In/Out | Description | |----------------+----------------------------------------+--------+--------------------------------------| | ~context~ | ~qmckl_context~ | in | Global state | | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nuclei | | ~walk_num~ | ~int64_t~ | in | Number of walkers | | ~charge~ | ~double[nucl_num]~ | in | charge of nucleus | | ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-electron distances | | ~en_potential~ | ~double[walk_num]~ | out | Electron-electron potential | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_en_potential_f(context, elec_num, nucl_num, walk_num, & charge, en_distance, en_potential) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num double precision , intent(in) :: charge(nucl_num) double precision , intent(in) :: en_distance(nucl_num,elec_num,walk_num) double precision , intent(out) :: en_potential(walk_num) integer*8 :: nw, i, j info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (elec_num <= 0) then info = QMCKL_INVALID_ARG_2 return endif if (walk_num <= 0) then info = QMCKL_INVALID_ARG_3 return endif en_potential = 0.0d0 do nw=1,walk_num do i=1,elec_num do j=1,nucl_num if (dabs(en_distance(j,i,nw)) > 1.d-6) then en_potential(nw) = en_potential(nw) - charge(j)/(en_distance(j,i,nw)) endif end do end do end do end function qmckl_compute_en_potential_f #+end_src #+CALL: generate_c_header(table=qmckl_en_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_en_potential ( const qmckl_context context, const int64_t elec_num, const int64_t nucl_num, const int64_t walk_num, const double* charge, const double* en_distance, double* const en_potential ); #+end_src #+CALL: generate_c_interface(table=qmckl_en_potential_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_en_potential & (context, elec_num, nucl_num, walk_num, charge, en_distance, en_potential) & bind(C) result(info) use, intrinsic :: iso_c_binding implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num real (c_double ) , intent(in) :: charge(nucl_num) real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: en_potential(walk_num) integer(c_int32_t), external :: qmckl_compute_en_potential_f info = qmckl_compute_en_potential_f & (context, elec_num, nucl_num, walk_num, charge, en_distance, en_potential) end function qmckl_compute_en_potential #+end_src *** Test #+begin_src c :tangle (eval c_test) double en_potential[walk_num]; rc = qmckl_get_electron_en_potential(context, &(en_potential[0])); qmckl_check(context, rc); #+end_src ** Generate initial coordinates *** Compute :noexport: # begin_src f90 :comments org :tangle (eval f) :noweb yes subroutine draw_init_points implicit none BEGIN_DOC ! Place randomly electrons around nuclei END_DOC integer :: iwalk logical, allocatable :: do_elec(:) integer :: acc_num real, allocatable :: xmin(:,:) integer :: i, j, k, l, kk real :: norm allocate (do_elec(elec_num), xmin(3,elec_num)) xmin = -huge(1.) norm = 0. do i=1,elec_alpha_num do j=1,ao_num norm += mo_coef_transp(i,j)*mo_coef_transp(i,j) enddo enddo norm = sqrt(norm/float(elec_alpha_num)) call rinfo( irp_here, 'Norm : ', norm ) call rinfo( irp_here, 'mo_scale: ' , mo_scale ) mo_coef_transp = mo_coef_transp/norm double precision :: qmc_ranf real :: mo_max do i=1,elec_alpha_num l=1 xmin(1,i) = mo_coef_transp(i,1)*mo_coef_transp(i,1) - 0.001*qmc_ranf() do j=2,ao_num xmin(2,i) = mo_coef_transp(i,j)*mo_coef_transp(i,j) - 0.001*qmc_ranf() if (xmin(2,i) > xmin(1,i) ) then xmin(1,i) = xmin(2,i) l = ao_nucl(j) endif enddo xmin(1,i) = nucl_coord(l,1) xmin(2,i) = nucl_coord(l,2) xmin(3,i) = nucl_coord(l,3) enddo call iinfo(irp_here, 'Det num = ', det_num ) do k=1,elec_beta_num i = k+elec_alpha_num l=1 xmin(1,i) = mo_coef_transp(k,1)*mo_coef_transp(k,1) - 0.001*qmc_ranf() do j=2,ao_num xmin(2,i) = mo_coef_transp(k,j)*mo_coef_transp(k,j) - 0.001*qmc_ranf() if (xmin(2,i) > xmin(1,i) ) then xmin(1,i) = xmin(2,i) l = ao_nucl(j) endif enddo xmin(1,i) = nucl_coord(l,1) xmin(2,i) = nucl_coord(l,2) xmin(3,i) = nucl_coord(l,3) enddo call rinfo( irp_here, 'time step =', time_step ) do iwalk=1,walk_num print *, 'Generating initial positions for walker', iwalk acc_num = 0 do_elec = .True. integer :: iter do iter = 1,10000 if (acc_num >= elec_num) then exit endif double precision :: gauss real :: re_compute re_compute = 0. do while (re_compute < 1.e-6) do i=1,elec_num if (do_elec(i)) then do l=1,3 elec_coord(i,l) = xmin(l,i) + 1.5*(0.5-qmc_ranf()) enddo endif enddo TOUCH elec_coord re_compute = minval(nucl_elec_dist(1:nucl_num,1:elec_num)) enddo do i=1,elec_alpha_num if (do_elec(i)) then if ( mo_value_transp(i,i)**2 >= qmc_ranf()) then acc_num += 1 do_elec(i) = .False. endif endif enddo do i=1,elec_beta_num if (do_elec(i+elec_alpha_num)) then if ( mo_value_transp(i,i+elec_alpha_num)**2 >= qmc_ranf()) then acc_num += 1 do_elec(i+elec_alpha_num) = .False. endif endif enddo enddo do l=1,3 do i=1,elec_num+1 elec_coord_full(i,l,iwalk) = elec_coord(i,l) enddo enddo enddo if (.not.is_worker) then call ezfio_set_electrons_elec_coord_pool_size(walk_num) call ezfio_set_electrons_elec_coord_pool(elec_coord_full) endif SOFT_TOUCH elec_coord elec_coord_full deallocate (do_elec, xmin) end # end_src * End of files :noexport: #+begin_src c :tangle (eval h_private_type) #endif #+end_src #+begin_src c :tangle (eval h_private_func) #endif #+end_src *** Test #+begin_src c :tangle (eval c_test) if (qmckl_context_destroy(context) != QMCKL_SUCCESS) return QMCKL_FAILURE; return 0; } #+end_src *** Compute file names #+begin_src emacs-lisp ; The following is required to compute the file names (setq pwd (file-name-directory buffer-file-name)) (setq name (file-name-nondirectory (substring buffer-file-name 0 -4))) (setq f (concat pwd name "_f.f90")) (setq fh (concat pwd name "_fh.f90")) (setq c (concat pwd name ".c")) (setq h (concat name ".h")) (setq h_private (concat name "_private.h")) (setq c_test (concat pwd "test_" name ".c")) (setq f_test (concat pwd "test_" name "_f.f90")) ; Minted (require 'ox-latex) (setq org-latex-listings 'minted) (add-to-list 'org-latex-packages-alist '("" "listings")) (add-to-list 'org-latex-packages-alist '("" "color")) #+end_src #+RESULTS: | | color | | | listings | # -*- mode: org -*- # vim: syntax=c