1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-09 12:44:12 +01:00

Merge pull request #18 from v1j4y/rescaled_deriv_vj

Derivatives for two body Jastrow
This commit is contained in:
Anthony Scemama 2021-06-23 09:10:16 +02:00 committed by GitHub
commit efd32bcfe8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 933 additions and 52 deletions

View File

@ -1105,6 +1105,360 @@ end function qmckl_distance_rescaled_f
#+end_src
*** Test :noexport:
* Rescaled Distance Derivatives
** ~qmckl_distance_rescaled_deriv_e~
:PROPERTIES:
:Name: qmckl_distance_rescaled_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
~qmckl_distance_rescaled_deriv_e~ computes the matrix of the gradient and laplacian of the
rescaled distance with respect to the electron coordinates. The derivative is a rank 3 tensor.
The first dimension has a dimension of 4 of which the first three coordinates
contains the gradient vector and the last index is the laplacian.
\[
C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa
\]
Here the gradient is defined as follows:
\[
\nabla (C_{ij}(\mathbf{r}_{ee})) = \left(\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta x},\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta y},\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta z} \right)
\]
and the laplacian is defined as follows:
\[
\triangle (C_{ij}(r_{ee})) = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}
\]
Using the above three formulae, the expression for the gradient and laplacian is
as follows:
\[
\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta x} = \frac{|(x_i - x_j)|}{r_{ij}} (1 - \kappa R_{ij})
\]
\[
\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta y} = \frac{|(y_i - y_j)|}{r_{ij}} (1 - \kappa R_{ij})
\]
\[
\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta z} = \frac{|(z_i - z_j)|}{r_{ij}} (1 - \kappa R_{ij})
\]
\[
\Delta(C_{ij}(r_{ee}) = \left[ \frac{2}{r_{ij}} - \kappa \right] (1-\kappa R_{ij})
\]
If the input array is normal (~'N'~), the xyz coordinates are in
the leading dimension: ~[n][3]~ in C and ~(3,n)~ in Fortran.
#+NAME: qmckl_distance_rescaled_deriv_e_args
| qmckl_context | context | in | Global state |
| char | transa | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed |
| char | transb | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed |
| int64_t | m | in | Number of points in the first set |
| int64_t | n | in | Number of points in the second set |
| double | A[][lda] | in | Array containing the $m \times 3$ matrix $A$ |
| int64_t | lda | in | Leading dimension of array ~A~ |
| double | B[][ldb] | in | Array containing the $n \times 3$ matrix $B$ |
| int64_t | ldb | in | Leading dimension of array ~B~ |
| double | C[4][n][ldc] | out | Array containing the $4 \times m \times n$ matrix $C$ |
| int64_t | ldc | in | Leading dimension of array ~C~ |
| double | rescale_factor_kappa | in | Factor for calculating rescaled distances derivatives |
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~m > 0~
- ~n > 0~
- ~lda >= 3~ if ~transa == 'N'~
- ~lda >= m~ if ~transa == 'T'~
- ~ldb >= 3~ if ~transb == 'N'~
- ~ldb >= n~ if ~transb == 'T'~
- ~ldc >= m~
- ~A~ is allocated with at least $3 \times m \times 8$ bytes
- ~B~ is allocated with at least $3 \times n \times 8$ bytes
- ~C~ is allocated with at least $4 \times m \times n \times 8$ bytes
*** C header
#+CALL: generate_c_header(table=qmckl_distance_rescaled_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_distance_rescaled_deriv_e (
const qmckl_context context,
const char transa,
const char transb,
const int64_t m,
const int64_t n,
const double* A,
const int64_t lda,
const double* B,
const int64_t ldb,
double* const C,
const int64_t ldc,
const double rescale_factor_kappa);
#+end_src
*** Source
#+begin_src f90 :tangle (eval f)
integer function qmckl_distance_rescaled_deriv_e_f(context, transa, transb, m, n, &
A, LDA, B, LDB, C, LDC, rescale_factor_kappa) &
result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
character , intent(in) :: transa, transb
integer*8 , intent(in) :: m, n
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(lda,*)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(ldb,*)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(4,ldc,*)
real*8 , intent(in) :: rescale_factor_kappa
integer*8 :: i,j
real*8 :: x, y, z, dist, dist_inv
real*8 :: rescale_factor_kappa_inv, rij
integer :: transab
rescale_factor_kappa_inv = 1.0d0/rescale_factor_kappa;
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (m <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (n <= 0_8) then
info = QMCKL_INVALID_ARG_5
return
endif
if (transa == 'N' .or. transa == 'n') then
transab = 0
else if (transa == 'T' .or. transa == 't') then
transab = 1
else
transab = -100
endif
if (transb == 'N' .or. transb == 'n') then
continue
else if (transa == 'T' .or. transa == 't') then
transab = transab + 2
else
transab = -100
endif
! check for LDA
if (transab < 0) then
info = QMCKL_INVALID_ARG_1
return
endif
if (iand(transab,1) == 0 .and. LDA < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (iand(transab,1) == 1 .and. LDA < m) then
info = QMCKL_INVALID_ARG_7
return
endif
if (iand(transab,2) == 0 .and. LDA < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (iand(transab,2) == 2 .and. LDA < m) then
info = QMCKL_INVALID_ARG_7
return
endif
! check for LDB
if (iand(transab,1) == 0 .and. LDB < 3) then
info = QMCKL_INVALID_ARG_9
return
endif
if (iand(transab,1) == 1 .and. LDB < n) then
info = QMCKL_INVALID_ARG_9
return
endif
if (iand(transab,2) == 0 .and. LDB < 3) then
info = QMCKL_INVALID_ARG_9
return
endif
if (iand(transab,2) == 2 .and. LDB < n) then
info = QMCKL_INVALID_ARG_9
return
endif
! check for LDC
if (LDC < m) then
info = QMCKL_INVALID_ARG_11
return
endif
select case (transab)
case(0)
do j=1,n
do i=1,m
x = A(1,i) - B(1,j)
y = A(2,i) - B(2,j)
z = A(3,i) - B(3,j)
dist = dsqrt(x*x + y*y + z*z)
dist_inv = 1.0d0/dist
rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
end do
end do
case(1)
do j=1,n
do i=1,m
x = A(i,1) - B(1,j)
y = A(i,2) - B(2,j)
z = A(i,3) - B(3,j)
dist = dsqrt(x*x + y*y + z*z)
dist_inv = 1.0d0/dist
rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
end do
end do
case(2)
do j=1,n
do i=1,m
x = A(1,i) - B(j,1)
y = A(2,i) - B(j,2)
z = A(3,i) - B(j,3)
dist = dsqrt(x*x + y*y + z*z)
dist_inv = 1.0d0/dist
rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
end do
end do
case(3)
do j=1,n
do i=1,m
x = A(i,1) - B(j,1)
y = A(i,2) - B(j,2)
z = A(i,3) - B(j,3)
dist = dsqrt(x*x + y*y + z*z)
dist_inv = 1.0d0/dist
rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
end do
end do
end select
end function qmckl_distance_rescaled_deriv_e_f
#+end_src
*** Performance
This function is more efficient when ~A~ and ~B~ are transposed.
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_distance_rescaled_deriv_e_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_distance_rescaled_deriv_e &
(context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
character , intent(in) , value :: transa
character , intent(in) , value :: transb
integer (c_int64_t) , intent(in) , value :: m
integer (c_int64_t) , intent(in) , value :: n
real (c_double ) , intent(in) :: A(lda,*)
integer (c_int64_t) , intent(in) , value :: lda
real (c_double ) , intent(in) :: B(ldb,*)
integer (c_int64_t) , intent(in) , value :: ldb
real (c_double ) , intent(out) :: C(4,ldc,n)
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double ) , intent(in) , value :: rescale_factor_kappa
integer(c_int32_t), external :: qmckl_distance_rescaled_deriv_e_f
info = qmckl_distance_rescaled_deriv_e_f &
(context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa)
end function qmckl_distance_rescaled_deriv_e
#+end_src
#+CALL: generate_f_interface(table=qmckl_distance_rescaled_deriv_e_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_distance_rescaled_deriv_e &
(context, transa, transb, m, n, A, lda, B, ldb, C, ldc, rescale_factor_kappa) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
character , intent(in) , value :: transa
character , intent(in) , value :: transb
integer (c_int64_t) , intent(in) , value :: m
integer (c_int64_t) , intent(in) , value :: n
real (c_double ) , intent(in) :: A(lda,*)
integer (c_int64_t) , intent(in) , value :: lda
real (c_double ) , intent(in) :: B(ldb,*)
integer (c_int64_t) , intent(in) , value :: ldb
real (c_double ) , intent(out) :: C(4,ldc,n)
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double ) , intent(in) , value :: rescale_factor_kappa
end function qmckl_distance_rescaled_deriv_e
end interface
#+end_src
* End of files :noexport:
#+begin_src c :comments link :tangle (eval c_test)

View File

@ -63,25 +63,30 @@ int main() {
The following data stored in the context:
| ~uninitialized~ | ~int32_t~ | Keeps bit set for uninitialized data |
| ~num~ | ~int64_t~ | Total number of electrons |
| ~up_num~ | ~int64_t~ | Number of up-spin electrons |
| ~down_num~ | ~int64_t~ | Number of down-spin electrons |
| ~walk_num~ | ~int64_t~ | Number of walkers |
| ~rescale_factor_kappa_ee~ | ~double~ | The distance scaling factor |
| ~rescale_factor_kappa_en~ | ~double~ | The distance scaling factor |
| ~provided~ | ~bool~ | If true, ~electron~ is valid |
| ~coord_new~ | ~double[walk_num][3][num]~ | New set of electron coordinates |
| ~coord_old~ | ~double[walk_num][3][num]~ | Old set of electron coordinates |
| ~coord_new_date~ | ~uint64_t~ | Last modification date of the coordinates |
| ~ee_distance~ | ~double[walk_num][num][num]~ | Electron-electron distances |
| ~ee_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~ee_distance_rescaled~ | ~double[walk_num][num][num]~ | Electron-electron distances |
| ~ee_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~uninitialized~ | ~int32_t~ | Keeps bit set for uninitialized data |
| ~num~ | ~int64_t~ | Total number of electrons |
| ~up_num~ | ~int64_t~ | Number of up-spin electrons |
| ~down_num~ | ~int64_t~ | Number of down-spin electrons |
| ~walk_num~ | ~int64_t~ | Number of walkers |
| ~rescale_factor_kappa_ee~ | ~double~ | The distance scaling factor |
| ~rescale_factor_kappa_en~ | ~double~ | The distance scaling factor |
| ~provided~ | ~bool~ | If true, ~electron~ is valid |
| ~coord_new~ | ~double[walk_num][3][num]~ | New set of electron coordinates |
| ~coord_old~ | ~double[walk_num][3][num]~ | Old set of electron coordinates |
| ~coord_new_date~ | ~uint64_t~ | Last modification date of the coordinates |
| ~ee_distance~ | ~double[walk_num][num][num]~ | Electron-electron distances |
| ~ee_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~ee_distance_rescaled~ | ~double[walk_num][num][num]~ | Electron-electron rescaled distances |
| ~ee_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~ee_distance_rescaled_deriv_e~ | ~double[walk_num][4][num][num]~ | Electron-electron rescaled distances derivatives |
| ~ee_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][num][num]~ | Electron-electron rescaled distances derivatives |
| ~en_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
** Data structure
@ -97,13 +102,17 @@ typedef struct qmckl_electron_struct {
int64_t ee_distance_date;
int64_t en_distance_date;
int64_t ee_distance_rescaled_date;
int64_t ee_distance_rescaled_deriv_e_date;
int64_t en_distance_rescaled_date;
int64_t en_distance_rescaled_deriv_e_date;
double* coord_new;
double* coord_old;
double* ee_distance;
double* en_distance;
double* ee_distance_rescaled;
double* ee_distance_rescaled_deriv_e;
double* en_distance_rescaled;
double* en_distance_rescaled_deriv_e;
int32_t uninitialized;
bool provided;
} qmckl_electron_struct;
@ -701,8 +710,9 @@ int64_t walk_num = chbrclf_walk_num;
int64_t elec_num = chbrclf_elec_num;
int64_t elec_up_num = chbrclf_elec_up_num;
int64_t elec_dn_num = chbrclf_elec_dn_num;
double rescale_factor_kappa_ee = 2.0;
double rescale_factor_kappa_en = 3.0;
double rescale_factor_kappa_ee = 1.0;
double rescale_factor_kappa_en = 1.0;
double nucl_rescale_factor_kappa = 1.0;
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
int64_t nucl_num = chbrclf_nucl_num;
@ -803,7 +813,7 @@ for (int64_t i=0 ; i<3*elec_num ; ++i) {
the dependencies are more recent than the date of the data to
compute. If it is the case, then the data is recomputed and the
current date is stored.
** Electron-electron distances
*** Get
@ -980,7 +990,7 @@ qmckl_exit_code qmckl_compute_ee_distance (
#+end_src
*** Test
#+begin_src python :results output :exports none
import numpy as np
@ -1035,6 +1045,15 @@ assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12);
** Electron-electron rescaled distances
~ee_distance_rescaled~ stores the matrix of the rescaled distances between all
pairs of electrons:
\[
C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa
\]
where \(C_{ij}\) is the matrix of electron-electron distances.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
@ -1127,12 +1146,12 @@ qmckl_exit_code qmckl_provide_ee_distance_rescaled(qmckl_context context)
:END:
#+NAME: qmckl_ee_distance_rescaled_args
| qmckl_context | context | in | Global state |
| int64_t | elec_num | in | Number of electrons |
| double | rescale_factor_kappa_ee | in | Factor to rescale ee distances |
| int64_t | walk_num | in | Number of walkers |
| double | coord[walk_num][3][elec_num] | in | Electron coordinates |
| double | ee_distance[walk_num][elec_num][elec_num] | out | Electron-electron distances |
| qmckl_context | context | in | Global state |
| int64_t | elec_num | in | Number of electrons |
| double | rescale_factor_kappa_ee | in | Factor to rescale ee distances |
| int64_t | walk_num | in | Number of walkers |
| double | coord[walk_num][3][elec_num] | in | Electron coordinates |
| double | ee_distance[walk_num][elec_num][elec_num] | out | Electron-electron rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_ee_distance_rescaled_f(context, elec_num, rescale_factor_kappa_ee, walk_num, &
@ -1219,26 +1238,28 @@ qmckl_exit_code qmckl_compute_ee_distance_rescaled (
#+begin_src python :results output :exports none
import numpy as np
kappa = 1.0
elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ])
elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ])
elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ])
elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ])
print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-elec_1_w1) )
print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-elec_2_w1) )
print ( "[1][0][0] : ", np.linalg.norm(elec_2_w1-elec_1_w1) )
print ( "[0][0][1] : ", np.linalg.norm(elec_1_w2-elec_1_w2) )
print ( "[0][1][1] : ", np.linalg.norm(elec_1_w2-elec_2_w2) )
print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-elec_1_w2) )
print ( "[0][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_1_w1)) )/kappa )
print ( "[0][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_2_w1)) )/kappa )
print ( "[1][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-elec_1_w1)) )/kappa )
print ( "[0][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-elec_1_w2)) )/kappa )
print ( "[0][1][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-elec_2_w2)) )/kappa )
print ( "[1][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w2-elec_1_w2)) )/kappa )
#+end_src
#+RESULTS:
: [0][0][0] : 0.0
: [0][1][0] : 7.152322512964209
: [1][0][0] : 7.152322512964209
: [0][1][0] : 0.9992169566605263
: [1][0][0] : 0.9992169566605263
: [0][0][1] : 0.0
: [0][1][1] : 6.5517646321055665
: [1][0][1] : 6.5517646321055665
: [0][1][1] : 0.9985724058042633
: [1][0][1] : 0.9985724058042633
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
@ -1247,6 +1268,230 @@ assert(qmckl_electron_provided(context));
double ee_distance_rescaled[walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance_rescaled(context, ee_distance_rescaled);
// (e1,e2,w)
// (0,0,0) == 0.
assert(ee_distance_rescaled[0] == 0.);
// (1,0,0) == (0,1,0)
assert(ee_distance_rescaled[1] == ee_distance_rescaled[elec_num]);
// value of (1,0,0)
assert(fabs(ee_distance_rescaled[1]-0.9992169566605263) < 1.e-12);
// (0,0,1) == 0.
assert(ee_distance_rescaled[elec_num*elec_num] == 0.);
// (1,0,1) == (0,1,1)
assert(ee_distance_rescaled[elec_num*elec_num+1] == ee_distance_rescaled[elec_num*elec_num+elec_num]);
// value of (1,0,1)
assert(fabs(ee_distance_rescaled[elec_num*elec_num+1]-0.9985724058042633) < 1.e-12);
#+end_src
** Electron-electron rescaled distance gradients and laplacian with respect to electron coords
The rescaled distances which is given as $R = (1 - \exp{-\kappa r})/\kappa$
needs to be perturbed with respect to the electorn coordinates.
This data is stored in the ~ee_distance_rescaled_deriv_e~ tensor. The
The first three elements of this three index tensor ~[4][num][num]~ gives the
derivatives in the x, y, and z directions $dx, dy, dz$ and the last index
gives the Laplacian $\partial x^2 + \partial y^2 + \partial z^2$.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_electron_ee_distance_rescaled_deriv_e(qmckl_context context, double* const distance_rescaled_deriv_e);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_electron_ee_distance_rescaled_deriv_e(qmckl_context context, double* const distance_rescaled_deriv_e)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_ee_distance_rescaled_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
size_t sze = 4 * ctx->electron.num * ctx->electron.num * ctx->electron.walk_num;
memcpy(distance_rescaled_deriv_e, ctx->electron.ee_distance_rescaled_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled_deriv_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Compute if necessary */
if (ctx->electron.coord_new_date > ctx->electron.ee_distance_rescaled_deriv_e_date) {
/* Allocate array */
if (ctx->electron.ee_distance_rescaled_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->electron.num *
ctx->electron.walk_num * sizeof(double);
double* ee_distance_rescaled_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (ee_distance_rescaled_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ee_distance_rescaled_deriv_e",
NULL);
}
ctx->electron.ee_distance_rescaled_deriv_e = ee_distance_rescaled_deriv_e;
}
qmckl_exit_code rc =
qmckl_compute_ee_distance_rescaled_deriv_e(context,
ctx->electron.num,
ctx->electron.rescale_factor_kappa_en,
ctx->electron.walk_num,
ctx->electron.coord_new,
ctx->electron.ee_distance_rescaled_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->electron.ee_distance_rescaled_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_ee_distance_rescaled_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ee_distance_rescaled_deriv_e_args
| qmckl_context | context | in | Global state |
| int64_t | elec_num | in | Number of electrons |
| double | rescale_factor_kappa_ee | in | Factor to rescale ee distances |
| int64_t | walk_num | in | Number of walkers |
| double | coord[walk_num][3][elec_num] | in | Electron coordinates |
| double | ee_distance_deriv_e[walk_num][4][elec_num][elec_num] | out | Electron-electron rescaled distance derivatives |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_ee_distance_rescaled_deriv_e_f(context, elec_num, rescale_factor_kappa_ee, walk_num, &
coord, ee_distance_rescaled_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: elec_num
double precision , intent(in) :: rescale_factor_kappa_ee
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: coord(elec_num,3,walk_num)
double precision , intent(out) :: ee_distance_rescaled_deriv_e(4,elec_num,elec_num,walk_num)
integer*8 :: k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do k=1,walk_num
info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, elec_num, &
coord(1,1,k), elec_num, &
coord(1,1,k), elec_num, &
ee_distance_rescaled_deriv_e(1,1,1,k), elec_num, rescale_factor_kappa_ee)
if (info /= QMCKL_SUCCESS) then
exit
endif
end do
end function qmckl_compute_ee_distance_rescaled_deriv_e_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_deriv_e (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_kappa_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_ee_distance_rescaled_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_ee_distance_rescaled_deriv_e &
(context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: coord(elec_num,3,walk_num)
real (c_double ) , intent(out) :: ee_distance_rescaled_deriv_e(4,elec_num,elec_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_ee_distance_rescaled_deriv_e_f
info = qmckl_compute_ee_distance_rescaled_deriv_e_f &
(context, elec_num, rescale_factor_kappa_ee, walk_num, coord, ee_distance_rescaled_deriv_e)
end function qmckl_compute_ee_distance_rescaled_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none
import numpy as np
# TODO
#+end_src
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double ee_distance_rescaled_deriv_e[4 * walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance_rescaled_deriv_e(context, ee_distance_rescaled_deriv_e);
// TODO: Get exact values
//// (e1,e2,w)
//// (0,0,0) == 0.
@ -1269,6 +1514,7 @@ rc = qmckl_get_electron_ee_distance_rescaled(context, ee_distance_rescaled);
#+end_src
** Electron-nucleus distances
*** Get
@ -1538,6 +1784,15 @@ assert(fabs(en_distance[1][0][1] - 3.1804527583077356) < 1.e-12);
** Electron-nucleus rescaled distances
~en_distance_rescaled~ stores the matrix of the rescaled distances between
electrons and nucleii.
\[
C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa
\]
where \(C_{ij}\) is the matrix of electron-nucleus distances.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
@ -1747,6 +2002,8 @@ qmckl_exit_code qmckl_compute_en_distance_rescaled (
#+begin_src python :results output :exports none
import numpy as np
kappa = 1.0
elec_1_w1 = np.array( [ -2.26995253563, -5.15737533569, -2.22940072417 ])
elec_2_w1 = np.array( [ 3.51983380318, -1.08717381954, -1.19617708027 ])
elec_1_w2 = np.array( [ -2.34410619736, -3.20016115904, -1.53496759012 ])
@ -1754,21 +2011,22 @@ elec_2_w2 = np.array( [ 3.17996025085, -1.40260577202, 1.49473607540 ])
nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] )
nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] )
print ( "[0][0][0] : ", np.linalg.norm(elec_1_w1-nucl_1) )
print ( "[0][1][0] : ", np.linalg.norm(elec_1_w1-nucl_2) )
print ( "[0][0][1] : ", np.linalg.norm(elec_2_w1-nucl_1) )
print ( "[1][0][0] : ", np.linalg.norm(elec_1_w2-nucl_1) )
print ( "[1][1][0] : ", np.linalg.norm(elec_1_w2-nucl_2) )
print ( "[1][0][1] : ", np.linalg.norm(elec_2_w2-nucl_1) )
print ( "[0][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_1)) )/kappa )
print ( "[0][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_2)) )/kappa )
print ( "[0][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-nucl_1)) )/kappa )
print ( "[1][0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-nucl_1)) )/kappa )
print ( "[1][1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w2-nucl_2)) )/kappa )
print ( "[1][0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w2-nucl_1)) )/kappa )
#+end_src
#+RESULTS:
: [0][0][0] : 7.546738741619978
: [0][1][0] : 8.77102435246984
: [0][0][1] : 3.698922010513608
: [1][0][0] : 5.824059436060509
: [1][1][0] : 7.080482110317645
: [1][0][1] : 3.1804527583077356
: [0][0][0] : 0.9994721712909764
: [0][1][0] : 0.9998448354439821
: [0][0][1] : 0.9752498074577688
: [1][0][0] : 0.9970444172399963
: [1][1][0] : 0.9991586325813303
: [1][0][1] : 0.9584331688679852
#+begin_src c :tangle (eval c_test)
@ -1788,6 +2046,275 @@ assert(qmckl_nucleus_provided(context));
double en_distance_rescaled[walk_num][nucl_num][elec_num];
rc = qmckl_get_electron_en_distance_rescaled(context, &(en_distance_rescaled[0][0][0]));
assert (rc == QMCKL_SUCCESS);
// (e,n,w) in Fortran notation
// (1,1,1)
assert(fabs(en_distance_rescaled[0][0][0] - 0.9994721712909764) < 1.e-12);
// (1,2,1)
assert(fabs(en_distance_rescaled[0][1][0] - 0.9998448354439821) < 1.e-12);
// (2,1,1)
assert(fabs(en_distance_rescaled[0][0][1] - 0.9752498074577688) < 1.e-12);
// (1,1,2)
assert(fabs(en_distance_rescaled[1][0][0] - 0.9970444172399963) < 1.e-12);
// (1,2,2)
assert(fabs(en_distance_rescaled[1][1][0] - 0.9991586325813303) < 1.e-12);
// (2,1,2)
assert(fabs(en_distance_rescaled[1][0][1] - 0.9584331688679852) < 1.e-12);
#+end_src
** Electron-nucleus rescaled distance gradients and laplacian with respect to electron coords
The rescaled distances which is given as $R = (1 - \exp{-\kappa r})/\kappa$
needs to be perturbed with respect to the nuclear coordinates.
This data is stored in the ~en_distance_rescaled_deriv_e~ tensor. The
The first three elements of this three index tensor ~[4][num][num]~ gives the
derivatives in the x, y, and z directions $dx, dy, dz$ and the last index
gives the Laplacian $\partial x^2 + \partial y^2 + \partial z^2$.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_electron_en_distance_rescaled_deriv_e(qmckl_context context, double* distance_rescaled_deriv_e);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_electron_en_distance_rescaled_deriv_e(qmckl_context context, double* distance_rescaled_deriv_e)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_en_distance_rescaled_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
size_t sze = 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num;
memcpy(distance_rescaled_deriv_e, ctx->electron.en_distance_rescaled_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled_deriv_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
if (!(ctx->nucleus.provided)) {
return QMCKL_NOT_PROVIDED;
}
/* Compute if necessary */
if (ctx->electron.coord_new_date > ctx->electron.en_distance_rescaled_deriv_e_date) {
/* Allocate array */
if (ctx->electron.en_distance_rescaled_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->nucleus.num *
ctx->electron.walk_num * sizeof(double);
double* en_distance_rescaled_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (en_distance_rescaled_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_en_distance_rescaled_deriv_e",
NULL);
}
ctx->electron.en_distance_rescaled_deriv_e = en_distance_rescaled_deriv_e;
}
qmckl_exit_code rc =
qmckl_compute_en_distance_rescaled_deriv_e(context,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.rescale_factor_kappa_en,
ctx->electron.walk_num,
ctx->electron.coord_new,
ctx->nucleus.coord,
ctx->electron.en_distance_rescaled_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->electron.en_distance_rescaled_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_en_distance_rescaled_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_en_distance_rescaled_deriv_e_args
| qmckl_context | context | in | Global state |
| int64_t | elec_num | in | Number of electrons |
| int64_t | nucl_num | in | Number of nuclei |
| double | rescale_factor_kappa_en | in | The factor for rescaled distances |
| int64_t | walk_num | in | Number of walkers |
| double | elec_coord[walk_num][3][elec_num] | in | Electron coordinates |
| double | nucl_coord[3][elec_num] | in | Nuclear coordinates |
| double | en_distance_rescaled_deriv_e_date[walk_num][4][nucl_num][elec_num] | out | Electron-nucleus distance derivatives |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_en_distance_rescaled_deriv_e_f(context, elec_num, nucl_num, &
rescale_factor_kappa_en, walk_num, elec_coord, &
nucl_coord, en_distance_rescaled_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
double precision , intent(in) :: rescale_factor_kappa_en
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: elec_coord(elec_num,3,walk_num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(out) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,walk_num)
integer*8 :: k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
! TODO: comparison with 0
!if (rescale_factor_kappa_en <= 0) then
! info = QMCKL_INVALID_ARG_4
! return
!endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do k=1,walk_num
info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, nucl_num, &
elec_coord(1,1,k), elec_num, &
nucl_coord, nucl_num, &
en_distance_rescaled_deriv_e(1,1,k), elec_num, rescale_factor_kappa_en)
if (info /= QMCKL_SUCCESS) then
exit
endif
end do
end function qmckl_compute_en_distance_rescaled_deriv_e_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_deriv_e (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const double rescale_factor_kappa_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_en_distance_rescaled_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_en_distance_rescaled_deriv_e &
(context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
real (c_double ) , intent(in) , value :: rescale_factor_kappa_en
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: elec_coord(elec_num,3,walk_num)
real (c_double ) , intent(in) :: nucl_coord(elec_num,3)
real (c_double ) , intent(out) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_en_distance_rescaled_deriv_e_f
info = qmckl_compute_en_distance_rescaled_deriv_e_f &
(context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled_deriv_e)
end function qmckl_compute_en_distance_rescaled_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none
import numpy as np
# TODO
#+end_src
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_nucleus_charge (context, charge);
assert (rc == QMCKL_SUCCESS);
rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord);
assert (rc == QMCKL_SUCCESS);
assert(qmckl_nucleus_provided(context));
double en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num];
rc = qmckl_get_electron_en_distance_rescaled_deriv_e(context, &(en_distance_rescaled_deriv_e[0][0][0][0]));
assert (rc == QMCKL_SUCCESS);
// TODO: check exact values

View File

@ -426,7 +426,7 @@ qmckl_set_nucleus_rescale_factor(qmckl_context context, const double rescale_fac
if (rescale_factor_kappa <= 0.0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_nucleus_kappa",
"qmckl_set_nucleus_rescale_factor",
"rescale_factor_kappa cannot be <= 0.");
}