1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-10 21:18:37 +01:00

Finalizing things before factor_een. #22

This commit is contained in:
vijay gopal chilkuri 2021-07-07 13:40:28 +05:30
parent b6bb9be359
commit e0a291d4a7

View File

@ -98,11 +98,14 @@ int main() {
computed data:
|-----------+-------------------------------------------------------------+-------------------------------------------------------------------------------|
| ~int64_t~ | ~dim_cord_vec~ | Number of unique C coefficients |
| ~int64_t~ | ~dim_cord_vect~ | Number of unique C coefficients |
| ~int64_t~ | ~dim_cord_vect_date~ | Number of unique C coefficients |
| ~double~ | ~asymp_jasb[2]~ | Asymptotic component |
| ~int64_t~ | ~asymp_jasb_date~ | Asymptotic component |
| ~double~ | ~coord_vect_full[dim_cord_vec][nucl_num]~ | vector of non-zero coefficients |
| ~int64_t~ | ~lkpm_of_cindex[4][dim_cord_vec]~ | Transform l,k,p, and m into consecutive indices |
| ~double~ | ~cord_vect_full[dim_cord_vect][nucl_num]~ | vector of non-zero coefficients |
| ~int64_t~ | ~cord_vect_full_date~ | Keep track of changes here |
| ~int64_t~ | ~lkpm_combined_index[4][dim_cord_vect]~ | Transform l,k,p, and m into consecutive indices |
| ~int64_t~ | ~lkpm_combined_index_date~ | Transform l,k,p, and m into consecutive indices |
| ~double~ | ~tmp_c[elec_num][nucl_num][ncord + 1][ncord][walk_num]~ | vector of non-zero coefficients |
| ~double~ | ~dtmp_c[elec_num][4][nucl_num][ncord + 1][ncord][walk_num]~ | vector of non-zero coefficients |
| ~double~ | ~een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num]~ | The electron-electron rescaled distances raised to the powers defined by cord |
@ -196,7 +199,7 @@ type_nucl_num = 1
aord_num = 5
bord_num = 5
cord_num = 23
dim_cord_vec = 23
dim_cord_vect= 23
type_nucl_vector = [ 1, 1]
aord_vector = [
[0.000000000000000E+000],
@ -234,7 +237,7 @@ cord_vector_full = [
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
]
lkpm_of_cindex = [[1 , 1 , 2 , 0],
lkpm_combined_index = [[1 , 1 , 2 , 0],
[0 , 0 , 2 , 1],
[1 , 2 , 3 , 0],
[2 , 1 , 3 , 0],
@ -293,8 +296,12 @@ typedef struct qmckl_jastrow_struct{
double * factor_ee_deriv_e;
double * factor_en_deriv_e;
double * factor_een_deriv_e;
int64_t dim_cord_vec;
double * coord_vect_full;
int64_t dim_cord_vect;
int64_t dim_cord_vect_date;
double * cord_vect_full;
int64_t cord_vect_full_date;
int64_t* lkpm_combined_index;
int64_t lkpm_combined_index_date;
double * tmp_c;
double * dtmp_c;
double * een_rescaled_e;
@ -2835,7 +2842,6 @@ assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
#+end_src
** Electron-electron rescaled distances for each order
~een_rescaled_e~ stores the table of the rescaled distances between all
@ -3446,6 +3452,598 @@ assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12);
#+end_src
** Prepare for electron-electron-nucleus Jastrow \(f_{een}\)
Prepare ~cord_vect_full~ and ~lkpm_combined_index~ tables required for the
calculation of the three-body jastrow ~factor_een~.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect);
qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full);
qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
*dim_cord_vect = ctx->jastrow.dim_cord_vect;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
size_t sze = ctx->jastrow.dim_cord_vect * ctx->nucleus.num;
memcpy(cord_vect_full, ctx->jastrow.cord_vect_full, sze * sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
size_t sze = ctx->jastrow.dim_cord_vect * 4;
memcpy(lkpm_combined_index, ctx->jastrow.lkpm_combined_index, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context);
qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context);
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Compute if necessary */
if (ctx->date > ctx->jastrow.dim_cord_vect_date) {
qmckl_exit_code rc =
qmckl_compute_dim_cord_vect(context,
ctx->jastrow.cord_num,
&(ctx->jastrow.dim_cord_vect));
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.dim_cord_vect_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.cord_vect_full_date) {
/* Allocate array */
if (ctx->jastrow.cord_vect_full == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->jastrow.dim_cord_vect * ctx->nucleus.num * sizeof(double);
double* cord_vect_full = (double*) qmckl_malloc(context, mem_info);
if (cord_vect_full == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_cord_vect_full",
NULL);
}
ctx->jastrow.cord_vect_full = cord_vect_full;
}
qmckl_exit_code rc =
qmckl_compute_cord_vect_full(context,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector,
ctx->jastrow.cord_vector,
ctx->jastrow.cord_vect_full);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.cord_vect_full_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.lkpm_combined_index_date) {
/* Allocate array */
if (ctx->jastrow.lkpm_combined_index == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(double);
int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info);
if (lkpm_combined_index == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_lkpm_combined_index",
NULL);
}
ctx->jastrow.lkpm_combined_index = lkpm_combined_index;
}
qmckl_exit_code rc =
qmckl_compute_lkpm_combined_index(context,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.lkpm_combined_index);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.lkpm_combined_index_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute dim_cord_vect
:PROPERTIES:
:Name: qmckl_compute_dim_cord_vect
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_dim_cord_vect_args
| qmckl_context | context | in | Global state |
| int64_t | cord_num | in | Order of polynomials |
| int64_t | dim_cord_vect | out | dimension of cord_vect_full table |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_dim_cord_vect_f(context, cord_num, dim_cord_vect) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(out) :: dim_cord_vect
double precision :: x
integer*8 :: i, a, k, l, p, lmax
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
dim_cord_vect = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
endif
do l = lmax, 0, -1
if (iand(p - k - l, 1) == 1) cycle
dim_cord_vect = dim_cord_vect + 1
end do
end do
end do
end function qmckl_compute_dim_cord_vect_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_dim_cord_vect (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_cord_vect );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_dim_cord_vect &
(context, cord_num, dim_cord_vect) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(out) :: dim_cord_vect
integer(c_int32_t), external :: qmckl_compute_dim_cord_vect_f
info = qmckl_compute_dim_cord_vect_f &
(context, cord_num, dim_cord_vect)
end function qmckl_compute_dim_cord_vect
#+end_src
*** Compute cord_vect_full
:PROPERTIES:
:Name: qmckl_compute_cord_vect_full
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_cord_vect_full_args
| qmckl_context | context | in | Global state |
| int64_t | nucl_num | in | Number of atoms |
| int64_t | cord_num | in | Order of polynomials |
| int64_t | dim_cord_vect | in | dimension of cord full table |
| int64_t | type_nucl_num | in | dimension of cord full table |
| int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table |
| double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table |
| double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, &
type_nucl_vector, cord_vector, cord_vect_full) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: cord_vector(cord_num, type_nucl_num)
double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do a = 1, nucl_num
cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a))
end do
end function qmckl_compute_cord_vect_full_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_cord_vect_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_cord_vect_full &
(context, &
nucl_num, &
cord_num, &
dim_cord_vect, &
type_nucl_num, &
type_nucl_vector, &
cord_vector, &
cord_vect_full) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: cord_vector(type_nucl_num,cord_num)
real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f
info = qmckl_compute_cord_vect_full_f &
(context, &
nucl_num, &
cord_num, &
dim_cord_vect, &
type_nucl_num, &
type_nucl_vector, &
cord_vector, &
cord_vect_full)
end function qmckl_compute_cord_vect_full
#+end_src
*** Compute lkpm_combined_index
:PROPERTIES:
:Name: qmckl_compute_lkpm_combined_index
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_lkpm_combined_index_args
| qmckl_context | context | in | Global state |
| int64_t | cord_num | in | Order of polynomials |
| int64_t | dim_cord_vect | in | dimension of cord full table |
| int64_t | lpkm_combined_index[4][dim_cord_vect] | out | Full list of combined indices |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_lkpm_combined_index_f(context, cord_num, dim_cord_vect, &
lkpm_combined_index) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect
double precision , intent(out) :: lkpm_combined_index(dim_cord_vect,4)
double precision :: x
integer*8 :: i, a, k, l, kk, p, lmax, m
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if (iand(p - k - l, 1) .eq. 1) cycle
m = (p - k - l)/2
kk = kk + 1
lkpm_combined_index(1, kk) = l
lkpm_combined_index(2, kk) = k
lkpm_combined_index(3, kk) = p
lkpm_combined_index(4, kk) = m
end do
end do
end do
end function qmckl_compute_lkpm_combined_index_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_cord_vect,
int64_t* const lpkm_combined_index );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_lkpm_combined_index &
(context, cord_num, dim_cord_vect, lpkm_combined_index) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
integer (c_int64_t) , intent(out) :: lpkm_combined_index(dim_cord_vect,4)
integer(c_int32_t), external :: qmckl_compute_lkpm_combined_index_f
info = qmckl_compute_lkpm_combined_index_f &
(context, cord_num, dim_cord_vect, lpkm_combined_index)
end function qmckl_compute_lkpm_combined_index
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
kappa = 1.0
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1])
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1])
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1])
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2])
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
#+end_src
#+RESULTS:
: een_rescaled_n[0, 2, 1] = 0.10612983920006765
: een_rescaled_n[0, 3, 1] = 0.135652809635553
: een_rescaled_n[0, 4, 1] = 0.023391817607642338
: een_rescaled_n[1, 3, 2] = 0.880957224822116
: een_rescaled_n[1, 4, 2] = 0.027185942659395074
: een_rescaled_n[1, 5, 2] = 0.01343938025140174
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
//double een_rescaled_n[walk_num][elec_num][nucl_num][(cord_num + 1)];
//rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]));
//
//// value of (0,2,1)
//assert(fabs(een_rescaled_n[0][2][0][1]-0.10612983920006765) < 1.e-12);
//assert(fabs(een_rescaled_n[0][3][0][1]-0.135652809635553) < 1.e-12);
//assert(fabs(een_rescaled_n[0][4][0][1]-0.023391817607642338) < 1.e-12);
//assert(fabs(een_rescaled_n[0][3][1][2]-0.880957224822116) < 1.e-12);
//assert(fabs(een_rescaled_n[0][4][1][2]-0.027185942659395074) < 1.e-12);
//assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12);
#+end_src
* End of files :noexport: