1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-03 18:16:28 +01:00

* Moved Helper functions to the end

* Typo fixed
This commit is contained in:
Francois Coppens 2021-09-07 09:27:22 +02:00
parent ef04e3df9b
commit dcd6428c50

View File

@ -4,7 +4,7 @@
Low- and high-level functions that use the Sherman-Morrison and
Woodbury matrix inversion formulas to update the inverse of a
non-singualr matrix
non-singular matrix
* Headers
#+begin_src elisp :noexport :results none :exports none
@ -27,178 +27,6 @@ int main() {
#+end_src
* Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels.
These functions can only be used internally by higher level functions.
** ~qmckl_slagel_splitting~
:PROPERTIES:
:Name: qmckl_slagel_splitting
:CRetType: double
:FRetType: double precision
:END:
~qmckl_slagel_splitting~ is used internally to apply a list of rank-1 updates while splitting an update if necessary.
In case of a split it applies the first half of the update while putting the second half in waiting queue to be applied at the end.
For a given update $u_j$ we define a threshold value $\epsilon_j$, which is the minimum value of
$1+v_j^TS^{-1}u_j$ for a non-singular matrix $S$. If $1+v_j^TS^{-1}u_j \geq \epsilon_j$,
the update is applied as usual. Otherwise, $u_j$ will be redefined as $\frac{u_j}{2}$, and the other half
(to be applied at the end) will be defined using vectors $\frac{u_{j'}}{2}$ and $v_{j'}^T=v_{j'}^T$.
#+NAME: qmckl_slagel_splitting_args
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the rank-1 updates |
| uint64_t | Updates_index[N_updates] | in | Array containing positions of the rank-1 updates |
| double | breakdown | in | Break-down parameter on which to fail or not |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse Slater-matrix |
| double | later_updates[Dim * N_updates] | inout | Array containing the split updates for later |
| uint64_t | later_index[N_updates] | inout | Array containing the positions of the split updates for later |
| uint64_t | later | inout | Number of split updates for later |
*** Requirements
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
- ~later_updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~later_index~ is allocated with at least $1 \times 8$ bytes
- ~later >= 0~
*** C header
#+CALL: generate_c_header(table=qmckl_slagel_splitting_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_slagel_splitting_c (
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv,
double* later_updates,
uint64_t* later_index,
uint64_t* later );
#+end_src
*** Source Fortran
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
qmckl_exit_code qmckl_slagel_splitting_c(uint64_t Dim,
uint64_t N_updates,
const double *Updates,
const uint64_t *Updates_index,
const double breakdown,
double *Slater_inv,
double *later_updates,
uint64_t *later_index,
uint64_t *later) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called slagel_splitting with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = S^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
// U_l = U_l / 2 (do the split)
for (uint64_t i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x S^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
This function performce better for cycles with 1 rank-1 update and with a high fail-rate.
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_slagel_splitting_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_slagel_splitting &
(Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv, later_updates, later_index, later) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(in) , value :: breakdown
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
real (c_double ) , intent(inout) :: later_updates(Dim * N_updates)
integer (c_int64_t) , intent(inout) :: later_index(N_updates)
integer (c_int64_t) , intent(inout) :: later
integer(c_int32_t), external :: qmckl_slagel_splitting_c
info = qmckl_slagel_splitting_c &
(Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv, later_updates, later_index, later)
end function qmckl_slagel_splitting
#+end_src
*** Test :noexport:
This kernel does not have an explicit test because it is only used internally by higher-level Sherman-Morrison-Woodbury kernels.
* Naïve Sherman-Morrison
@ -691,6 +519,7 @@ for (unsigned int i = 0; i < Dim; i++) {
assert(rc == QMCKL_SUCCESS);
#+end_src
* Woodbury 3x3
** ~qmckl_woodbury_3~
@ -1761,6 +1590,181 @@ for (unsigned int i = 0; i < Dim; i++) {
assert(rc == QMCKL_SUCCESS);
#+end_src
* Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels.
These functions can only be used internally by higher level functions.
** ~qmckl_slagel_splitting~
:PROPERTIES:
:Name: qmckl_slagel_splitting
:CRetType: double
:FRetType: double precision
:END:
~qmckl_slagel_splitting~ is used internally to apply a list of rank-1 updates while splitting an update if necessary.
In case of a split it applies the first half of the update while putting the second half in waiting queue to be applied at the end.
For a given update $u_j$ we define a threshold value $\epsilon_j$, which is the minimum value of
$1+v_j^TS^{-1}u_j$ for a non-singular matrix $S$. If $1+v_j^TS^{-1}u_j \geq \epsilon_j$,
the update is applied as usual. Otherwise, $u_j$ will be redefined as $\frac{u_j}{2}$, and the other half
(to be applied at the end) will be defined using vectors $\frac{u_{j'}}{2}$ and $v_{j'}^T=v_{j'}^T$.
#+NAME: qmckl_slagel_splitting_args
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the rank-1 updates |
| uint64_t | Updates_index[N_updates] | in | Array containing positions of the rank-1 updates |
| double | breakdown | in | Break-down parameter on which to fail or not |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse Slater-matrix |
| double | later_updates[Dim * N_updates] | inout | Array containing the split updates for later |
| uint64_t | later_index[N_updates] | inout | Array containing the positions of the split updates for later |
| uint64_t | later | inout | Number of split updates for later |
*** Requirements
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
- ~later_updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~later_index~ is allocated with at least $1 \times 8$ bytes
- ~later >= 0~
*** C header
#+CALL: generate_c_header(table=qmckl_slagel_splitting_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_slagel_splitting_c (
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv,
double* later_updates,
uint64_t* later_index,
uint64_t* later );
#+end_src
*** Source Fortran
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
qmckl_exit_code qmckl_slagel_splitting_c(uint64_t Dim,
uint64_t N_updates,
const double *Updates,
const uint64_t *Updates_index,
const double breakdown,
double *Slater_inv,
double *later_updates,
uint64_t *later_index,
uint64_t *later) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called slagel_splitting with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = S^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
// U_l = U_l / 2 (do the split)
for (uint64_t i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x S^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
This function performce better for cycles with 1 rank-1 update and with a high fail-rate.
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_slagel_splitting_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_slagel_splitting &
(Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv, later_updates, later_index, later) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(in) , value :: breakdown
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
real (c_double ) , intent(inout) :: later_updates(Dim * N_updates)
integer (c_int64_t) , intent(inout) :: later_index(N_updates)
integer (c_int64_t) , intent(inout) :: later
integer(c_int32_t), external :: qmckl_slagel_splitting_c
info = qmckl_slagel_splitting_c &
(Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv, later_updates, later_index, later)
end function qmckl_slagel_splitting
#+end_src
*** Test :noexport:
This kernel does not have an explicit test because it is only used internally by higher-level Sherman-Morrison-Woodbury kernels.
* End of files
#+begin_src c :comments link :tangle (eval c_test)