Inter-particle distances
Table of Contents
1 Squared distance
1.1 qmckl_distance_sq
qmckl_distance_sq
computes the matrix of the squared distances
between all pairs of points in two sets, one point within each set:
\[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \]
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
transa |
char |
in | Array A is 'N' : Normal, 'T' : Transposed |
transb |
char |
in | Array B is 'N' : Normal, 'T' : Transposed |
m |
int64_t |
in | Number of points in the first set |
n |
int64_t |
in | Number of points in the second set |
A |
double[][lda] |
in | Array containing the \(m \times 3\) matrix \(A\) |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
in | Array containing the \(n \times 3\) matrix \(B\) |
ldb |
int64_t |
in | Leading dimension of array B |
C |
double[n][ldc] |
out | Array containing the \(m \times n\) matrix \(C\) |
ldc |
int64_t |
in | Leading dimension of array C |
Requirements:
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
lda >= 3
iftransa == 'N'
lda >= m
iftransa == 'T'
ldb >= 3
iftransb == 'N'
ldb >= n
iftransb == 'T'
ldc >= m
A
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
qmckl_exit_code qmckl_distance_sq ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc );
function qmckl_distance_sq(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context) , intent(in) , value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: lda integer (c_int64_t) , intent(in) , value :: ldb integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) :: A(lda,*) real (c_double ) , intent(in) :: B(ldb,*) real (c_double ) , intent(out) :: C(ldc,n) integer(qmckl_exit_code) :: info integer*8 :: i,j real*8 :: x, y, z integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_7 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do end select end function qmckl_distance_sq
1.1.1 Performance
This function is more efficient when A
and B
are
transposed.
2 Distance
2.1 qmckl_distance
qmckl_distance
computes the matrix of the distances between all
pairs of points in two sets, one point within each set:
\[ C_{ij} = \sqrt{\sum_{k=1}^3 (A_{k,i}-B_{k,j})^2} \]
If the input array is normal ('N'
), the xyz coordinates are in
the leading dimension: [n][3]
in C and (3,n)
in Fortran.
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
transa |
char |
in | Array A is 'N' : Normal, 'T' : Transposed |
transb |
char |
in | Array B is 'N' : Normal, 'T' : Transposed |
m |
int64_t |
in | Number of points in the first set |
n |
int64_t |
in | Number of points in the second set |
A |
double[][lda] |
in | Array containing the \(m \times 3\) matrix \(A\) |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
in | Array containing the \(n \times 3\) matrix \(B\) |
ldb |
int64_t |
in | Leading dimension of array B |
C |
double[n][ldc] |
out | Array containing the \(m \times n\) matrix \(C\) |
ldc |
int64_t |
in | Leading dimension of array C |
2.1.1 Requirements
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
lda >= 3
iftransa == 'N'
lda >= m
iftransa == 'T'
ldb >= 3
iftransb == 'N'
ldb >= n
iftransb == 'T'
ldc >= m
A
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
2.1.2 C header
qmckl_exit_code qmckl_distance ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc );
2.1.3 Source
function qmckl_distance(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC) & bind(C) result(info) use qmckl_constants implicit none integer(qmckl_context), intent(in), value :: context character(c_char) , intent(in) , value :: transa character(c_char) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: lda integer (c_int64_t) , intent(in) , value :: ldb integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) :: A(lda,*) real (c_double ) , intent(in) :: B(ldb,*) real (c_double ) , intent(out) :: C(ldc,n) integer (qmckl_exit_code) :: info integer*8 :: i,j real*8 :: x, y, z integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif ! check for LDA if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,1) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,1) == 1 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do C(:,j) = dsqrt(C(:,j)) end do end select end function qmckl_distance
2.1.4 Performance
This function is more efficient when A
and B
are transposed.
3 Rescaled Distance
3.1 qmckl_distance_rescaled
qmckl_distance_rescaled
computes the matrix of the rescaled distances between all
pairs of points in two sets, one point within each set:
\[ C_{ij} = \frac{ 1 - e^{-\kappa r_{ij}}}{\kappa} \]
If the input array is normal ('N'
), the xyz coordinates are in
the leading dimension: [n][3]
in C and (3,n)
in Fortran.
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
transa |
char |
in | Array A is 'N' : Normal, 'T' : Transposed |
transb |
char |
in | Array B is 'N' : Normal, 'T' : Transposed |
m |
int64_t |
in | Number of points in the first set |
n |
int64_t |
in | Number of points in the second set |
A |
double[][lda] |
in | Array containing the \(m \times 3\) matrix \(A\) |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
in | Array containing the \(n \times 3\) matrix \(B\) |
ldb |
int64_t |
in | Leading dimension of array B |
C |
double[n][ldc] |
out | Array containing the \(m \times n\) matrix \(C\) |
ldc |
int64_t |
in | Leading dimension of array C |
rescale_factor_kappa |
double |
in | Factor for calculating rescaled distances |
3.1.1 Requirements
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
lda >= 3
iftransa == 'N'
lda >= m
iftransa == 'T'
ldb >= 3
iftransb == 'N'
ldb >= n
iftransb == 'T'
ldc >= m
A
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
3.1.2 C header
qmckl_exit_code qmckl_distance_rescaled ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc, const double rescale_factor_kappa );
3.1.3 Source
function qmckl_distance_rescaled(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC, rescale_factor_kappa) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context character(c_char ) , intent(in) , value :: transa character(c_char ) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: lda integer (c_int64_t) , intent(in) , value :: ldb integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa real (c_double ) , intent(in) :: A(lda,*) real (c_double ) , intent(in) :: B(ldb,*) real (c_double ) , intent(out) :: C(ldc,n) integer(qmckl_exit_code) :: info integer*8 :: i,j real*8 :: x, y, z, dist, rescale_factor_kappa_inv integer :: transab rescale_factor_kappa_inv = 1.0d0/rescale_factor_kappa; info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif ! check for LDA if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) dist = dsqrt(x*x + y*y + z*z) C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv end do end do end select end function qmckl_distance_rescaled
3.1.4 Performance
This function is more efficient when A
and B
are transposed.
4 Rescaled Distance Derivatives
4.1 qmckl_distance_rescaled_gl
qmckl_distance_rescaled_gl
computes the matrix of the gradient and Laplacian of the
rescaled distance with respect to the electron coordinates. The derivative is a rank 3 tensor.
The first dimension has a dimension of 4 of which the first three coordinates
contains the gradient vector and the last index is the Laplacian.
\[ C(r_{ij}) = \left( 1 - \exp(-\kappa\, r_{ij})\right)/\kappa \]
Here the gradient is defined as follows:
\[ \nabla_i C(r_{ij}) = \left(\frac{\partial C(r_{ij})}{\partial x_i},\frac{\partial C(r_{ij})}{\partial y_i},\frac{\partial C(r_{ij})}{\partial z_i} \right) \] and the Laplacian is defined as follows:
\[ \Delta_i C(r_{ij}) = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \]
Using the above three formulas, the expression for the gradient and Laplacian is:
\[ \frac{\partial C(r_{ij})}{\partial x_i} = \frac{|(x_i - x_j)|}{r_{ij}} \exp (- \kappa \, r_{ij}) \]
\[ \Delta C_{ij}(r_{ij}) = \left[ \frac{2}{r_{ij}} - \kappa \right] \exp (- \kappa \, r_{ij}) \]
If the input array is normal ('N'
), the xyz coordinates are in
the leading dimension: [n][3]
in C and (3,n)
in Fortran.
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
transa |
char |
in | Array A is 'N' : Normal, 'T' : Transposed |
transb |
char |
in | Array B is 'N' : Normal, 'T' : Transposed |
m |
int64_t |
in | Number of points in the first set |
n |
int64_t |
in | Number of points in the second set |
A |
double[][lda] |
in | Array containing the \(m \times 3\) matrix \(A\) |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
in | Array containing the \(n \times 3\) matrix \(B\) |
ldb |
int64_t |
in | Leading dimension of array B |
C |
double[n][ldc][4] |
out | Array containing the \(4 \times m \times n\) matrix \(C\) |
ldc |
int64_t |
in | Leading dimension of array C |
rescale_factor_kappa |
double |
in | Factor for calculating rescaled distances derivatives |
Requirements:
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
lda >= 3
iftransa == 'N'
lda >= m
iftransa == 'T'
ldb >= 3
iftransb == 'N'
ldb >= n
iftransb == 'T'
ldc >= m
A
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(4 \times m \times n \times 8\) bytes
qmckl_exit_code qmckl_distance_rescaled_gl ( const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double* A, const int64_t lda, const double* B, const int64_t ldb, double* const C, const int64_t ldc, const double rescale_factor_kappa );
function qmckl_distance_rescaled_gl(context, transa, transb, m, n, & A, LDA, B, LDB, C, LDC, rescale_factor_kappa) & bind(C) result(info) use qmckl_constants implicit none integer(qmckl_exit_code) :: info integer (qmckl_context), intent(in) , value :: context character(c_char ) , intent(in) , value :: transa character(c_char ) , intent(in) , value :: transb integer (c_int64_t) , intent(in) , value :: m integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: lda integer (c_int64_t) , intent(in) , value :: ldb integer (c_int64_t) , intent(in) , value :: ldc real (c_double ) , intent(in) , value :: rescale_factor_kappa real (c_double ) , intent(in) :: A(lda,*) real (c_double ) , intent(in) :: B(ldb,*) real (c_double ) , intent(out) :: C(4,ldc,n) integer*8 :: i,j real*8 :: x, y, z, dist, dist_inv real*8 :: rij integer :: transab info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (m <= 0_8) then info = QMCKL_INVALID_ARG_4 return endif if (n <= 0_8) then info = QMCKL_INVALID_ARG_5 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transb == 'T' .or. transb == 't') then transab = transab + 2 else transab = -100 endif ! check for LDA if (transab < 0) then info = QMCKL_INVALID_ARG_1 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = QMCKL_INVALID_ARG_7 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = QMCKL_INVALID_ARG_7 return endif ! check for LDB if (iand(transab,2) == 0 .and. LDB < 3) then info = QMCKL_INVALID_ARG_9 return endif if (iand(transab,2) == 2 .and. LDB < n) then info = QMCKL_INVALID_ARG_9 return endif ! check for LDC if (LDC < m) then info = QMCKL_INVALID_ARG_11 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) dist = max(1.d-20, dsqrt(x*x + y*y + z*z)) dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) dist = max(1.d-20, dsqrt(x*x + y*y + z*z)) dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) dist = max(1.d-20, dsqrt(x*x + y*y + z*z)) dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) dist = max(1.d-20, dsqrt(x*x + y*y + z*z)) dist_inv = 1.0d0/dist rij = dexp(-rescale_factor_kappa * dist) C(1,i,j) = x * dist_inv * rij C(2,i,j) = y * dist_inv * rij C(3,i,j) = z * dist_inv * rij C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa) * rij end do end do end select end function qmckl_distance_rescaled_gl
This function is more efficient when A
and B
are transposed.