Atomic Orbitals
Table of Contents
1 Introduction
The atomic basis set is defined as a list of shells. Each shell \(s\) is centered on a nucleus \(A\), possesses a given angular momentum \(l\) and a radial function \(R_s\). The radial function is a linear combination of primitive functions that can be of type Slater (\(p=1\)) or Gaussian (\(p=2\)):
\[ R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks} \exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). \]
In the case of Gaussian functions, \(n_s\) is always zero. The normalization factor \(\mathcal{N}_s\) ensures that all the functions of the shell are normalized (integrate) to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, \(f_{ks}\), need also to be provided.
Atomic orbitals (AOs) are defined as
\[ \chi_i (\mathbf{r}) = \mathcal{M}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]
where \(\theta(i)\) returns the shell on which the AO is expanded, and \(\eta(i)\) denotes which angular function is chosen and \(P\) are the generating functions of the given angular momentum \(\eta(i)\). Here, the parameter \(\mathcal{M}_i\) is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example.
In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values, gradients and Laplacian of the atomic basis functions.
2 Context
2.1 Constant data
The following arrays are stored in the context, and need to be set when initializing the library:
Variable | Type | Description |
---|---|---|
type |
char |
Gaussian ('G' ) or Slater ('S' ) |
shell_num |
int64_t |
Number of shells |
prim_num |
int64_t |
Total number of primitives |
nucleus_index |
int64_t[nucl_num] |
Index of the first shell of each nucleus |
nucleus_shell_num |
int64_t[nucl_num] |
Number of shells per nucleus |
shell_ang_mom |
int32_t[shell_num] |
Angular momentum of each shell |
shell_prim_num |
int64_t[shell_num] |
Number of primitives in each shell |
shell_prim_index |
int64_t[shell_num] |
Address of the first primitive of each shell in the EXPONENT array |
shell_factor |
double[shell_num] |
Normalization factor for each shell |
exponent |
double[prim_num] |
Array of exponents |
coefficient |
double[prim_num] |
Array of coefficients |
prim_factor |
double[prim_num] |
Normalization factors of the primtives |
ao_num |
int64_t |
Number of AOs |
ao_cartesian |
bool |
If true, use polynomials. Otherwise, use spherical harmonics |
ao_factor |
double[ao_num] |
Normalization factor of the AO |
The following data is computed when the basis is finalized:
Variable | Type | Description |
---|---|---|
nucleus_prim_index |
int64_t[nucl_num+1] |
Index of the first primitive of each nucleus |
nucleus_max_ang_mom |
int32_t[nucl_num] |
Maximum angular momentum of each nucleus |
coefficient_normalized~ |
double[prim_num] |
Normalized array of coefficients |
ao_ang_mom |
int32_t[ao_num] |
Angular momentum of the shell to which the AO belongs |
ao_nucl |
int64_t[ao_num] |
Nucleus on which the AO is centered |
nucleus_range |
double[nucl_num] |
Used to compute the distance beyond which all Gaussian AOs are zero, depending on the precision |
For H2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 ao_num = 30 nucleus_index = [0 , 6] shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2] shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0] prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00 ]
A scalar variable $V$
present in this table can be set or get by
calling the functions:
qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context, const $type_of_V$ $V$); qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context, $type_of_V$ const $V$);
interface integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, $V$) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(in) , value :: $V$ end function qmckl_set_ao_basis_$V$ end interface interface integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, $V$) & bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(out) :: $V$ end function qmckl_get_ao_basis_$V$ end interface
For array variables, use the rule:
qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context, const $type_of_V$ $V$, const int64_t size_max); qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context, $type_of_V$ const $V$, const int64_t size_max);
interface integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, & $V$, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(in) , value :: $V$ integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_$V$ end interface interface integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, & $V$, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context $f_type_of_V$ , intent(out) :: $V$ integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_$V$ end interface
2.1.1 Initialization functions
size_max
is the dimension of the input array, which should be
equal of larger than the value given in the table of section 2.
2.1.1.1 C interface
To set the basis set, all the following functions need to be called.
qmckl_exit_code qmckl_set_ao_basis_type (qmckl_context context, const char basis_type);
qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num);
qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num);
qmckl_exit_code qmckl_set_ao_basis_nucleus_shell_num (qmckl_context context, const int64_t* nucleus_shell_num, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_nucleus_index (qmckl_context context, const int64_t* nucleus_index, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const int32_t* shell_ang_mom, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t* shell_prim_num, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t* shell_prim_index, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double* shell_factor, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double* exponent, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double* coefficient, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_prim_factor (qmckl_context context, const double* prim_factor, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_ao_num (qmckl_context context, const int64_t ao_num);
qmckl_exit_code qmckl_set_ao_basis_ao_factor (qmckl_context context, const double* ao_factor, const int64_t size_max);
qmckl_exit_code qmckl_set_ao_basis_cartesian (qmckl_context context, const bool cartesian);
2.1.1.2 Fortran interface
interface integer(c_int32_t) function qmckl_set_ao_basis_type (context, & basis_type) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(in) , value :: basis_type end function qmckl_set_ao_basis_type end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_shell_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_prim_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_prim_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_nucleus_index(context, & idx, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: idx(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_nucleus_index end interface interface integer(c_int32_t) function qmckl_set_ao_basis_nucleus_shell_num(context, & shell_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_nucleus_shell_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_ang_mom(context, & shell_ang_mom, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int32_t) , intent(in) :: shell_ang_mom(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_ang_mom end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_num(context, & shell_prim_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_prim_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_prim_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_index(context, & shell_prim_index, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) :: shell_prim_index(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_prim_index end interface interface integer(c_int32_t) function qmckl_set_ao_basis_shell_factor(context, & shell_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: shell_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_shell_factor end interface interface integer(c_int32_t) function qmckl_set_ao_basis_exponent(context, & exponent, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: exponent(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_exponent end interface interface integer(c_int32_t) function qmckl_set_ao_basis_coefficient(context, & coefficient, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: coefficient(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_coefficient end interface interface integer(c_int32_t) function qmckl_set_ao_basis_prim_factor(context, & prim_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: prim_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_prim_factor end interface interface integer(c_int32_t) function qmckl_set_ao_basis_ao_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: num end function qmckl_set_ao_basis_ao_num end interface interface integer(c_int32_t) function qmckl_set_ao_basis_cartesian(context, & cartesian) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context logical (c_bool) , intent(in) , value :: cartesian end function qmckl_set_ao_basis_cartesian end interface interface integer(c_int32_t) function qmckl_set_ao_basis_ao_factor(context, & ao_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(in) :: ao_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_set_ao_basis_ao_factor end interface
2.1.2 Access functions
size_max
is the dimension of the input array, which should be
equal of larger than the value given in the table of section 2.
2.1.2.1 C interface
qmckl_exit_code qmckl_get_ao_basis_type (const qmckl_context context, char* const basis_type);
qmckl_exit_code qmckl_get_ao_basis_shell_num (const qmckl_context context, int64_t* const shell_num);
qmckl_exit_code qmckl_get_ao_basis_prim_num (const qmckl_context context, int64_t* const prim_num);
qmckl_exit_code qmckl_get_ao_basis_nucleus_shell_num (const qmckl_context context, int64_t* const nucleus_shell_num, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_nucleus_index (const qmckl_context context, int64_t* const nucleus_index, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context, int32_t* const shell_ang_mom, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_shell_prim_num (const qmckl_context context, int64_t* const shell_prim_num, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_shell_prim_index (const qmckl_context context, int64_t* const shell_prim_index, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_shell_factor (const qmckl_context context, double* const shell_factor, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_exponent (const qmckl_context context, double* const exponent, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_coefficient (const qmckl_context context, double* const coefficient, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_prim_factor (const qmckl_context context, double* const prim_factor, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_ao_num (const qmckl_context context, int64_t* const ao_num);
qmckl_exit_code qmckl_get_ao_basis_ao_factor (const qmckl_context context, double* const ao_factor, const int64_t size_max);
When all the data for the AOs have been provided, the following
function returns true
.
bool qmckl_ao_basis_provided (const qmckl_context context);
2.1.2.2 Fortran interface
interface integer(c_int32_t) function qmckl_get_ao_basis_type (context, & basis_type) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context character(c_char) , intent(out) :: basis_type end function qmckl_get_ao_basis_type end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_shell_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_prim_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_prim_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_nucleus_shell_num(context, & shell_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_nucleus_shell_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_nucleus_index(context, & idx, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: idx(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_nucleus_index end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_ang_mom(context, & shell_ang_mom, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int32_t) , intent(out) :: shell_ang_mom(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_ang_mom end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_num(context, & shell_prim_num, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_prim_num(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_prim_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_index(context, & shell_prim_index, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: shell_prim_index(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_prim_index end interface interface integer(c_int32_t) function qmckl_get_ao_basis_shell_factor(context, & shell_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: shell_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_shell_factor end interface interface integer(c_int32_t) function qmckl_get_ao_basis_exponent(context, & exponent, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: exponent(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_exponent end interface interface integer(c_int32_t) function qmckl_get_ao_basis_coefficient(context, & coefficient, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: coefficient(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_coefficient end interface interface integer(c_int32_t) function qmckl_get_ao_basis_prim_factor(context, & prim_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: prim_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_prim_factor end interface interface integer(c_int32_t) function qmckl_get_ao_basis_ao_num(context, & num) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(out) :: num end function qmckl_get_ao_basis_ao_num end interface interface integer(c_int32_t) function qmckl_get_ao_basis_cartesian(context, & cartesian) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context logical (c_bool) , intent(out) :: cartesian end function qmckl_get_ao_basis_cartesian end interface interface integer(c_int32_t) function qmckl_get_ao_basis_ao_factor(context, & ao_factor, size_max) bind(C) use qmckl_constants import implicit none integer (c_int64_t) , intent(in) , value :: context real (c_double) , intent(out) :: ao_factor(*) integer (c_int64_t) , intent(in) , value :: size_max end function qmckl_get_ao_basis_ao_factor end interface
2.2 Computed data
The following data is computed as described in the next sections:
Variable | Type | Description |
---|---|---|
primitive_vgl |
double[point_num][5][prim_num] |
Value, gradients, Laplacian of the primitives at current positions |
primitive_vgl_date |
uint64_t |
Last modification date of Value, gradients, Laplacian of the primitives at current positions |
shell_vgl |
double[point_num][5][shell_num] |
Value, gradients, Laplacian of the primitives at current positions |
shell_vgl_date |
uint64_t |
Last modification date of Value, gradients, Laplacian of the AOs at current positions |
ao_vgl |
double[point_num][5][ao_num] |
Value, gradients, Laplacian of the AOs at current positions |
ao_vgl_date |
uint64_t |
Last modification date of Value, gradients, Laplacian of the AOs at current positions |
ao_value |
double[point_num][ao_num] |
Values of the the AOs at current positions |
ao_value_date |
uint64_t |
Last modification date of the values of the AOs at current positions |
2.2.1 After initialization
When the basis set is completely entered, extra data structures may be computed to accelerate the calculations. The primitives within each contraction are sorted in ascending order of their exponents, such that as soon as a primitive is zero all the following functions vanish. Also, it is possible to compute a nuclear radius beyond which all the primitives are zero up to the numerical accuracy defined in the context.
2.2.2 TODO HPC-specific data structures
For faster access, we provide extra arrays for the shell information as:
- \(C_{psa}\) =
coef_per_nucleus[inucl][ishell][iprim]
- \(\gamma_{pa}\)
expo_per_nucleus[inucl][iprim]
such that the computation of the radial parts can be vectorized.
Exponents are sorted in increasing order to exit loops quickly, and only unique exponents are kept. This also allows to pack the exponents to enable vectorization of exponentials.
The computation of the radial part is made as \[ R_{sa} = \sum_p C_{psa} \gamma_{pa} \] which is a matrix-vector product.
2.2.3 Access functions
qmckl_exit_code qmckl_get_ao_basis_primitive_vgl (qmckl_context context, double* const primitive_vgl, const int64_t size_max);
Returns the array of values, gradients an Laplacian of primitive basis functions evaluated at the current coordinates. See section 3.2.
qmckl_exit_code qmckl_get_ao_basis_shell_vgl (qmckl_context context, double* const shell_vgl, const int64_t size_max);
Returns the array of values, gradients an Laplacian of contracted shells evaluated at the current coordinates. See section 3.3.
qmckl_exit_code qmckl_get_ao_basis_ao_vgl (qmckl_context context, double* const ao_vgl, const int64_t size_max);
Returns the array of values, gradients an Laplacian of the atomic orbitals evaluated at the current coordinates. See section 5.
Uses the given array to compute the VGL.
qmckl_exit_code qmckl_get_ao_basis_ao_vgl_inplace (qmckl_context context, double* const ao_vgl, const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_ao_value (qmckl_context context, double* const ao_value, const int64_t size_max);
Returns the array of values of the atomic orbitals evaluated at the current coordinates. See section 5.
Uses the given array to compute the value.
qmckl_exit_code qmckl_get_ao_basis_ao_value_inplace (qmckl_context context, double* const ao_value, const int64_t size_max);
3 Radial part
3.1 General functions for Gaussian basis functions
qmckl_ao_gaussian_vgl
computes the values, gradients and
Laplacians at a given point of n
Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
Variable | Type | Description |
---|---|---|
context |
qmckl_context |
Global state |
X(3) |
double[3] |
Array containing the coordinates of the points |
R(3) |
double[3] |
Array containing the x,y,z coordinates of the center |
n |
int64_t |
Number of computed Gaussians |
A(n) |
double[n] |
Exponents of the Gaussians |
VGL(ldv,5) |
double[5][ldv] |
Value, gradients and Laplacian of the Gaussians |
ldv |
int64_t |
Leading dimension of array VGL |
Requirements:
context
≠ 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesA
is allocated with at least \(n \times 8\) bytesVGL
is allocated with at least \(n \times 5 \times 8\) bytes
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv);
function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context) , intent(in) , value :: context real (c_double) , intent(in) :: X(3), R(3) integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: ldv real (c_double) , intent(in) :: A(n) real (c_double) , intent(out) :: VGL(ldv,5) integer (qmckl_exit_code) :: info integer*8 :: i,j double precision :: Y(3), r2, t, u, v info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldv < n) then info = QMCKL_INVALID_ARG_7 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl
3.2 Computation of primitives
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
prim_num |
int64_t |
in | Number of primitives |
point_num |
int64_t |
in | Number of points considered |
nucl_num |
int64_t |
in | Number of nuclei |
nucleus_prim_index |
int64_t[nucl_num+1] |
in | Index of the 1st primitive of each nucleus |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
expo |
double[prim_num] |
in | Exponents of the primitives |
primitive_vgl |
double[point_num][5][prim_num] |
out | Value, gradients and Laplacian of the primitives |
qmckl_exit_code qmckl_compute_ao_basis_primitive_gaussian_vgl ( const qmckl_context context, const int64_t prim_num, const int64_t point_num, const int64_t nucl_num, const int64_t* nucleus_prim_index, const double* coord, const double* nucl_coord, const double* expo, double* const primitive_vgl );
function qmckl_compute_ao_basis_primitive_gaussian_vgl & (context, prim_num, point_num, nucl_num, nucleus_prim_index, coord, nucl_coord, expo, primitive_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: prim_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) :: nucleus_prim_index(nucl_num+1) real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) real (c_double ) , intent(in) :: expo(prim_num) real (c_double ) , intent(out) :: primitive_vgl(prim_num,5,point_num) integer(qmckl_exit_code) :: info integer*8 :: inucl, iprim, ipoint double precision :: x, y, z, two_a, ar2, r2, v, cutoff info = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. cutoff = qmckl_get_numprec_precision(context) cutoff = dlog(2.d0**(cutoff-2)) do inucl=1,nucl_num ! C is zero-based, so shift bounds by one do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1) do ipoint = 1, point_num x = coord(ipoint,1) - nucl_coord(inucl,1) y = coord(ipoint,2) - nucl_coord(inucl,2) z = coord(ipoint,3) - nucl_coord(inucl,3) r2 = x*x + y*y + z*z ar2 = expo(iprim)*r2 if (ar2 > cutoff) cycle v = dexp(-ar2) two_a = -2.d0 * expo(iprim) * v primitive_vgl(iprim, 1, ipoint) = v primitive_vgl(iprim, 2, ipoint) = two_a * x primitive_vgl(iprim, 3, ipoint) = two_a * y primitive_vgl(iprim, 4, ipoint) = two_a * z primitive_vgl(iprim, 5, ipoint) = two_a * (3.d0 - 2.d0*ar2) end do end do end do end function qmckl_compute_ao_basis_primitive_gaussian_vgl
3.3 Computation of shells
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
prim_num |
int64_t |
in | Number of primitives |
shell_num |
int64_t |
in | Number of shells |
point_num |
int64_t |
in | Number of points |
nucl_num |
int64_t |
in | Number of nuclei |
nucleus_shell_num |
int64_t[nucl_num] |
in | Number of shells for each nucleus |
nucleus_index |
int64_t[nucl_num] |
in | Index of the 1st shell of each nucleus |
nucleus_range |
double[nucl_num] |
in | Range of the nucleus |
shell_prim_index |
int64_t[shell_num] |
in | Index of the 1st primitive of each shell |
shell_prim_num |
int64_t[shell_num] |
in | Number of primitives per shell |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
expo |
double[prim_num] |
in | Exponents of the primitives |
coef_normalized |
double[prim_num] |
in | Coefficients of the primitives |
shell_vgl |
double[point_num][5][shell_num] |
out | Value, gradients and Laplacian of the shells |
qmckl_exit_code qmckl_compute_ao_basis_shell_gaussian_vgl ( const qmckl_context context, const int64_t prim_num, const int64_t shell_num, const int64_t point_num, const int64_t nucl_num, const int64_t* nucleus_shell_num, const int64_t* nucleus_index, const double* nucleus_range, const int64_t* shell_prim_index, const int64_t* shell_prim_num, const double* coord, const double* nucl_coord, const double* expo, const double* coef_normalized, double* const shell_vgl );
function qmckl_compute_ao_basis_shell_gaussian_vgl( & context, prim_num, shell_num, point_num, nucl_num, & nucleus_shell_num, nucleus_index, nucleus_range, & shell_prim_index, shell_prim_num, coord, nucl_coord, & expo, coef_normalized, shell_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: prim_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num) integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num) real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) real (c_double ) , intent(in) :: expo(prim_num) real (c_double ) , intent(in) :: coef_normalized(prim_num) real (c_double ) , intent(out) :: shell_vgl(shell_num,5,point_num) integer(qmckl_exit_code) :: info integer*8 :: inucl, iprim, ipoint, ishell integer*8 :: ishell_start, ishell_end integer*8 :: iprim_start , iprim_end double precision :: x, y, z, two_a, ar2, r2, v, cutoff info = QMCKL_SUCCESS ! Don't compute exponentials when the result will be almost zero. cutoff = qmckl_get_numprec_precision(context) cutoff = dlog(2.d0**(cutoff-2)) do ipoint = 1, point_num do inucl=1,nucl_num x = coord(ipoint,1) - nucl_coord(inucl,1) y = coord(ipoint,2) - nucl_coord(inucl,2) z = coord(ipoint,3) - nucl_coord(inucl,3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! C is zero-based, so shift bounds by one ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell=ishell_start, ishell_end shell_vgl(ishell, 1, ipoint) = 0.d0 shell_vgl(ishell, 2, ipoint) = 0.d0 shell_vgl(ishell, 3, ipoint) = 0.d0 shell_vgl(ishell, 4, ipoint) = 0.d0 shell_vgl(ishell, 5, ipoint) = 0.d0 iprim_start = shell_prim_index(ishell) + 1 iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell) do iprim = iprim_start, iprim_end ar2 = expo(iprim)*r2 if (ar2 > cutoff) then cycle end if v = coef_normalized(iprim) * dexp(-ar2) two_a = -2.d0 * expo(iprim) * v shell_vgl(ishell, 1, ipoint) = & shell_vgl(ishell, 1, ipoint) + v shell_vgl(ishell, 2, ipoint) = & shell_vgl(ishell, 2, ipoint) + two_a * x shell_vgl(ishell, 3, ipoint) = & shell_vgl(ishell, 3, ipoint) + two_a * y shell_vgl(ishell, 4, ipoint) = & shell_vgl(ishell, 4, ipoint) + two_a * z shell_vgl(ishell, 5, ipoint) = & shell_vgl(ishell, 5, ipoint) + two_a * (3.d0 - 2.d0*ar2) end do end do end do end do end function qmckl_compute_ao_basis_shell_gaussian_vgl
4 Polynomial part
Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number (\(-l \le m \le l\)), and in the case of polynomials we choose the canonical ordering, i.e
\begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray}4.1 General functions for Powers of \(x-X_i\)
The qmckl_ao_power
function computes all the powers of the n
input data up to the given maximum value given in input for each of
the \(n\) points:
\[ P_{ik} = X_i^k \]
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
n |
int64t | in | Number of values |
X |
double[n] | in | Array containing the input values |
LMAX |
int32t[n] | in | Array containing the maximum power for each value |
P |
double[n][ldp] | out | Array containing all the powers of X |
ldp |
int64t | in | Leading dimension of array P |
Requirements:
context
is notQMCKL_NULL_CONTEXT
n
> 0X
is allocated with at least \(n \times 8\) bytesLMAX
is allocated with at least \(n \times 4\) bytesP
is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytesLDP
>= \(\max_i\)LMAX[i]
qmckl_exit_code qmckl_ao_power ( const qmckl_context context, const int64_t n, const double* X, const int32_t* LMAX, double* const P, const int64_t ldp );
function qmckl_ao_power(context, n, X, LMAX, P, ldp) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: ldp real (c_double ) , intent(in) :: X(n) integer (c_int32_t) , intent(in) :: LMAX(n) real (c_double ) , intent(out) :: P(ldp,n) integer(qmckl_exit_code) :: info integer(c_int64_t) :: i,k info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (n <= ldp) then info = QMCKL_INVALID_ARG_2 return endif k = MAXVAL(LMAX) if (LDP < k) then info = QMCKL_INVALID_ARG_6 return endif if (k <= 0) then info = QMCKL_INVALID_ARG_4 return endif do i=1,n P(1,i) = X(i) do k=2,LMAX(i) P(k,i) = P(k-1,i) * X(i) end do end do end function qmckl_ao_power
4.2 General functions for Value, Gradient and Laplacian of a polynomial
A polynomial is centered on a nucleus \(\mathbf{R}_i\)
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
The gradients with respect to electron coordinates are
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}and the Laplacian is
\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-2} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-2}. \end{eqnarray*}
qmckl_ao_polynomial_vgl
computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to lmax
.
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
X |
double[3] |
in | Array containing the coordinates of the points |
R |
double[3] |
in | Array containing the x,y,z coordinates of the center |
lmax |
int32_t |
in | Maximum angular momentum |
n |
int64_t |
inout | Number of computed polynomials |
L |
int32_t[n][ldl] |
out | Contains a,b,c for all n results |
ldl |
int64_t |
in | Leading dimension of L |
VGL |
double[n][ldv] |
out | Value, gradients and Laplacian of the polynomials |
ldv |
int64_t |
in | Leading dimension of array VGL |
Requirements:
context
≠QMCKL_NULL_CONTEXT
n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least \(3 \times n \times 4\) bytesVGL
is allocated with at least \(5 \times n \times 8\) bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
- On output, the powers are given in the following order (l=a+b+c):
- Increasing values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increasing values of
qmckl_exit_code qmckl_ao_polynomial_vgl ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
qmckl_exit_code qmckl_ao_polynomial_vgl_doc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
qmckl_exit_code qmckl_ao_polynomial_vgl (const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ) { #ifdef HAVE_HPC //return qmckl_ao_polynomial_vgl_hpc (context, X, R, lmax, n, L, ldl, VGL, ldv); return qmckl_ao_polynomial_vgl_doc #else return qmckl_ao_polynomial_vgl_doc #endif (context, X, R, lmax, n, L, ldl, VGL, ldv); }
function qmckl_ao_polynomial_vgl_doc (context, & X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) real (c_double ) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer(qmckl_exit_code) :: info integer*8 :: i,j integer :: a,b,c,d double precision :: Y(3) double precision :: pows(-2:lmax,3) double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax < 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < 5) then info = QMCKL_INVALID_ARG_9 return endif ! The shift below is such that polynomials will not make the AO equal to zero at the nodes of the orbitals do i=1,3 Y(i) = (X(i) - R(i)) + 1.d-20 end do if (lmax == 0) then VGL(1,1) = 1.d0 VGL(2,1) = 0.d0 VGL(3,1) = 0.d0 VGL(4,1) = 0.d0 VGL(5,1) = 0.d0 l(1,1) = 0 l(2,1) = 0 l(3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 VGL(1,1) = 1.d0 VGL(1,2) = pows(1,1) VGL(2,2) = 1.d0 VGL(1,3) = pows(1,2) VGL(3,3) = 1.d0 VGL(1,4) = pows(1,3) VGL(4,4) = 1.d0 l (1:3,1:4) = 0 l (1,2) = 1 l (2,3) = 1 l (3,4) = 1 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) VGL(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz VGL(2,n) = pows(a-1,1) * yz VGL(3,n) = pows(b-1,2) * xz VGL(4,n) = pows(c-1,3) * xy VGL(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_vgl_doc
qmckl_exit_code qmckl_ao_polynomial_transp_vgl ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
qmckl_exit_code qmckl_ao_polynomial_transp_vgl_doc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc ( const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv );
qmckl_exit_code qmckl_ao_polynomial_transp_vgl (const qmckl_context context, const double* X, const double* R, const int32_t lmax, int64_t* n, int32_t* const L, const int64_t ldl, double* const VGL, const int64_t ldv ) { #ifdef HAVE_HPC return qmckl_ao_polynomial_transp_vgl_hpc #else return qmckl_ao_polynomial_transp_vgl_doc #endif (context, X, R, lmax, n, L, ldl, VGL, ldv); }
function qmckl_ao_polynomial_transp_vgl_doc (context, & X, R, lmax, n, L, ldl, VGL, ldv) & bind(C) result(info) use qmckl_constants implicit none integer (qmckl_context), intent(in) , value :: context real (c_double ) , intent(in) :: X(3) real (c_double ) , intent(in) :: R(3) integer (c_int32_t) , intent(in) , value :: lmax integer (c_int64_t) , intent(inout) :: n integer (c_int64_t) , intent(in) , value :: ldl integer (c_int64_t) , intent(in) , value :: ldv integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) real (c_double ) , intent(out) :: VGL(ldv,5) integer(qmckl_exit_code) :: info integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) real*8 :: pows(-2:21,3) ! lmax < 22 double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return endif if (lmax < 0) then info = QMCKL_INVALID_ARG_4 return endif if (ldl < 3) then info = QMCKL_INVALID_ARG_7 return endif if (ldv < (lmax+1)*(lmax+2)*(lmax+3)/6) then info = QMCKL_INVALID_ARG_9 return endif if (lmax > 0) then do i=1,3 Y(i) = X(i) - R(i) end do pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do l (1:3,1:4) = 0 VGL(1:4,1:5) = 0.d0 VGL(1 ,1 ) = 1.d0 l (1,2) = 1 VGL(2,1) = Y(1) VGL(2,2) = 1.d0 l (2,3) = 1 VGL(3,1) = Y(2) VGL(3,3) = 1.d0 l (3,4) = 1 VGL(4,1) = Y(3) VGL(4,4) = 1.d0 n=4 else VGL(1,1) = 1.d0 VGL(1,2:5) = 0.d0 l(1:3,1) = 0 n=1 return endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) l(1,n) = a l(2,n) = b l(3,n) = c VGL(n,1) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz VGL(n,2) = pows(a-1,1) * yz VGL(n,3) = pows(b-1,2) * xz VGL(n,4) = pows(c-1,3) * xy VGL(n,5) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = QMCKL_SUCCESS end function qmckl_ao_polynomial_transp_vgl_doc
static inline qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc_inline (const qmckl_context context, const double* restrict X, const double* restrict R, const int32_t lmax, int64_t* n, int32_t* restrict const L, const int64_t ldl, double* restrict const VGL, const int64_t ldv ) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; assert (ctx != NULL && X != NULL && R != NULL && n != NULL && L != NULL && VGL != NULL); if (lmax < 0) return QMCKL_INVALID_ARG_4; if (ldl < 3) return QMCKL_INVALID_ARG_7; int32_t m; const double shift=1.e-20; switch (lmax) { case 0: { if (ldv < 1) return QMCKL_INVALID_ARG_9; L[0] = 0; L[1] = 0; L[2] = 0; VGL[0 ] = 1.0; VGL[ldv ] = 0.0; VGL[ldv<<1 ] = 0.0; VGL[(ldv<<1)+ldv] = 0.0; VGL[ldv<<2 ] = 0.0; m=1; break; } case 1: { if (ldv < 4) return QMCKL_INVALID_ARG_9; if (ldl == 3) { const int32_t ltmp[12] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}; for (int i=0 ; i<12 ; ++i) L[i] = ltmp[i]; } else { int32_t* restrict const l[4] = {L, L+ldl, L+(ldl<<1), L+ldl+(ldl<<1)}; l[0][0] = 0; l[0][1] = 0; l[0][2] = 0; l[1][0] = 1; l[1][1] = 0; l[1][2] = 0; l[2][0] = 0; l[2][1] = 1; l[2][2] = 0; l[3][0] = 0; l[3][1] = 0; l[3][2] = 1; } if (ldv == 4) { const double tmp[20] = {1.0, (X[0]-R[0])+shift, (X[1]-R[1])+shift, (X[2]-R[2])+shift, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}; for (int i=0 ; i<20 ; ++i) VGL[i] = tmp[i]; } else { double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv << 1); double* restrict const vgl4 = VGL + ldv + (ldv << 1); double* restrict const vgl5 = VGL + (ldv << 2); for (int32_t k=0 ; k<4 ; ++k) { vgl2[k] = 0.0; vgl3[k] = 0.0; vgl4[k] = 0.0; vgl5[k] = 0.0; } vgl1[0] = 1.0; vgl1[1] = (X[0]-R[0])+shift; vgl1[2] = (X[1]-R[1])+shift; vgl1[3] = (X[2]-R[2])+shift; vgl2[1] = 1.0; vgl3[2] = 1.0; vgl4[3] = 1.0; } m=4; break; } case 2: { if (ldv < 10) return QMCKL_INVALID_ARG_9; if (ldl == 3) { const int32_t ltmp[30] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 2}; for (int i=0 ; i<30 ; ++i) L[i] = ltmp[i]; } else { int32_t* restrict l[10]; for (int32_t i=0 ; i<10 ; ++i) { l[i] = L + i*ldl; } l[0][0] = 0; l[0][1] = 0; l[0][2] = 0; l[1][0] = 1; l[1][1] = 0; l[1][2] = 0; l[2][0] = 0; l[2][1] = 1; l[2][2] = 0; l[3][0] = 0; l[3][1] = 0; l[3][2] = 1; l[4][0] = 2; l[4][1] = 0; l[4][2] = 0; l[5][0] = 1; l[5][1] = 1; l[5][2] = 0; l[6][0] = 1; l[6][1] = 0; l[6][2] = 1; l[7][0] = 0; l[7][1] = 2; l[7][2] = 0; l[8][0] = 0; l[8][1] = 1; l[8][2] = 1; l[9][0] = 0; l[9][1] = 0; l[9][2] = 2; } const double Y[3] = { X[0]-R[0], X[1]-R[1], X[2]-R[2] }; if (ldv == 50) { const double tmp[50] = { 1.0, Y[0]+shift, Y[1]+shift, Y[2]+shift, Y[0] * Y[0]+shift, Y[0] * Y[1]+shift, Y[0] * Y[2]+shift, Y[1] * Y[1]+shift, Y[1] * Y[2]+shift, Y[2] * Y[2]+shift, 0.0, 1.0, 0.0, 0.0, Y[0] + Y[0], Y[1], Y[2], 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, Y[0], 0.0, Y[1] + Y[1], Y[2], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, Y[0], 0.0, Y[1], Y[2] + Y[2], 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0., 2.0 }; for (int i=0 ; i<50 ; ++i) VGL[i] = tmp[i]; } else { double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv << 1); double* restrict const vgl4 = VGL + 3*ldv; double* restrict const vgl5 = VGL + (ldv << 2); vgl1[0] = 1.0 ; vgl1[1] = Y[0]+shift ; vgl1[2] = Y[1]+shift; vgl1[3] = Y[2]+shift ; vgl1[4] = Y[0]*Y[0]+shift; vgl1[5] = Y[0]*Y[1]+shift; vgl1[6] = Y[0]*Y[2]+shift; vgl1[7] = Y[1]*Y[1]+shift; vgl1[8] = Y[1]*Y[2]+shift; vgl1[9] = Y[2]*Y[2]+shift; vgl2[0] = 0.0 ; vgl2[1] = 1.0 ; vgl2[2] = 0.0 ; vgl2[3] = 0.0 ; vgl2[4] = Y[0]+Y[0]; vgl2[5] = Y[1]; vgl2[6] = Y[2]; vgl2[7] = 0.0 ; vgl2[8] = 0.0 ; vgl2[9] = 0.0 ; vgl3[0] = 0.0; vgl3[1] = 0.0 ; vgl3[2] = 1.0 ; vgl3[3] = 0.0; vgl3[4] = 0.0 ; vgl3[5] = Y[0]; vgl3[6] = 0.0; vgl3[7] = Y[1]+Y[1]; vgl3[8] = Y[2]; vgl3[9] = 0.0; vgl4[0] = 0.0 ; vgl4[1] = 0.0; vgl4[2] = 0.0 ; vgl4[3] = 1.0 ; vgl4[4] = 0.0; vgl4[5] = 0.0 ; vgl4[6] = Y[0] ; vgl4[7] = 0.0; vgl4[8] = Y[1]; vgl4[9] = Y[2]+Y[2]; vgl5[0] = 0.0; vgl5[1] = 0.0; vgl5[2] = 0.0; vgl5[3] = 0.0; vgl5[4] = 2.0; vgl5[5] = 0.0; vgl5[6] = 0.0; vgl5[7] = 2.0; vgl5[8] = 0.0; vgl5[9] = 2.0; } m=10; break; } default: { const int32_t size_max = (lmax+1)*(lmax+2)*(lmax+3)/6; if (ldv < size_max) return QMCKL_INVALID_ARG_9; double* restrict const vgl1 = VGL; double* restrict const vgl2 = VGL + ldv; double* restrict const vgl3 = VGL + (ldv<<1); double* restrict const vgl4 = VGL + ldv + (ldv<<1); double* restrict const vgl5 = VGL + (ldv<<2); const double Y[3] = { X[0]-R[0], X[1]-R[1], X[2]-R[2]}; assert(size_max > lmax+3); double pows[3][size_max]; for (int32_t i=0 ; i<3 ; ++i) { pows[0][i] = 1.0; pows[1][i] = 1.0; pows[2][i] = 1.0; } for (int32_t i=3 ; i<=lmax+2 ; ++i) { pows[0][i] = pows[0][i-1] * Y[0]; pows[1][i] = pows[1][i-1] * Y[1]; pows[2][i] = pows[2][i-1] * Y[2]; } int32_t* l[size_max]; for (int32_t i=0 ; i<size_max ; ++i) { l[i] = &(L[i*ldl]); } for (int32_t i=0 ; i<4 ; ++i) { l[i][0] = 0; l[i][1] = 0; l[i][2] = 0; } l[1][0] = 1; l[2][1] = 1; l[3][2] = 1; for (int32_t k=0 ; k<4 ; ++k) { vgl2[k] = 0.0; vgl3[k] = 0.0; vgl4[k] = 0.0; vgl5[k] = 0.0; } vgl1[0] = 1.0; vgl1[1] = Y[0]+shift; vgl1[2] = Y[1]+shift; vgl1[3] = Y[2]+shift; vgl2[1] = 1.0; vgl3[2] = 1.0; vgl4[3] = 1.0; m=4; double dd = 2.0; for (int32_t d=2 ; d<= lmax ; ++d) { double da = dd; for (int32_t a=d ; a>=0 ; --a) { double db = dd-da; for (int32_t b=d-a ; b>=0 ; --b) { const int32_t c = d - a - b; const double dc = dd - da - db; double xy = pows[0][a+2] * pows[1][b+2]; double yz = pows[1][b+2] * pows[2][c+2]; double xz = pows[0][a+2] * pows[2][c+2]; l[m][0] = a; l[m][1] = b; l[m][2] = c; vgl1[m] = xy * pows[2][c+2]+shift; xy *= dc; xz *= db; yz *= da; vgl2[m] = pows[0][a+1] * yz; vgl3[m] = pows[1][b+1] * xz; vgl4[m] = pows[2][c+1] * xy; vgl5[m] = (da-1.) * pows[0][a] * yz + (db-1.) * pows[1][b] * xz + (dc-1.) * pows[2][c] * xy; db -= 1.0; ++m; } da -= 1.0; } dd += 1.0; } } } *n = m; return QMCKL_SUCCESS; } qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc (const qmckl_context context, const double* restrict X, const double* restrict R, const int32_t lmax, int64_t* n, int32_t* restrict const L, const int64_t ldl, double* restrict const VGL, const int64_t ldv ) { return qmckl_ao_polynomial_transp_vgl_hpc_inline (context, X, R, lmax, n, L, ldl, VGL, ldv ); }
5 Combining radial and polynomial parts
5.1 Determination of nucleus ranges
The range of a nucleus is defined as the distance beyond which all the AOs are zero, up to a given precision. For all possible numbers of bits of precision (1-53), a range is given.
qmckl_exit_code qmckl_compute_nucleus_range_gaussian( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int64_t prim_num, const int64_t nucl_num, const double* nucl_coord, const int64_t* nucleus_index, const int64_t* nucleus_shell_num, const int32_t* nucleus_max_ang_mom, const int64_t* shell_prim_index, const int64_t* shell_prim_num, const int32_t* shell_ang_mom, const double* ao_factor, const double* ao_expo, const double* coefficient_normalized, double* const nucleus_range);
function qmckl_compute_nucleus_range_gaussian(context, & ao_num, shell_num, prim_num, nucl_num, & nucl_coord, nucleus_index, nucleus_shell_num, & nucleus_max_ang_mom, shell_prim_index, shell_prim_num, shell_ang_mom, & ao_factor, expo, coef_normalized, nucleus_range) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: prim_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num) integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num) integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num) integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num) real (c_double ) , intent(in) :: ao_factor(ao_num) real (c_double ) , intent(in) :: expo(prim_num) real (c_double ) , intent(in) :: coef_normalized(prim_num) real (c_double ) , intent(out) :: nucleus_range(nucl_num,53) integer(qmckl_exit_code) :: info double precision :: e_coord(3), n_coord(3) integer*8 :: n_poly, iprim, iprim_start, iprim_end integer :: l, il, k, iprecision integer*8 :: ipoint, inucl, ishell integer*8 :: ishell_start, ishell_end integer :: lstart(0:20) double precision :: shell_vgl(3) double precision :: x, y, z, r2, ar2, two_a double precision :: vmax, cutoff, v double precision, allocatable :: poly_vgl(:,:), ao_vgl(:,:) integer , allocatable :: powers(:,:), ao_index(:) allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num)) ! Pre-computed data do l=0,20 lstart(l) = l*(l+1)*(l+2)/6 +1 end do k=1 do inucl=1,nucl_num ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end l = shell_ang_mom(ishell) ao_index(ishell) = k k = k + lstart(l+1) - lstart(l) end do end do info = QMCKL_SUCCESS n_coord(1) = 0.d0 n_coord(2) = 0.d0 n_coord(3) = 0.d0 e_coord(2) = 0.d0 e_coord(3) = 0.d0 nucleus_range = 50.d0 do inucl=1,nucl_num x = 50.d0 do iprecision = 53,2,-1 cutoff = 1.d0 / ( 2.d0** (iprecision-2) ) vmax = 0.d0 do while ( (vmax < cutoff) .and. (x > 0.d0) ) x = x - .1d0 vmax = 0.d0 e_coord(1) = x r2 = x*x ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end shell_vgl(1) = 0.d0 shell_vgl(2) = 0.d0 shell_vgl(3) = 0.d0 iprim_start = shell_prim_index(ishell) + 1 iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell) do iprim = iprim_start, iprim_end ar2 = expo(iprim)*r2 v = coef_normalized(iprim) * dexp(-ar2) two_a = -2.d0 * expo(iprim) * v shell_vgl(1) = shell_vgl(1) + v shell_vgl(2) = shell_vgl(2) + two_a * x shell_vgl(3) = shell_vgl(3) + two_a * (3.d0 - 2.d0*ar2) end do k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 vmax = max(vmax, poly_vgl(1,il) * shell_vgl(1) * ao_factor(k)) vmax = max(vmax, ( poly_vgl(2,il) * shell_vgl(1) + poly_vgl(1,il) * shell_vgl(2) ) * ao_factor(k)) vmax = max(vmax, ( poly_vgl(5,il) * shell_vgl(3) + poly_vgl(1,il) * shell_vgl(3) + & 2.d0 * (poly_vgl(2,il) * shell_vgl(2) ) ) * ao_factor(k) ) k = k+1 end do end do end do nucleus_range(inucl,iprecision) = x end do end do deallocate(poly_vgl, powers) end function qmckl_compute_nucleus_range_gaussian
5.2 Values only
5.2.1 Unoptimized version
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
ao_num |
int64_t |
in | Number of AOs |
shell_num |
int64_t |
in | Number of shells |
point_num |
int64_t |
in | Number of points |
nucl_num |
int64_t |
in | Number of nuclei |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
nucleus_index |
int64_t[nucl_num] |
in | Index of the 1st shell of each nucleus |
nucleus_shell_num |
int64_t[nucl_num] |
in | Number of shells per nucleus |
nucleus_range |
double[nucl_num] |
in | Range beyond which all is zero |
nucleus_max_ang_mom |
int32_t[nucl_num] |
in | Maximum angular momentum per nucleus |
shell_ang_mom |
int32_t[shell_num] |
in | Angular momentum of each shell |
ao_factor |
double[ao_num] |
in | Normalization factor of the AOs |
shell_vgl |
double[point_num][5][shell_num] |
in | Value, gradients and Laplacian of the shells |
ao_value |
double[point_num][ao_num] |
out | Values of the AOs |
function qmckl_compute_ao_value_doc(context, & ao_num, shell_num, point_num, nucl_num, & coord, nucl_coord, nucleus_index, nucleus_shell_num, & nucleus_range, nucleus_max_ang_mom, shell_ang_mom, & ao_factor, shell_vgl, ao_value) & bind(C) result(info) use qmckl_constants use qmckl, only: qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num) integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num) real (c_double ) , intent(in) :: ao_factor(ao_num) real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num) real (c_double ) , intent(out) :: ao_value(ao_num,point_num) integer(qmckl_exit_code) :: info double precision :: e_coord(3), n_coord(3) integer*8 :: n_poly integer :: l, il, k integer*8 :: ipoint, inucl, ishell integer*8 :: ishell_start, ishell_end integer :: lstart(0:20) double precision :: x, y, z, r2 double precision :: cutoff double precision, allocatable :: poly_vgl(:,:) integer , allocatable :: powers(:,:), ao_index(:) allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num)) ! Pre-computed data do l=0,20 lstart(l) = l*(l+1)*(l+2)/6 +1 end do k=1 do inucl=1,nucl_num ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end l = shell_ang_mom(ishell) ao_index(ishell) = k k = k + lstart(l+1) - lstart(l) end do end do info = QMCKL_SUCCESS ! Don't compute polynomials when the radial part is zero. cutoff = qmckl_get_numprec_precision(context) cutoff = dlog(2.d0**(cutoff-2)) do ipoint = 1, point_num e_coord(1) = coord(ipoint,1) e_coord(2) = coord(ipoint,2) e_coord(3) = coord(ipoint,3) ao_value(:,ipoint) = 0.d0 do inucl=1,nucl_num n_coord(1) = nucl_coord(inucl,1) n_coord(2) = nucl_coord(inucl,2) n_coord(3) = nucl_coord(inucl,3) ! Test if the point is in the range of the nucleus x = e_coord(1) - n_coord(1) y = e_coord(2) - n_coord(2) z = e_coord(3) - n_coord(3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 ! Value ao_value(k,ipoint) = & poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k) k = k+1 end do end do end do end do deallocate(poly_vgl, powers) end function qmckl_compute_ao_value_doc
5.2.2 HPC version
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
ao_num |
int64_t |
in | Number of AOs |
shell_num |
int64_t |
in | Number of shells |
prim_num |
int64_t |
in | Number of primitives |
point_num |
int64_t |
in | Number of points |
nucl_num |
int64_t |
in | Number of nuclei |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
nucleus_index |
int64_t[nucl_num] |
in | Index of the 1st shell of each nucleus |
nucleus_shell_num |
int64_t[nucl_num] |
in | Number of shells per nucleus |
nucleus_range |
double[nucl_num] |
in | Range beyond which all is zero |
nucleus_max_ang_mom |
int32_t[nucl_num] |
in | Maximum angular momentum per nucleus |
shell_ang_mom |
int32_t[shell_num] |
in | Angular momentum of each shell |
shell_prim_index |
int64_t[shell_num] |
in | Index of the 1st primitive of each shell |
shell_prim_num |
int64_t[shell_num] |
in | Number of primitives per shell |
ao_factor |
double[ao_num] |
in | Normalization factor of the AOs |
ao_expo |
double[prim_num] |
in | Value, gradients and Laplacian of the shells |
coef_normalized |
double[prim_num] |
in | Value, gradients and Laplacian of the shells |
ao_value |
double[point_num][ao_num] |
out | Values of the AOs |
5.2.3 Interfaces
qmckl_exit_code qmckl_compute_ao_value_doc ( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int64_t point_num, const int64_t nucl_num, const double* coord, const double* nucl_coord, const int64_t* nucleus_index, const int64_t* nucleus_shell_num, const double* nucleus_range, const int32_t* nucleus_max_ang_mom, const int32_t* shell_ang_mom, const double* ao_factor, const double* shell_vgl, double* const ao_value );
#ifdef HAVE_HPC qmckl_exit_code qmckl_compute_ao_value_hpc_gaussian ( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int32_t* prim_num_per_nucleus, const int64_t point_num, const int64_t nucl_num, const double* coord, const double* nucl_coord, const int64_t* nucleus_index, const int64_t* nucleus_shell_num, const double* nucleus_range, const int32_t* nucleus_max_ang_mom, const int32_t* shell_ang_mom, const double* ao_factor, const qmckl_matrix expo_per_nucleus, const qmckl_tensor coef_per_nucleus, double* const ao_value ); #endif
5.3 Value, gradients, Laplacian
5.3.1 Reference version
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
ao_num |
int64_t |
in | Number of AOs |
shell_num |
int64_t |
in | Number of shells |
point_num |
int64_t |
in | Number of points |
nucl_num |
int64_t |
in | Number of nuclei |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
nucleus_index |
int64_t[nucl_num] |
in | Index of the 1st shell of each nucleus |
nucleus_shell_num |
int64_t[nucl_num] |
in | Number of shells per nucleus |
nucleus_range |
double[nucl_num] |
in | Range beyond which all is zero |
nucleus_max_ang_mom |
int32_t[nucl_num] |
in | Maximum angular momentum per nucleus |
shell_ang_mom |
int32_t[shell_num] |
in | Angular momentum of each shell |
ao_factor |
double[ao_num] |
in | Normalization factor of the AOs |
shell_vgl |
double[point_num][5][shell_num] |
in | Value, gradients and Laplacian of the shells |
ao_vgl |
double[point_num][5][ao_num] |
out | Value, gradients and Laplacian of the AOs |
function qmckl_compute_ao_vgl_doc(context, & ao_num, shell_num, point_num, nucl_num, & coord, nucl_coord, nucleus_index, nucleus_shell_num, & nucleus_range, nucleus_max_ang_mom, shell_ang_mom, & ao_factor, shell_vgl, ao_vgl) & bind(C) result(info) use qmckl_constants use qmckl, only : qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision implicit none integer (qmckl_context), intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: ao_num integer (c_int64_t) , intent(in) , value :: shell_num integer (c_int64_t) , intent(in) , value :: point_num integer (c_int64_t) , intent(in) , value :: nucl_num real (c_double ) , intent(in) :: coord(point_num,3) real (c_double ) , intent(in) :: nucl_coord(nucl_num,3) integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num) integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num) real (c_double ) , intent(in) :: nucleus_range(nucl_num) integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num) integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num) real (c_double ) , intent(in) :: ao_factor(ao_num) real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num) real (c_double ) , intent(out) :: ao_vgl(ao_num,5,point_num) integer(qmckl_exit_code) :: info double precision :: e_coord(3), n_coord(3) integer*8 :: n_poly integer :: l, il, k integer*8 :: ipoint, inucl, ishell integer*8 :: ishell_start, ishell_end integer :: lstart(0:20) double precision :: x, y, z, r2 double precision :: cutoff double precision, allocatable :: poly_vgl(:,:) integer , allocatable :: powers(:,:), ao_index(:) allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num)) ! Pre-computed data do l=0,20 lstart(l) = l*(l+1)*(l+2)/6 +1 end do k=1 do inucl=1,nucl_num ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end l = shell_ang_mom(ishell) ao_index(ishell) = k k = k + lstart(l+1) - lstart(l) end do end do info = QMCKL_SUCCESS ! Don't compute polynomials when the radial part is zero. cutoff = qmckl_get_numprec_precision(context) cutoff = dlog(2.d0**(cutoff-2)) do ipoint = 1, point_num e_coord(1) = coord(ipoint,1) e_coord(2) = coord(ipoint,2) e_coord(3) = coord(ipoint,3) ao_vgl(:,:,ipoint) = 0.d0 do inucl=1,nucl_num n_coord(1) = nucl_coord(inucl,1) n_coord(2) = nucl_coord(inucl,2) n_coord(3) = nucl_coord(inucl,3) ! Test if the point is in the range of the nucleus x = e_coord(1) - n_coord(1) y = e_coord(2) - n_coord(2) z = e_coord(3) - n_coord(3) r2 = x*x + y*y + z*z if (r2 > cutoff*nucleus_range(inucl)) then cycle end if ! Compute polynomials info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, & nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, & poly_vgl, 5_8) ! Loop over shells ishell_start = nucleus_index(inucl) + 1 ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl) do ishell = ishell_start, ishell_end k = ao_index(ishell) l = shell_ang_mom(ishell) do il = lstart(l), lstart(l+1)-1 ! Value ao_vgl(k,1,ipoint) = & poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k) ! Grad_x ao_vgl(k,2,ipoint) = ( & poly_vgl(2,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,2,ipoint) & ) * ao_factor(k) ! Grad_y ao_vgl(k,3,ipoint) = ( & poly_vgl(3,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,3,ipoint) & ) * ao_factor(k) ! Grad_z ao_vgl(k,4,ipoint) = ( & poly_vgl(4,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,4,ipoint) & ) * ao_factor(k) ! Lapl_z ao_vgl(k,5,ipoint) = ( & poly_vgl(5,il) * shell_vgl(ishell,1,ipoint) + & poly_vgl(1,il) * shell_vgl(ishell,5,ipoint) + & 2.d0 * ( & poly_vgl(2,il) * shell_vgl(ishell,2,ipoint) + & poly_vgl(3,il) * shell_vgl(ishell,3,ipoint) + & poly_vgl(4,il) * shell_vgl(ishell,4,ipoint) ) & ) * ao_factor(k) k = k+1 end do end do end do end do deallocate(poly_vgl, powers) end function qmckl_compute_ao_vgl_doc
5.3.2 HPC version
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
ao_num |
int64_t |
in | Number of AOs |
shell_num |
int64_t |
in | Number of shells |
prim_num |
int64_t |
in | Number of primitives |
point_num |
int64_t |
in | Number of points |
nucl_num |
int64_t |
in | Number of nuclei |
coord |
double[3][point_num] |
in | Coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
nucleus_index |
int64_t[nucl_num] |
in | Index of the 1st shell of each nucleus |
nucleus_shell_num |
int64_t[nucl_num] |
in | Number of shells per nucleus |
nucleus_range |
double[nucl_num] |
in | Range beyond which all is zero |
nucleus_max_ang_mom |
int32_t[nucl_num] |
in | Maximum angular momentum per nucleus |
shell_ang_mom |
int32_t[shell_num] |
in | Angular momentum of each shell |
shell_prim_index |
int64_t[shell_num] |
in | Index of the 1st primitive of each shell |
shell_prim_num |
int64_t[shell_num] |
in | Number of primitives per shell |
ao_factor |
double[ao_num] |
in | Normalization factor of the AOs |
ao_expo |
double[prim_num] |
in | Exponents of the primitives |
coef_normalized |
double[prim_num] |
in | Normalized coefficients of the primitives |
ao_vgl |
double[point_num][5][ao_num] |
out | Value, gradients and Laplacian of the AOs |
5.3.3 Interfaces
qmckl_exit_code qmckl_compute_ao_vgl_doc ( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int64_t point_num, const int64_t nucl_num, const double* coord, const double* nucl_coord, const int64_t* nucleus_index, const int64_t* nucleus_shell_num, const double* nucleus_range, const int32_t* nucleus_max_ang_mom, const int32_t* shell_ang_mom, const double* ao_factor, const double* shell_vgl, double* const ao_vgl );
#ifdef HAVE_HPC qmckl_exit_code qmckl_compute_ao_vgl_hpc_gaussian ( const qmckl_context context, const int64_t ao_num, const int64_t shell_num, const int32_t* prim_num_per_nucleus, const int64_t point_num, const int64_t nucl_num, const double* coord, const double* nucl_coord, const int64_t* nucleus_index, const int64_t* nucleus_shell_num, const double* nucleus_range, const int32_t* nucleus_max_ang_mom, const int32_t* shell_ang_mom, const double* ao_factor, const qmckl_matrix expo_per_nucleus, const qmckl_tensor coef_per_nucleus, double* const ao_vgl ); #endif