1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-10 21:18:37 +01:00

Working on factor_ee_deriv_e. #22

This commit is contained in:
vijay gopal chilkuri 2021-07-05 22:58:04 +05:30
parent 9b5c14b284
commit c9decf482f

View File

@ -1297,12 +1297,10 @@ assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);
#+end_src
** Electron-electron component \(f_{ee}\)
Calculate the asymptotic component ~asymp_jasb~ to be substracted from the final
electron-electron jastrow factor \(f_{ee}\). The asymptotic componenet is calculated
via the ~bord_vector~ and the electron-electron rescale factor ~rescale_factor_kappa~.
Calculate the electron-electron jastrow component ~factor_ee~ using the ~asymp_jasb~
componenet and the electron-electron rescaled distances ~ee_distance_rescaled~.
\[
f_{ee} = \sum_{i,j<i} \left\{ \frac{ \eta B_0 C_{ij}}{1 - B_1 C_{ij}} - J_{asymp} + \sum^{nord}_{k}B_k C_{ij}^k \right\}
@ -1597,6 +1595,408 @@ assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12);
#+end_src
** Electron-electron component derivative \(f'_{ee}\)
Calculate the derivative of the ~factor_ee~ using the ~ee_distance_rescaled~ and
the electron-electron rescaled distances derivatives ~ee_distance_rescaled_deriv_e~.
There are four components, the gradient which has 3 components in the \(x, y, z\)
directions and the laplacian as the last component.
TODO: Add equation
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_ee_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, ctx->electron.walk_num*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Check if ee rescaled distance is provided */
rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_ee_date) {
/* Allocate array */
if (ctx->jastrow.factor_ee_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_ee_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_ee_deriv_e",
NULL);
}
ctx->jastrow.factor_ee_deriv_e = factor_ee_deriv_e;
}
qmckl_exit_code rc =
qmckl_compute_factor_ee_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->electron.up_num,
ctx->jastrow.bord_num,
ctx->jastrow.bord_vector,
ctx->electron.ee_distance_rescaled,
ctx->electron.ee_distance_rescaled_deriv_e,
ctx->jastrow.asymp_jasb,
ctx->jastrow.factor_ee_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_ee_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_ee_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_ee_deriv_e_args
| qmckl_context | context | in | Global state |
| int64_t | walk_num | in | Number of walkers |
| int64_t | elec_num | in | Number of electrons |
| int64_t | up_num | in | Number of alpha electrons |
| int64_t | bord_num | in | Number of coefficients |
| double | bord_vector[bord_num + 1] | in | List of coefficients |
| double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances |
| double | ee_distance_rescaled_deriv_e[4][walk_num][elec_num][elec_num] | in | Electron-electron distances |
| double | asymp_jasb[2] | in | Electron-electron distances |
| double | factor_ee_deriv_e[walk_num] | out | Electron-electron distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, up_num, bord_num, &
bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, &
asymp_jasb, factor_ee_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num
double precision , intent(in) :: bord_vector(bord_num)
double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num)
double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num)
double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee_deriv_e(walk_num, 4, elec_num)
integer*8 :: i, j, p, ipar, nw, ii
double precision :: x, spin_fact, y
double precision :: den, invden, invden2, invden3, xinv
double precision :: lap1, lap2, lap3, third
double precision, dimension(3) :: pow_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
factor_ee_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, elec_num
x = ee_distance_rescaled(nw,i,j)
pow_ser_g = 0.0d0
spin_fact = 1.0d0
den = 1.0d0 + bord_vector(2) * ee_distance_rescaled(nw, i, j)
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / (ee_distance_rescaled(nw, i, j) + 1.0d0-18)
ipar = 1
do ii = 1, 4
dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, j, i)
end do
if((i .LE. up_num .AND. j .LE. up_num ) .OR. &
(i .GT. up_num .AND. j .GT. up_num)) then
spin_fact = 0.5d0
endif
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = ee_distance_rescaled(nw, i, j)
do p = 2, bord_num
y = p * bord_vector(p + 1) * x
pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * ee_distance_rescaled(nw, i, j)
end do
lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii)
factor_ee_deriv_e(nw, ii, j) = factor_ee_deriv_e(nw, ii, j) + spin_fact * bord_vector(1) * &
dx(ii) * invden + pow_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 + spin_fact * bord_vector(1) * invden3
factor_ee_deriv_e(nw, ii, j) = factor_ee_deriv_e(nw, ii, j) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_ee_deriv_e_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_factor_ee_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
const double* asymp_jasb,
double* const factor_ee_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_ee_deriv_e &
(context, &
walk_num, &
elec_num, &
up_num, &
bord_num, &
bord_vector, &
ee_distance_rescaled, &
ee_distance_rescaled_deriv_e, &
asymp_jasb, &
factor_ee_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: up_num
integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: bord_vector(bord_num + 1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,walk_num,4)
real (c_double ) , intent(in) :: asymp_jasb(2)
real (c_double ) , intent(out) :: factor_ee_deriv_e(walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_f
info = qmckl_compute_factor_ee_deriv_e_f &
(context, &
walk_num, &
elec_num, &
up_num, &
bord_num, &
bord_vector, &
ee_distance_rescaled, &
ee_distance_rescaled_deriv_e, &
asymp_jasb, &
factor_ee_deriv_e)
end function qmckl_compute_factor_ee_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasb>>
kappa = 1.0
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(np.abs(elec_coord[i] - elec_coord[j]))
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_deriv_e[ii, i, j] = (elec_coord[i][ii] - elec_coord[j][ii]) * rij_inv
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
elec_dist_deriv_e[:, j, j] = 0.0
ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
f = 1.0 - kappa * ee_distance_rescaled[i][j]
for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j]
ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \
(-kappa * ee_distance_rescaled_deriv_e[0][i][j]**2) + \
(-kappa * ee_distance_rescaled_deriv_e[1][i][j]**2) + \
(-kappa * ee_distance_rescaled_deriv_e[2][i][j]**2)
for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f
third = 1.0 / 3.0
factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(4),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
x = ee_distance_rescaled[i][j]
pow_ser_g = np.zeros(shape=(4),dtype=float)
spin_fact = 1.0
den = 1.0 + bord_vector[1] * ee_distance_rescaled[i][j]
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (ee_distance_rescaled[i][j] + 1.0-18)
ipar = 1
for ii in range(4):
dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i]
if((i <= up_num and j <= up_num ) or \
(i > up_num and j > up_num)):
spin_fact = 0.5
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = ee_distance_rescaled[i][j]
for p in range(1,bord_num):
y = p * bord_vector[p + 1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * ee_distance_rescaled[i][j]
lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii]
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \
dx[ii] * invden + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 + spin_fact * bord_vector[1] * invden3
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3
print("factor_ee_deriv_e:",factor_ee_deriv_e)
#+end_src
#+RESULTS:
#+begin_example
asym_one : 0.43340325572525706
asymp_jasb[0] : 0.5323750557252571
asymp_jasb[1] : 0.31567342786262853
factor_ee_deriv_e: [[-0.98933561 -1.90335162 1.55808557 -0.4175529 0.61492377 -0.39831866
-0.39927944 0.65028576 -0.3615353 0.18529135]
[ 1.63379825 -0.20386723 -0.68681515 -0.12852739 -0.26752663 -0.38482884
-0.08399636 0.0271138 0.47700861 -0.15444407]
[-1.50784905 -0.77857073 -2.65602338 0.47954785 2.47647536 -0.73979109
-1.45880891 -0.57274462 0.20895041 0.22564652]
[ 3.33386195 2.70852681 -4.1135207 7.24473889 -1.68083113 6.11612348
3.74311012 0.3229593 7.21394604 2.7578531 ]]
#+end_example
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_ee_deriv_e[walk_num];
rc = qmckl_get_jastrow_factor_ee_deriv_e(context, factor_ee_deriv_e);
// calculate factor_ee_deriv_e
assert(fabs(factor_ee_deriv_e[0]+4.282760865958113) < 1.e-12);
#+end_src
* End of files :noexport: