1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-06 19:33:14 +01:00

Accelerate AOs

This commit is contained in:
Anthony Scemama 2022-02-09 18:06:46 +01:00
parent e9f79c144a
commit fac03ea53b

View File

@ -3443,7 +3443,7 @@ integer function qmckl_compute_ao_basis_shell_gaussian_vgl_f( &
! Don't compute exponentials when the result will be almost zero.
! TODO : Use numerical precision here
cutoff = -dlog(1.d-15)
cutoff = -dlog(1.d-12)
do inucl=1,nucl_num
@ -4094,7 +4094,7 @@ integer function qmckl_ao_polynomial_vgl_f (context, &
lmax_array(1:3) = lmax
if (lmax == 0) then
VGL(1,1) = 1.d0
vgL(2:5,1) = 0.d0
VGL(2:5,1) = 0.d0
l(1:3,1) = 0
n=1
else if (lmax > 0) then
@ -4109,19 +4109,19 @@ integer function qmckl_ao_polynomial_vgl_f (context, &
l (1:3,1:4) = 0
VGL(1 ,1 ) = 1.d0
vgl(1:5,2:4) = 0.d0
VGL(1:5,2:4) = 0.d0
l (1,2) = 1
vgl(1,2) = pows(1,1)
vgL(2,2) = 1.d0
VGL(1,2) = pows(1,1)
VGL(2,2) = 1.d0
l (2,3) = 1
vgl(1,3) = pows(1,2)
vgL(3,3) = 1.d0
VGL(1,3) = pows(1,2)
VGL(3,3) = 1.d0
l (3,4) = 1
vgl(1,4) = pows(1,3)
vgL(4,4) = 1.d0
VGL(1,4) = pows(1,3)
VGL(4,4) = 1.d0
n=4
endif
@ -4145,17 +4145,17 @@ integer function qmckl_ao_polynomial_vgl_f (context, &
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
vgl(1,n) = xy * pows(c,3)
VGL(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
vgl(2,n) = pows(a-1,1) * yz
vgl(3,n) = pows(b-1,2) * xz
vgl(4,n) = pows(c-1,3) * xy
VGL(2,n) = pows(a-1,1) * yz
VGL(3,n) = pows(b-1,2) * xz
VGL(4,n) = pows(c-1,3) * xy
vgl(5,n) = &
VGL(5,n) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
@ -4378,7 +4378,7 @@ integer function qmckl_compute_ao_vgl_f(context, &
double precision :: e_coord(3), n_coord(3)
integer*8 :: n_poly
integer :: l, il, k
integer :: l, il, k, m, n
integer*8 :: ipoint, inucl, ishell
integer*8 :: ishell_start, ishell_end
integer :: lstart(0:20)
@ -4388,25 +4388,45 @@ integer function qmckl_compute_ao_vgl_f(context, &
double precision, allocatable :: poly_vgl(:,:)
integer , allocatable :: powers(:,:)
integer , allocatable :: kil(:), knucl(:), kshell(:)
allocate(poly_vgl(5,ao_num), powers(3,ao_num))
allocate(poly_vgl(8,ao_num), powers(8,ao_num))
allocate(kil(ao_num), kshell(ao_num), knucl(nucl_num+1))
! Pre-computed data
do l=0,20
lstart(l) = l*(l+1)*(l+2)/6 +1
k=1
do inucl=1,nucl_num
knucl(inucl) = k
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
l = shell_ang_mom(ishell)
m = l*(l+1)*(l+2)/6 +1
n = (l+1)*(l+2)*(l+3)/6
do il = m, n
kil(k) = il
kshell(k) = ishell
k = k+1
end do
end do
end do
knucl(nucl_num+1) = ao_num+1
info = QMCKL_SUCCESS
! Don't compute polynomials when the radial part is zero.
! TODO : Use numerical precision here
cutoff = -dlog(1.d-15)
cutoff = -dlog(1.d-12)
do ipoint = 1, point_num
e_coord(1) = coord(ipoint,1)
e_coord(2) = coord(ipoint,2)
e_coord(3) = coord(ipoint,3)
k=1
! Express the radial part in the AO basis
do inucl=1,nucl_num
n_coord(1) = nucl_coord(inucl,1)
n_coord(2) = nucl_coord(inucl,2)
@ -4417,62 +4437,50 @@ integer function qmckl_compute_ao_vgl_f(context, &
y = e_coord(2) - n_coord(2)
z = e_coord(3) - n_coord(3)
r2 = x*x + z*z + z*z
r2 = x*x + y*y + z*z
if (r2 > cutoff*nucleus_range(inucl)) then
do k = knucl(inucl), knucl(inucl+1)-1
ao_vgl(k,ipoint,1) = 0.d0
ao_vgl(k,ipoint,2) = 0.d0
ao_vgl(k,ipoint,3) = 0.d0
ao_vgl(k,ipoint,4) = 0.d0
ao_vgl(k,ipoint,5) = 0.d0
end do
cycle
end if
! Compute polynomials
info = qmckl_ao_polynomial_vgl_f(context, e_coord, n_coord, &
nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, &
poly_vgl, 5_8)
nucleus_max_ang_mom(inucl), n_poly, powers, 8_8, poly_vgl, 8_8)
! Loop over shells
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
l = shell_ang_mom(ishell)
do il = lstart(l), lstart(l+1)-1
! Value
ao_vgl(k,ipoint,1) = &
poly_vgl(1,il) * shell_vgl(ishell,ipoint,1) * ao_factor(k)
do k = knucl(inucl), knucl(inucl+1)-1
y = shell_vgl(kshell(k),ipoint,1) * ao_factor(k)
! Grad_x
ao_vgl(k,ipoint,2) = ( &
poly_vgl(2,il) * shell_vgl(ishell,ipoint,1) + &
poly_vgl(1,il) * shell_vgl(ishell,ipoint,2) &
) * ao_factor(k)
ao_vgl(k,ipoint,1) = y * poly_vgl(1,kil(k))
ao_vgl(k,ipoint,2) = y * poly_vgl(2,kil(k))
ao_vgl(k,ipoint,3) = y * poly_vgl(3,kil(k))
ao_vgl(k,ipoint,4) = y * poly_vgl(4,kil(k))
ao_vgl(k,ipoint,5) = y * poly_vgl(5,kil(k))
! Grad_y
ao_vgl(k,ipoint,3) = ( &
poly_vgl(3,il) * shell_vgl(ishell,ipoint,1) + &
poly_vgl(1,il) * shell_vgl(ishell,ipoint,3) &
) * ao_factor(k)
x = poly_vgl(1,kil(k)) * ao_factor(k)
! Grad_z
ao_vgl(k,ipoint,4) = ( &
poly_vgl(4,il) * shell_vgl(ishell,ipoint,1) + &
poly_vgl(1,il) * shell_vgl(ishell,ipoint,4) &
) * ao_factor(k)
ao_vgl(k,ipoint,2) = ao_vgl(k,ipoint,2) + x * shell_vgl(kshell(k),ipoint,2)
ao_vgl(k,ipoint,3) = ao_vgl(k,ipoint,3) + x * shell_vgl(kshell(k),ipoint,3)
ao_vgl(k,ipoint,4) = ao_vgl(k,ipoint,4) + x * shell_vgl(kshell(k),ipoint,4)
ao_vgl(k,ipoint,5) = ao_vgl(k,ipoint,5) + x * shell_vgl(kshell(k),ipoint,5)
! Lapl_z
ao_vgl(k,ipoint,5) = ( &
poly_vgl(5,il) * shell_vgl(ishell,ipoint,1) + &
poly_vgl(1,il) * shell_vgl(ishell,ipoint,5) + &
2.d0 * ( &
poly_vgl(2,il) * shell_vgl(ishell,ipoint,2) + &
poly_vgl(3,il) * shell_vgl(ishell,ipoint,3) + &
poly_vgl(4,il) * shell_vgl(ishell,ipoint,4) ) &
) * ao_factor(k)
k = k+1
end do
ao_vgl(k,ipoint,5) = ao_vgl(k,ipoint,5) + &
(ao_factor(k) + ao_factor(k)) * (&
poly_vgl(2,kil(k)) * shell_vgl(kshell(k),ipoint,2) + &
poly_vgl(3,kil(k)) * shell_vgl(kshell(k),ipoint,3) + &
poly_vgl(4,kil(k)) * shell_vgl(kshell(k),ipoint,4) )
end do
end do
end do
deallocate(poly_vgl, powers)
deallocate(poly_vgl, powers, kshell, kil, knucl)
end function qmckl_compute_ao_vgl_f
#+end_src