mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2025-01-03 10:06:09 +01:00
Example in C
This commit is contained in:
parent
5d1373a2fb
commit
a14d8abd52
@ -8,6 +8,9 @@ in a [[https://github.com/TREX-CoE/trexio][TREXIO]] file.
|
||||
|
||||
* Python
|
||||
** Check numerically that MOs are orthonormal
|
||||
:PROPERTIES:
|
||||
:header-args: :tangle mo_ortho.py
|
||||
:END:
|
||||
|
||||
In this example, we will compute numerically the overlap
|
||||
between the molecular orbitals:
|
||||
@ -127,7 +130,7 @@ before = time.time()
|
||||
mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
|
||||
after = time.time()
|
||||
|
||||
mo_value = np.reshape( mo_value, (point_num, mo_num) )
|
||||
mo_value = np.reshape( mo_value, (point_num, mo_num) ).T # Transpose to get mo_num x point_num
|
||||
|
||||
print("Number of MOs: ", mo_num)
|
||||
print("Number of grid points: ", point_num)
|
||||
@ -138,14 +141,14 @@ print("Execution time : ", (after - before), "seconds")
|
||||
#+begin_example
|
||||
Number of MOs: 201
|
||||
Number of grid points: 1728000
|
||||
Execution time : 3.511528968811035 seconds
|
||||
Execution time : 5.577778577804565 seconds
|
||||
#+end_example
|
||||
|
||||
and finally we compute the overlap between all the MOs as
|
||||
$M^\dagger M$.
|
||||
$M.M^\dagger$.
|
||||
|
||||
#+begin_src python :exports code
|
||||
overlap = mo_value.T @ mo_value * dr
|
||||
overlap = mo_value @ mo_value.T * dr
|
||||
print (overlap)
|
||||
#+end_src
|
||||
|
||||
@ -167,6 +170,9 @@ print (overlap)
|
||||
|
||||
* C
|
||||
** Check numerically that MOs are orthonormal, with cusp fitting
|
||||
:PROPERTIES:
|
||||
:header-args: :tangle mo_ortho.c
|
||||
:END:
|
||||
|
||||
In this example, we will compute numerically the overlap
|
||||
between the molecular orbitals:
|
||||
@ -188,6 +194,9 @@ print (overlap)
|
||||
#+begin_src c :exports code
|
||||
#include <qmckl.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
//#include <time.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
@ -201,10 +210,6 @@ int main(int argc, char** argv)
|
||||
|
||||
#+begin_src c :exports code
|
||||
qmckl_context context = qmckl_context_create();
|
||||
if (context == NULL) {
|
||||
fprintf(stderr, "Error creating context\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
rc = qmckl_trexio_read(context, trexio_filename, strlen(trexio_filename));
|
||||
|
||||
@ -221,7 +226,7 @@ int main(int argc, char** argv)
|
||||
To identify which atom is an oxygen and which are hydrogens, we
|
||||
fetch the nuclear charges from the context.
|
||||
|
||||
#+begin_src python :exports code
|
||||
#+begin_src c :exports code
|
||||
int64_t nucl_num;
|
||||
|
||||
rc = qmckl_get_nucleus_num(context, &nucl_num);
|
||||
@ -234,7 +239,7 @@ int main(int argc, char** argv)
|
||||
|
||||
double nucl_charge[nucl_num];
|
||||
|
||||
rc = qmckl_get_nucleus_charge(context, &(nucl_charge[0]));
|
||||
rc = qmckl_get_nucleus_charge(context, &(nucl_charge[0]), nucl_num);
|
||||
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
fprintf(stderr, "Error getting nucl_charge:\n%s\n", qmckl_string_of_error(rc));
|
||||
@ -242,28 +247,43 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
|
||||
double r_c[nucl_num];
|
||||
double r_cusp[nucl_num];
|
||||
|
||||
for (size_t i=0 ; i<nucl_num ; ++i) {
|
||||
|
||||
switch ((int) nucl_charge[i]) {
|
||||
case 1:
|
||||
nucl_charge[i] = 0.5;
|
||||
break;
|
||||
switch ((int) nucl_charge[i]) {
|
||||
|
||||
case 8:
|
||||
nucl_charge[i] = 0.1;
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
r_cusp[i] = 0.5;
|
||||
break;
|
||||
|
||||
case 8:
|
||||
r_cusp[i] = 0.1;
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
rc = qmckl_set_mo_basis_r_cusp(context, &(r_cusp[0]), nucl_num);
|
||||
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
fprintf(stderr, "Error setting r_cusp:\n%s\n", qmckl_string_of_error(rc));
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
#+end_src
|
||||
|
||||
#+begin_src python :exports code
|
||||
|
||||
We now define the grid points $\mathbf{r}_k$ as a regular grid around the
|
||||
molecule.
|
||||
We fetch the nuclear coordinates from the context,
|
||||
|
||||
#+begin_src c :exports code
|
||||
double nucl_coord[nucl_num][3];
|
||||
|
||||
rc = qmckl_get_nucleus_coord(context, 'N', &(nucl_coord[0][0]), nucl_num*3)
|
||||
rc = qmckl_get_nucleus_coord(context, 'N', &(nucl_coord[0][0]), nucl_num*3);
|
||||
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
fprintf(stderr, "Error getting nucl_coord:\n%s\n", qmckl_string_of_error(rc));
|
||||
@ -271,10 +291,12 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
for (size_t i=0 ; i<nucl_num ; ++i) {
|
||||
printf("%d %+f %+f %+f\n", (int32_t) nucl_charge[i],
|
||||
nucl_coord[i][0],
|
||||
nucl_coord[i][1],
|
||||
nucl_coord[i][2]) );
|
||||
printf("%d %+f %+f %+f\n",
|
||||
(int32_t) nucl_charge[i],
|
||||
nucl_coord[i][0],
|
||||
nucl_coord[i][1],
|
||||
nucl_coord[i][2]);
|
||||
}
|
||||
#+end_src
|
||||
|
||||
#+begin_example
|
||||
@ -283,103 +305,157 @@ int main(int argc, char** argv)
|
||||
1 +1.430429 +0.000000 -1.107157
|
||||
#+end_example
|
||||
|
||||
|
||||
We now define the grid points $\mathbf{r}_k$ as a regular grid around the
|
||||
molecule.
|
||||
We fetch the nuclear coordinates from the context,
|
||||
|
||||
and compute the coordinates of the grid points:
|
||||
|
||||
#+begin_src python :exports code
|
||||
nx = ( 120, 120, 120 )
|
||||
shift = np.array([5.,5.,5.])
|
||||
point_num = nx[0] * nx[1] * nx[2]
|
||||
#+begin_src c :exports code
|
||||
size_t nx[3] = { 120, 120, 120 };
|
||||
double shift[3] = {5.,5.,5.};
|
||||
int64_t point_num = nx[0] * nx[1] * nx[2];
|
||||
|
||||
rmin = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) )
|
||||
rmax = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) )
|
||||
double rmin[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
||||
double rmax[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
||||
|
||||
for (size_t i=0 ; i<nucl_num ; ++i) {
|
||||
for (int j=0 ; j<3 ; ++j) {
|
||||
rmin[j] = nucl_coord[i][j] < rmin[j] ? nucl_coord[i][j] : rmin[j];
|
||||
rmax[j] = nucl_coord[i][j] > rmax[j] ? nucl_coord[i][j] : rmax[j];
|
||||
}
|
||||
}
|
||||
|
||||
linspace = [ None for i in range(3) ]
|
||||
step = [ None for i in range(3) ]
|
||||
for a in range(3):
|
||||
linspace[a], step[a] = np.linspace(rmin[a]-shift[a],
|
||||
rmax[a]+shift[a],
|
||||
num=nx[a],
|
||||
retstep=True)
|
||||
rmin[0] -= shift[0]; rmin[1] -= shift[1]; rmin[2] -= shift[2];
|
||||
rmax[0] += shift[0]; rmax[1] += shift[1]; rmax[2] += shift[2];
|
||||
|
||||
dr = step[0] * step[1] * step[2]
|
||||
double step[3];
|
||||
|
||||
double* linspace[3];
|
||||
for (int i=0 ; i<3 ; ++i) {
|
||||
|
||||
linspace[i] = (double*) calloc( sizeof(double), nx[i] );
|
||||
|
||||
if (linspace[i] == NULL) {
|
||||
fprintf(stderr, "Allocation failed (linspace)\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
step[i] = (rmax[i] - rmin[i]) / ((double) (nx[i]-1));
|
||||
|
||||
for (size_t j=0 ; j<nx[i] ; ++j) {
|
||||
linspace[i][j] = rmin[i] + j*step[i];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
double dr = step[0] * step[1] * step[2];
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
Now the grid is ready, we can create the list of grid points
|
||||
$\mathbf{r}_k$ on which the MOs $\phi_i$ will be evaluated, and
|
||||
transfer them to the QMCkl context:
|
||||
|
||||
#+begin_src python :exports code
|
||||
point = []
|
||||
for x in linspace[0]:
|
||||
for y in linspace[1]:
|
||||
for z in linspace[2]:
|
||||
point += [ [x, y, z] ]
|
||||
#+begin_src c :exports code
|
||||
double* point = (double*) calloc(sizeof(double), 3*point_num);
|
||||
|
||||
point = np.array(point)
|
||||
point_num = len(point)
|
||||
qmckl.set_point(context, 'N', point_num, np.reshape(point, (point_num*3)))
|
||||
if (point == NULL) {
|
||||
fprintf(stderr, "Allocation failed (point)\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
size_t m = 0;
|
||||
for (size_t i=0 ; i<nx[0] ; ++i) {
|
||||
for (size_t j=0 ; j<nx[1] ; ++j) {
|
||||
for (size_t k=0 ; k<nx[2] ; ++k) {
|
||||
|
||||
point[m] = linspace[0][i];
|
||||
m++;
|
||||
|
||||
point[m] = linspace[1][j];
|
||||
m++;
|
||||
|
||||
point[m] = linspace[2][k];
|
||||
m++;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rc = qmckl_set_point(context, 'N', point_num, point, (point_num*3));
|
||||
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
fprintf(stderr, "Error setting points:\n%s\n", qmckl_string_of_error(rc));
|
||||
exit(1);
|
||||
}
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: None
|
||||
|
||||
Then, we evaluate all the MOs at the grid points (and time the execution),
|
||||
and thus obtain the matrix $M_{ki} = \langle \mathbf{r}_k | \phi_i \rangle =
|
||||
\phi_i(\mathbf{r}_k)$.
|
||||
and thus obtain the matrix $M_{ki} = \langle \mathbf{r}_k | \phi_i
|
||||
\rangle = \phi_i(\mathbf{r}_k)$.
|
||||
|
||||
#+begin_src python :exports code
|
||||
import time
|
||||
#+begin_src c :exports code
|
||||
|
||||
mo_num = qmckl.get_mo_basis_mo_num(context)
|
||||
int64_t mo_num;
|
||||
rc = qmckl_get_mo_basis_mo_num(context, &mo_num);
|
||||
|
||||
before = time.time()
|
||||
mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
|
||||
after = time.time()
|
||||
long before, after;
|
||||
struct timeval timecheck;
|
||||
|
||||
mo_value = np.reshape( mo_value, (point_num, mo_num) )
|
||||
double* mo_value = (double*) calloc(sizeof(double), point_num*mo_num);
|
||||
if (mo_value == NULL) {
|
||||
fprintf(stderr, "Allocation failed (mo_value)\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
print("Number of MOs: ", mo_num)
|
||||
print("Number of grid points: ", point_num)
|
||||
print("Execution time : ", (after - before), "seconds")
|
||||
gettimeofday(&timecheck, NULL);
|
||||
before = (long)timecheck.tv_sec * 1000 + (long)timecheck.tv_usec / 1000;
|
||||
|
||||
rc = qmckl_get_mo_basis_mo_value(context, mo_value, point_num*mo_num);
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
fprintf(stderr, "Error getting mo_value)\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
gettimeofday(&timecheck, NULL);
|
||||
after = (long)timecheck.tv_sec * 1000 + (long)timecheck.tv_usec / 1000;
|
||||
|
||||
printf("Number of MOs: %ld\n", mo_num);
|
||||
printf("Number of grid points: %ld\n", point_num);
|
||||
printf("Execution time : %f seconds\n", (after - before)*1.e-3);
|
||||
|
||||
#+end_src
|
||||
|
||||
#+begin_example
|
||||
Number of MOs: 201
|
||||
Number of grid points: 1728000
|
||||
Execution time : 3.511528968811035 seconds
|
||||
Execution time : 5.608000 seconds
|
||||
#+end_example
|
||||
|
||||
and finally we compute the overlap between all the MOs as
|
||||
$M^\dagger M$.
|
||||
$M.M^\dagger$.
|
||||
|
||||
#+begin_src python :exports code
|
||||
overlap = mo_value.T @ mo_value * dr
|
||||
print (overlap)
|
||||
#+begin_src c :exports code
|
||||
double* overlap = (double*) malloc (mo_num*mo_num*sizeof(double));
|
||||
|
||||
rc = qmckl_dgemm(context, 'N', 'T', mo_num, mo_num, point_num, dr,
|
||||
mo_value, mo_num, mo_value, mo_num, 0.0,
|
||||
overlap, mo_num);
|
||||
|
||||
for (size_t i=0 ; i<mo_num ; ++i) {
|
||||
printf("%4ld", i);
|
||||
for (size_t j=0 ; j<mo_num ; ++j) {
|
||||
printf(" %f", overlap[i*mo_num+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
}
|
||||
#+end_src
|
||||
|
||||
#+begin_example
|
||||
[[ 9.88693941e-01 2.34719693e-03 -1.50518232e-08 ... 3.12084178e-09
|
||||
-5.81064929e-10 3.70130091e-02]
|
||||
[ 2.34719693e-03 9.99509628e-01 3.18930040e-09 ... -2.46888958e-10
|
||||
-1.06064273e-09 -7.65567973e-03]
|
||||
[-1.50518232e-08 3.18930040e-09 9.99995073e-01 ... -5.84882580e-06
|
||||
-1.21598117e-06 4.59036468e-08]
|
||||
...
|
||||
[ 3.12084178e-09 -2.46888958e-10 -5.84882580e-06 ... 1.00019107e+00
|
||||
-2.03342837e-04 -1.36954855e-08]
|
||||
[-5.81064929e-10 -1.06064273e-09 -1.21598117e-06 ... -2.03342837e-04
|
||||
9.99262427e-01 1.18264754e-09]
|
||||
[ 3.70130091e-02 -7.65567973e-03 4.59036468e-08 ... -1.36954855e-08
|
||||
1.18264754e-09 8.97215950e-01]]
|
||||
0 0.988765 0.002336 0.000000 -0.000734 0.000000 0.000530 0.000000 0.000446 0.000000 -0.000000 -0.000511 -0.000000 -0.000267 0.000000 0.000000 0.001007 0.000000 0.000168 -0.000000 -0.000000 -0.000670 -0.000000 0.000000 -0.000251 -0.000261 -0.000000 -0.000000 -0.000000 -0.000397 -0.000000 -0.000810 0.000000 0.000231 -0.000000 -0.000000 0.000000 -0.000000
|
||||
...
|
||||
200 0.039017 -0.013066 -0.000000 -0.001935 -0.000000 -0.003829 -0.000000 0.000996 -0.000000 0.000000 -0.003733 0.000000 0.000065 -0.000000 -0.000000 -0.002220 -0.000000 -0.001961 0.000000 0.000000 -0.004182 0.000000 -0.000000 -0.000165 -0.002445 0.000000 -0.000000 0.000000 0.001985 0.000000 0.001685 -0.000000 -0.002899 0.000000 0.000000 0.000000 -0.000000 0.002591 0.000000 -0.000000 0.000000 0.002385 0.000000 -0.011086 0.000000 -0.003885 0.000000 -0.000000 0.003602 -0.000000 0.000000 -0.003241 0.000000 0.000000 0.002613 -0.007344 -0.000000 -0.000000 0.000000 0.000017 0.000000 0.000000 0.000000 -0.008719 0.000000 -0.001358 -0.003233 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.003778 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.001190 0.000000 0.000000 -0.000000 0.005578 -0.000000 -0.001502 0.003899 -0.000000 -0.000000 0.000000 -0.003291 -0.001775 -0.000000 -0.002374 0.000000 -0.000000 -0.000000 -0.000000 -0.001290 -0.000000 0.002178 0.000000 0.000000 0.000000 -0.001252 0.000000 -0.000000 -0.000926 0.000000 -0.000000 -0.013130 -0.000000 0.012124 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.025194 0.000343 -0.000000 0.000000 -0.000000 -0.004421 0.000000 0.000000 -0.000599 -0.000000 0.005289 0.000000 -0.000000 0.012826 -0.000000 0.000000 0.006190 0.000000 0.000000 -0.000000 0.000000 -0.000321 0.000000 -0.000000 -0.000000 0.000000 -0.000000 0.001499 -0.006629 0.000000 0.000000 0.000000 -0.000000 0.008737 -0.000000 0.006880 0.000000 -0.001851 -0.000000 -0.000000 0.000000 -0.007464 0.000000 0.010298 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.000540 0.000000 -0.006616 -0.000000 0.000000 -0.002927 -0.000000 0.000000 0.010352 0.000000 -0.003103 -0.000000 -0.007640 -0.000000 -0.000000 0.005302 0.000000 0.000000 -0.000000 -0.000000 -0.010181 0.000000 -0.001108 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.000998 -0.009754 0.013562 0.000000 -0.000000 0.887510
|
||||
#+end_example
|
||||
|
||||
* Fortran
|
||||
|
Loading…
Reference in New Issue
Block a user