1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-03 10:06:09 +01:00

Tests in Fortran

This commit is contained in:
Anthony Scemama 2020-10-26 19:30:50 +01:00
parent 4c7b2213f4
commit d91cb765e3
4 changed files with 237 additions and 153 deletions

View File

@ -6,6 +6,14 @@ FFLAGS=-fPIC -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wi
LIBS=-lgfortran -lm
#CC=icc
#CFLAGS=-fPIC -g
#
#FC=ifort
#FFLAGS=-fPIC -g
#
#LIBS=-lm -lifcore -lirc
export CC CFLAGS FC FFLAGS LIBS
@ -25,7 +33,7 @@ doc:$(ORG_SOURCE_FILES)
./create_doc.sh $(ORG_SOURCE_FILES)
clean:
rm -f qmckl.h test_qmckl_* test_qmckl.c qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h Makefile.generated libqmckl.so *.html
rm -f qmckl.h test_qmckl_* test_qmckl.c qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h Makefile.generated libqmckl.so *.html *.fh
Makefile.generated: $(ORG_SOURCE_FILES) Makefile create_makefile.sh
./create_makefile.sh $(ORG_SOURCE_FILES)

View File

@ -72,8 +72,12 @@ rm ${nb}.md
** Writing in Fortran
The Fortran source files should provide a C interface using
iso-c-binding. The name of the Fortran source files should end
=iso_c_binding=. The name of the Fortran source files should end
with =_f.f90= to be properly handled by the Makefile.
The names of the functions defined in fortran should be the same as
those exposed in the API suffixed by =_f=.
Fortran interface files should also be written in a file with a
=.fh= extension.
** Coding style
# TODO: decide on a coding style
@ -124,7 +128,6 @@ rm ${nb}.md
To facilitate the use in other languages than C, we provide some
bindings in other languages in other repositories.
** Global state
Global variables should be avoided in the library, because it is

View File

@ -12,10 +12,11 @@
This files contains all the routines for the computation of the
values, gradients and Laplacian of the atomic basis functions.
3 files are produced:
4 files are produced:
- a header file : =qmckl_ao.h=
- a source file : =qmckl_ao.f90=
- a test file : =test_qmckl_ao.c=
- a C test file : =test_qmckl_ao.c=
- a Fortran test file : =test_qmckl_ao_f.f90=
*** Header :noexport:
#+BEGIN_SRC C :comments link :tangle qmckl_ao.h
@ -25,11 +26,6 @@ values, gradients and Laplacian of the atomic basis functions.
#include "qmckl_distance.h"
#+END_SRC
*** Source :noexport:
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.f90
#+END_SRC
*** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
#include <math.h>
@ -131,39 +127,63 @@ integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) &
end function qmckl_ao_powers
#+END_SRC
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.fh
interface
integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
integer (c_int64_t) , intent(in) , value :: ldp
real (c_double) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double) , intent(out) :: P(ldp,n)
end function qmckl_ao_powers
end interface
#+END_SRC
*** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
{
int64_t n, LDP ;
int32_t *LMAX ;
double *X, *P ;
int i, j;
#+BEGIN_SRC f90 :comments link :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_powers(context) bind(C)
use, intrinsic :: iso_c_binding
implicit none
include 'qmckl_ao.fh'
integer(c_int64_t), intent(in), value :: context
integer*8 :: n, LDP
integer, allocatable :: LMAX(:)
double precision, allocatable :: X(:), P(:,:)
integer*8 :: i,j
n = 100;
LDP = 10;
X = (double*) qmckl_malloc (context, n*sizeof(double));
LMAX = (int32_t*) qmckl_malloc (context, n*sizeof(int32_t));
P = (double*) qmckl_malloc (context, LDP*n*sizeof(double));
allocate(X(n), P(LDP,n), LMAX(n))
for (j=0 ; j<n ; j++) {
X[j] = -5. + 0.1 * (double) (j);
LMAX[j] = 1 + (j % 9);
}
do j=1,n
X(j) = -5.d0 + 0.1d0 * dble(j)
LMAX(j) = 1 + int(mod(j, 9),4)
end do
munit_assert_int64(QMCKL_SUCCESS, ==,
qmckl_ao_powers(context, n, X, LMAX, P, LDP) );
test_qmckl_ao_powers = qmckl_ao_powers(context, n, X, LMAX, P, LDP)
if (test_qmckl_ao_powers /= 0) return
for (j=0 ; j<n ; j++) {
for (i=0 ; i<LMAX[j] ; i++) {
munit_assert_double_equal( P[i+j*LDP], pow(X[j],i+1), 10 );
}
}
qmckl_free(X);
qmckl_free(P);
qmckl_free(LMAX);
}
test_qmckl_ao_powers = -1
do j=1,n
do i=1,LMAX(j)
if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > 1.d-14 ) return
end do
end do
test_qmckl_ao_powers = 0
deallocate(X,P,LMAX)
end function test_qmckl_ao_powers
#+END_SRC
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
int test_qmckl_ao_powers(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_powers(context));
#+END_SRC
** =qmckl_ao_polynomial_vgl=
@ -312,76 +332,115 @@ integer(c_int32_t) function qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, l
end function qmckl_ao_polynomial_vgl
#+END_SRC
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.fh
interface
integer(c_int32_t) function qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int64_t) , intent(out) :: n
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
real (c_double) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
end function qmckl_ao_polynomial_vgl
end interface
#+END_SRC
*** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
{
#include <stdio.h>
double X[3] = { 1.1 , 2.2 , 3.3 };
double R[3] = { 0.1 , 1.2 , -2.3 };
double Y[3];
int32_t lmax = 4;
int64_t n = 0;
int64_t ldl = 3;
int64_t ldv = 100;
int32_t* L_mem;
int32_t* L[100];
double* VGL_mem;
double* VGL[100];
int j;
#+BEGIN_SRC f90 :comments link :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C)
use, intrinsic :: iso_c_binding
implicit none
include 'qmckl_ao.fh'
int d = (lmax+1)*(lmax+2)*(lmax+3)/6;
integer(c_int64_t), intent(in), value :: context
L_mem = (int32_t*) malloc(ldl*100*sizeof(int32_t));
VGL_mem = (double*) malloc(ldv*100*sizeof(double));
integer :: lmax, d, i
integer, allocatable :: L(:,:)
integer*8 :: n, ldl, ldv, j
double precision :: X(3), R(3), Y(3)
double precision, allocatable :: VGL(:,:)
double precision :: w
munit_assert_int64(QMCKL_SUCCESS, ==,
qmckl_ao_polynomial_vgl(context, X, R, lmax, &n, L_mem, ldl, VGL_mem, ldv) );
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
munit_assert_int64( n, ==, d );
for (j=0 ; j<n ; j++) {
L[j] = &L_mem[j*ldl];
VGL[j] = &VGL_mem[j*ldv];
}
lmax = 4;
n = 0;
ldl = 3;
ldv = 100;
Y[0] = X[0] - R[0];
Y[1] = X[1] - R[1];
Y[2] = X[2] - R[2];
for (j=0 ; j<n ; j++) {
munit_assert_int64( L[j][0], >=, 0 );
munit_assert_int64( L[j][1], >=, 0 );
munit_assert_int64( L[j][2], >=, 0 );
munit_assert_double_equal( VGL[j][0],
pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]), 10 );
if (L[j][0] < 1) {
munit_assert_double_equal( VGL[j][1], 0., 10);
} else {
munit_assert_double_equal( VGL[j][1],
L[j][0] * pow(Y[0],L[j][0]-1) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]), 10 );
}
if (L[j][1] < 1) {
munit_assert_double_equal( VGL[j][2], 0., 10);
} else {
munit_assert_double_equal( VGL[j][2],
L[j][1] * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]-1) * pow(Y[2],L[j][2]), 10 );
}
if (L[j][2] < 1) {
munit_assert_double_equal( VGL[j][3], 0., 10);
} else {
munit_assert_double_equal( VGL[j][3],
L[j][2] * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]-1), 10 );
}
d = (lmax+1)*(lmax+2)*(lmax+3)/6
double w = 0.;
if (L[j][0] > 1) w += L[j][0] * (L[j][0]-1) * pow(Y[0],L[j][0]-2) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]);
if (L[j][1] > 1) w += L[j][1] * (L[j][1]-1) * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]-2) * pow(Y[2],L[j][2]);
if (L[j][2] > 1) w += L[j][2] * (L[j][2]-1) * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]-2);
munit_assert_double_equal( VGL[j][4], w, 10 );
}
free(L_mem);
free(VGL_mem);
}
allocate (L(ldl,100), VGL(ldv,100))
test_qmckl_ao_polynomial_vgl = &
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
if (test_qmckl_ao_polynomial_vgl /= 0) return
test_qmckl_ao_polynomial_vgl = -1
if (n /= d) return
do j=1,n
do i=1,3
if (L(i,j) < 0) return
end do
if (dabs(1.d0 - VGL(1,j) / (&
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > 1.d-14 ) return
if (L(1,j) < 1) then
if (VGL(2,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(2,j) / (&
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > 1.d-14 ) return
end if
if (L(2,j) < 1) then
if (VGL(3,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(3,j) / (&
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
)) > 1.d-14 ) return
end if
if (L(3,j) < 1) then
if (VGL(4,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(4,j) / (&
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
)) > 1.d-14 ) return
end if
w = 0.d0
if (L(1,j) > 1) then
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
end if
if (L(2,j) > 1) then
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
end if
if (L(3,j) > 1) then
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
end if
if (dabs(1.d0 - VGL(5,j) / w) > 1.d-14 ) return
end do
test_qmckl_ao_polynomial_vgl = 0
deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
#+END_SRC
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
int test_qmckl_ao_polynomial_vgl(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
#+END_SRC
#+END_SRC
* TODO Gaussian basis functions

View File

@ -14,7 +14,8 @@ Function for the computation of distances between particles.
3 files are produced:
- a header file : =qmckl_distance.h=
- a source file : =qmckl_distance.f90=
- a test file : =test_qmckl_distance.c=
- a C test file : =test_qmckl_distance.c=
- a Fortran test file : =test_qmckl_distance_f.f90=
*** Header :noexport:
#+BEGIN_SRC C :comments link :tangle qmckl_distance.h
@ -23,10 +24,6 @@ Function for the computation of distances between particles.
#include "qmckl_context.h"
#+END_SRC
*** Source :noexport:
#+BEGIN_SRC f90 :comments link :tangle qmckl_distance.f90
#+END_SRC
*** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_distance.c
#include <math.h>
@ -162,11 +159,30 @@ integer(c_int32_t) function qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C,
end function qmckl_distance_sq
#+END_SRC
#+BEGIN_SRC f90 :comments link :tangle qmckl_distance.fh
interface
integer(c_int32_t) function qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C, LDC) &
bind(C)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: m, n
integer (c_int64_t) , intent(in) , value :: lda
integer (c_int64_t) , intent(in) , value :: ldb
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double) , intent(in) :: A(lda,3)
real (c_double) , intent(in) :: B(ldb,3)
real (c_double) , intent(out) :: C(ldc,n)
end function qmckl_distance_sq
end interface
#+END_SRC
*** Test :noexport:
#+BEGIN_SRC f90 :comments link :tangle test_qmckl_distance_f.f90
integer(c_int32_t) function test_qmckl_distance_sq(context) bind(C)
use iso_c_binding
use, intrinsic :: iso_c_binding
implicit none
include 'qmckl_distance.fh'
integer(c_int64_t), intent(in), value :: context
double precision, allocatable :: A(:,:), B(:,:), C(:,:)
@ -174,8 +190,6 @@ end function qmckl_distance_sq
double precision :: x
integer*8 :: i,j
integer, external :: qmckl_distance_sq_f
m = 5
n = 6
LDA = 6
@ -193,7 +207,7 @@ end function qmckl_distance_sq
end do
end do
test_qmckl_distance_sq = qmckl_distance_sq_f(context, m, n, A, LDA, B, LDB, C, LDC)
test_qmckl_distance_sq = qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq /= 0) return
test_qmckl_distance_sq = -1