diff --git a/org/qmckl_jastrow.org b/org/qmckl_jastrow.org index e15a659..a74069e 100644 --- a/org/qmckl_jastrow.org +++ b/org/qmckl_jastrow.org @@ -3178,7 +3178,7 @@ end function qmckl_compute_een_rescaled_e_f #+end_src *** Test - + #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -3268,11 +3268,11 @@ assert(fabs(een_rescaled_e[0][2][1][5]-0.3424402276009091) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled); +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled) +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -3288,6 +3288,7 @@ qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, size_t sze = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e_deriv_e, sze * sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -3373,7 +3374,7 @@ qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context) | ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron distances | - | ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | out | Electron-electron rescaled distances | + | ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & @@ -3389,7 +3390,7 @@ integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) double precision , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) - double precision , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) + double precision , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e double precision :: x, rij_inv, kappa_l integer*8 :: i, j, k, l, nw, ii @@ -3437,19 +3438,24 @@ integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num kappa_l = - dble(l) * rescale_factor_kappa_ee do j = 1, elec_num do i = 1, elec_num - do ii = 1, 4 - een_rescaled_e_deriv_e(l, i, ii, j, nw) = kappa_l * elec_dist_deriv_e(ii, i, j) - end do + een_rescaled_e_deriv_e(i, 1, j, l, nw) = kappa_l * elec_dist_deriv_e(1, i, j) + een_rescaled_e_deriv_e(i, 2, j, l, nw) = kappa_l * elec_dist_deriv_e(2, i, j) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = kappa_l * elec_dist_deriv_e(3, i, j) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = kappa_l * elec_dist_deriv_e(4, i, j) - een_rescaled_e_deriv_e(l, i, 4, j, nw) = een_rescaled_e_deriv_e(l, i, 4, j, nw) & - + een_rescaled_e_deriv_e(l, i, 1, j, nw) * een_rescaled_e_deriv_e(l, i, 1, j, nw) & - + een_rescaled_e_deriv_e(l, i, 2, j, nw) * een_rescaled_e_deriv_e(l, i, 2, j, nw) & - + een_rescaled_e_deriv_e(l, i, 3, j, nw) * een_rescaled_e_deriv_e(l, i, 3, j, nw) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) & + + een_rescaled_e_deriv_e(i, 1, j, l, nw) * een_rescaled_e_deriv_e(i, 1, j, l, nw) & + + een_rescaled_e_deriv_e(i, 2, j, l, nw) * een_rescaled_e_deriv_e(i, 2, j, l, nw) & + + een_rescaled_e_deriv_e(i, 3, j, l, nw) * een_rescaled_e_deriv_e(i, 3, j, l, nw) - do ii = 1, 4 - een_rescaled_e_deriv_e(l, i, ii, j, nw) = een_rescaled_e_deriv_e(l, i, ii, j, nw) * & - een_rescaled_e(i, j, l, nw) - end do + een_rescaled_e_deriv_e(i, 1, j, l, nw) = een_rescaled_e_deriv_e(i, 1, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 2, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 3, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) * & + een_rescaled_e(i, j, l, nw) end do end do end do @@ -3502,7 +3508,7 @@ end function qmckl_compute_factor_een_rescaled_e_deriv_e_f real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) - real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) + real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_e_deriv_e_f info = qmckl_compute_factor_een_rescaled_e_deriv_e_f & @@ -3602,16 +3608,17 @@ for l in range(0,cord_num+1): #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); -double een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][(cord_num + 1)]; -rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0])); +double een_rescaled_e_deriv_e[walk_num][(cord_num + 1)][elec_num][4][elec_num]; +size_max=0; +rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0]),&size_max); // value of (0,0,0,2,1) -assert(fabs(een_rescaled_e_deriv_e[0][0][0][2][1] + 0.05991352796887283 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][0][0][3][1] + 0.011714035071545248 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][0][0][4][1] + 0.00441398875758468 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][3][2] + 0.013553180060167595 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][4][2] + 0.00041342909359870457) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][2] + 0.05991352796887283 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][3] + 0.011714035071545248 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][4] + 0.00441398875758468 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][3] + 0.013553180060167595 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][4] + 0.00041342909359870457) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][5] + 0.5880599146214673 ) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order @@ -5139,7 +5146,7 @@ end function qmckl_compute_tmp_c_f | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~walk_num~ | ~int64_t~ | in | Number of walkers | - | ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | in | Electron-electron rescaled factor derivatives | + | ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | in | Electron-electron rescaled factor derivatives | | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | | ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients | @@ -5154,7 +5161,7 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num - double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_e_deriv_e(elec_num, 4, elec_num, 0:cord_num, walk_num) double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision :: x @@ -5162,7 +5169,7 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & character :: TransA, TransB double precision :: alpha, beta integer*8 :: M, N, K, LDA, LDB, LDC - double precision,dimension(:,:,:,:,:),allocatable :: een_rescaled_e_deriv_e_T + !double precision,dimension(:,:,:,:,:),allocatable :: een_rescaled_e_deriv_e_T double precision,dimension(:,:,:,:),allocatable :: een_rescaled_n_T TransA = 'N' @@ -5172,18 +5179,18 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & info = QMCKL_SUCCESS - allocate(een_rescaled_e_deriv_e_T(elec_num,4,elec_num,0:cord_num,walk_num)) + !allocate(een_rescaled_e_deriv_e_T(elec_num,4,elec_num,0:cord_num,walk_num)) allocate(een_rescaled_n_T(elec_num,nucl_num,0:cord_num,walk_num)) do nw = 1,walk_num - do i = 1, elec_num - do ii = 1, 4 - do j = 1, elec_num - do l = 0,cord_num - een_rescaled_e_deriv_e_T(i,ii,j,l,nw) = een_rescaled_e_deriv_e(l,j,ii,i,nw) - end do - end do - end do - end do + !do i = 1, elec_num + ! do ii = 1, 4 + ! do j = 1, elec_num + ! do l = 0,cord_num + ! een_rescaled_e_deriv_e_T(i,ii,j,l,nw) = een_rescaled_e_deriv_e(l,j,ii,i,nw) + ! end do + ! end do + ! end do + !end do do i = 1, elec_num do j = 1, nucl_num do l = 0,cord_num @@ -5216,21 +5223,21 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & M = 4*elec_num N = nucl_num*(cord_num + 1) K = elec_num - LDA = 4*size(een_rescaled_e_deriv_e_T,1) + LDA = 4*size(een_rescaled_e_deriv_e,1) LDB = size(een_rescaled_n_T,1) LDC = 4*size(dtmp_c,1) do nw=1, walk_num do i=0, cord_num-1 info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & - een_rescaled_e_deriv_e_T(1,1,1,i,nw),LDA*1_8, & + een_rescaled_e_deriv_e(1,1,1,i,nw),LDA*1_8, & een_rescaled_n_T(1,1,0,nw),LDB*1_8, & beta, & dtmp_c(1,1,1,0,i,nw),LDC) end do end do - deallocate(een_rescaled_e_deriv_e_T) + !deallocate(een_rescaled_e_deriv_e_T) deallocate(een_rescaled_n_T) end function qmckl_compute_dtmp_c_f #+end_src @@ -5267,7 +5274,7 @@ end function qmckl_compute_dtmp_c_f integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num - real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) @@ -5359,7 +5366,7 @@ rc = qmckl_get_jastrow_dtmp_c(context, &(dtmp_c[0][0][0][0][0][0])); assert(fabs(tmp_c[0][0][1][0][0] - 2.7083473948352403) < 1e-12); -assert(fabs(dtmp_c[0][1][0][0][0][0] + 0.237440520852232) < 1e-12); +assert(fabs(dtmp_c[0][1][0][0][0][0] - 0.237440520852232) < 1e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) @@ -6264,8 +6271,8 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, do j = 1, elec_num factor_een_deriv_e(j,ii,nw) = factor_een_deriv_e(j,ii,nw) + (& tmp_c(j,a,m,k,nw) * een_rescaled_n_deriv_e(m+l,a,ii,j,nw) + & - (-1.0d0*dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(m+l,a,j,nw) + & - (-1.0d0*dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(m,a,j,nw) + & + (dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(m+l,a,j,nw) + & + (dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(m,a,j,nw) + & tmp_c(j,a,m+l,k,nw) * een_rescaled_n_deriv_e(m,a,ii,j,nw) & ) * cn end do @@ -6274,12 +6281,12 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, cn = cn + cn do j = 1, elec_num factor_een_deriv_e(j,4,nw) = factor_een_deriv_e(j,4,nw) + (& - (-1.0d0*dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,1,j,nw) + & - (-1.0d0*dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,2,j,nw) + & - (-1.0d0*dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,3,j,nw) + & - (-1.0d0*dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,1,j,nw) + & - (-1.0d0*dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,2,j,nw) + & - (-1.0d0*dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,3,j,nw) & + (dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,1,j,nw) + & + (dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,2,j,nw) + & + (dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,3,j,nw) + & + (dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,1,j,nw) + & + (dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,2,j,nw) + & + (dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,3,j,nw) & ) * cn end do end do