1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-09 20:48:56 +01:00

Added Sherman-Morrison with update splitting. For now the headers for qmckl_slagel_splitting_c and qmckl_sherman_morrison_splitting_c are not generated. #25

This commit is contained in:
Francois Coppens 2021-07-22 18:05:39 +02:00
parent c6d00d5c5b
commit e1b325ab18

View File

@ -36,17 +36,17 @@ Helper functions that are used by the Sherman-Morrison-Woodbury
kernels. These functions should only be used in the context of these kernels. These functions should only be used in the context of these
kernels. kernels.
** ~qmckl_sherman_morrison_threshold~ ** ~qmckl_threshold~
:PROPERTIES: :PROPERTIES:
:Name: qmckl_sherman_morrison_threshold :Name: qmckl_threshold
:CRetType: double :CRetType: double
:FRetType: double precision :FRetType: double precision
:END: :END:
This function is used to set the threshold value that is used in the kernels to determine if a matrix is invertable or not. In the Sherman-Morrison kernels this is determined by comparing the denominator in the Sherman-Morrison formula to the value set in threshold. If the value is smaller than the threshold value it means the matrix is not invertable. In the Woodbury kernels the threshold value is compared with the value of the determinant of the update matrix. This function is used to set the threshold value that is used in the kernels to determine if a matrix is invertable or not. In the Sherman-Morrison kernels this is determined by comparing the denominator in the Sherman-Morrison formula to the value set in threshold. If the value is smaller than the threshold value it means the matrix is not invertable. In the Woodbury kernels the threshold value is compared with the value of the determinant of the update matrix.
#+NAME: qmckl_sherman_morrison_threshold_args #+NAME: qmckl_threshold_args
| double | thresh | out | Threshold | | double | thresh | inout | Threshold |
*** Requirements *** Requirements
@ -54,7 +54,7 @@ kernels.
*** C header *** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+CALL: generate_c_header(table=qmckl_threshold_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS: #+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org #+begin_src c :tangle (eval h_func) :comments org
@ -63,31 +63,20 @@ kernels.
#define THRESHOLD 1e-3 #define THRESHOLD 1e-3
#endif #endif
qmckl_exit_code qmckl_sherman_morrison_threshold_c ( qmckl_exit_code qmckl_threshold_c (
double* const thresh ); double* const thresh );
#+end_src #+end_src
*** Source Fortran *** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_sherman_morrison_threshold_f(thresh) result(info)
use qmckl
implicit none
real*8 , intent(inout) :: thresh
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_threshold(thresh)
end function qmckl_sherman_morrison_threshold_f
#+end_src
*** Source C *** Source C
#+begin_src c :tangle (eval c) :comments org #+begin_src c :tangle (eval c) :comments org
#include <stdbool.h> #include <stdbool.h>
#include <math.h>
#include "qmckl.h" #include "qmckl.h"
// Sherman-Morrison-Woodbury break-down threshold // Sherman-Morrison-Woodbury break-down threshold
qmckl_exit_code qmckl_sherman_morrison_threshold_c(double* const threshold) { qmckl_exit_code qmckl_threshold_c(double* const threshold) {
*threshold = THRESHOLD; *threshold = THRESHOLD;
// #ifdef DEBUG // #ifdef DEBUG
// std::cerr << "Break-down threshold set to: " << threshold << std::endl; // std::cerr << "Break-down threshold set to: " << threshold << std::endl;
@ -98,45 +87,115 @@ return QMCKL_SUCCESS;
*** Performance *** Performance
** ~qmckl_slagel_splitting~
:PROPERTIES:
:Name: qmckl_slagel_splitting
:CRetType: double
:FRetType: double precision
:END:
This function is used to set the threshold value that is used in the kernels to determine if a matrix is invertable or not. In the Sherman-Morrison kernels this is determined by comparing the denominator in the Sherman-Morrison formula to the value set in threshold. If the value is smaller than the threshold value it means the matrix is not invertable. In the Woodbury kernels the threshold value is compared with the value of the determinant of the update matrix.
#+NAME: qmckl_slagel_splitting_args
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the rank-1 updates |
| uint64_t | Updates_index[N_updates] | in | Array containing positions of the rank-1 updates |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse Slater-matrix |
| double | later_updates[Dim * N_updates] | inout | Array containing the split updates for later |
| uint64_t | later_index[N_updates] | inout | Array containing the positions of the split updates for later |
| uint64_t | later | inout | Number of split updates for later |
*** Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
*** C header
#+CALL: generate_c_header(table=qmckl_slagel_splitting_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
*** Source Fortran
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
qmckl_exit_code qmckl_slagel_splitting_c(uint64_t Dim,
uint64_t N_updates,
double *Updates,
uint64_t *Updates_index,
double *Slater_inv,
double *later_updates,
uint64_t *later_index,
uint64_t *later) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called slagel_splitting with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = S^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
double thresh = 0.0;
qmckl_exit_code rc = qmckl_threshold_c(&thresh);
if (fabs(den) < thresh) {
// U_l = U_l / 2 (do the split)
for (uint64_t i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x S^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
** C interface :noexport: ** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS: #+CALL: generate_f_interface(table=qmckl_threshold_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_sherman_morrison_threshold &
(thresh) &
bind(C) result(info)
use, intrinsic :: iso_c_binding #+CALL: generate_c_interface(table=qmckl_slagel_splitting_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
implicit none
real (c_double ) , intent(out) :: thresh
integer(c_int32_t), external :: qmckl_sherman_morrison_threshold_c
info = qmckl_sherman_morrison_threshold_c &
(thresh)
end function qmckl_sherman_morrison_threshold
#+end_src
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_sherman_morrison_threshold &
(thresh) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
real (c_double ) , intent(out) :: thresh
end function qmckl_sherman_morrison_threshold
end interface
#+end_src
*** Test :noexport: *** Test :noexport:
@ -219,9 +278,6 @@ qmckl_exit_code qmckl_sherman_morrison_c(const qmckl_context context,
double C[Dim]; double C[Dim];
double D[Dim]; double D[Dim];
double threshold = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&threshold);
uint64_t l = 0; uint64_t l = 0;
// For each update // For each update
while (l < N_updates) { while (l < N_updates) {
@ -236,7 +292,7 @@ qmckl_exit_code qmckl_sherman_morrison_c(const qmckl_context context,
// Denominator // Denominator
double den = 1 + C[Updates_index[l] - 1]; double den = 1 + C[Updates_index[l] - 1];
double thresh = 0.0; double thresh = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&thresh); qmckl_exit_code rc = qmckl_threshold_c(&thresh);
if (fabs(den) < thresh) { if (fabs(den) < thresh) {
return QMCKL_FAILURE; return QMCKL_FAILURE;
} }
@ -438,7 +494,7 @@ qmckl_exit_code qmckl_woodbury_2_c(const qmckl_context context,
// Check if determinant of inverted matrix is not zero // Check if determinant of inverted matrix is not zero
double det = B0 * B3 - B1 * B2; double det = B0 * B3 - B1 * B2;
double thresh = 0.0; double thresh = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&thresh); qmckl_exit_code rc = qmckl_threshold_c(&thresh);
if (fabs(det) < thresh) { if (fabs(det) < thresh) {
return QMCKL_FAILURE; return QMCKL_FAILURE;
} }
@ -653,7 +709,7 @@ qmckl_exit_code qmckl_woodbury_3_c(const qmckl_context context,
det = B0 * (B4 * B8 - B5 * B7) - B1 * (B3 * B8 - B5 * B6) + det = B0 * (B4 * B8 - B5 * B7) - B1 * (B3 * B8 - B5 * B6) +
B2 * (B3 * B7 - B4 * B6); B2 * (B3 * B7 - B4 * B6);
double thresh = 0.0; double thresh = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&thresh); qmckl_exit_code rc = qmckl_threshold_c(&thresh);
if (fabs(det) < thresh) { if (fabs(det) < thresh) {
return QMCKL_FAILURE; return QMCKL_FAILURE;
} }
@ -762,6 +818,108 @@ assert(rc == QMCKL_SUCCESS);
#+end_src #+end_src
* Sherman-Morrison with update splitting
This is like naïve Sherman-Morrising, but whenever a denominator is found that is too close to zero the update
is split in half. Then one half is applied immediately and the other have is ket for later. When all the updates
have been processed, the list of split updates that have been kept for later are processed. If again applying an
update results in a denominator that is too close to zero, it is split in half again. One half is applied immediately
and one half is kept for later. The algorithm is done when no more updates have been kept for later. This recursion
will always end in a finite number of steps, unless the last original update causes a singular Slater-matrix.
** ~qmckl_sherman_morrison_splitting~
:PROPERTIES:
:Name: qmckl_sherman_morrison_splitting
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
This is the simplest of the available Sherman-Morrison-Woodbury
kernels in QMCkl. It applies rank-1 updates one by one in the order
that is given. It only checks if the denominator in the
Sherman-Morrison formula is not too close to zero (and exit with an
error if it does) during the application of an update.
#+NAME: qmckl_sherman_morrison_splitting_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the updates |
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
*** Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
*** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_splitting_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
*** Source Fortran
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_splitting_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_splitting with " << N_updates << " updates" << std::endl;
// #endif
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
qmckl_exit_code smss = qmckl_slagel_splitting_c(Dim, N_updates, Updates, Updates_index,
Slater_inv, later_updates, later_index, &later);
if (later > 0) {
qmckl_context context = qmckl_context_create();
qmckl_exit_code sms = qmckl_sherman_morrison_splitting_c(context, Dim, later,
later_updates, later_index, Slater_inv);
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance...
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_splitting_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_splitting_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
*** Test :noexport:
[TODO: FMJC] Write tests for the Sherman-Morrison part.
#+begin_src c :tangle (eval c_test)
const uint64_t splitting_Dim = 3;
const uint64_t splitting_Updates_index[3] = {1, 1, 1};
const double splitting_Updates[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
double splitting_Slater_inv[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
// [TODO : FMJC ] add realistic tests
rc = qmckl_sherman_morrison_splitting_c(context, splitting_Dim, splitting_Updates, splitting_Updates_index, splitting_Slater_inv);
assert(rc == QMCKL_SUCCESS);
#+end_src
* End of files * End of files
#+begin_src c :comments link :tangle (eval c_test) #+begin_src c :comments link :tangle (eval c_test)