1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-08 20:33:40 +01:00

Implement computation of tmp_c and dtmp_c in OpenACC

These 2 kernels seem to give good speedup compared to the CPU BLAS
versions. However, the current GPU implementation of factor_een_deriv seems to
be slightly slower (on the tested machine).

TODO:
- Try to improve factor_een_deriv GPU implem
- Try out a cuBLAS implementation of tmp_c and dtmp_c
This commit is contained in:
Aurélien Delval 2022-03-30 16:16:06 +02:00
parent 99306473a4
commit 9428eaa19e

View File

@ -4809,7 +4809,27 @@ qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context)
} }
ctx->jastrow.tmp_c = tmp_c; ctx->jastrow.tmp_c = tmp_c;
} }
/* Choose the correct compute function (depending on offload type) */
bool default_compute = true;
#ifdef HAVE_OPENACC_OFFLOAD
if(ctx->jastrow.offload_type == OFFLOAD_OPENACC) {
qmckl_exit_code rc =
qmckl_compute_tmp_c_acc_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.tmp_c);
if (rc != QMCKL_SUCCESS) {
return rc;
}
}
#endif
if(default_compute) {
qmckl_exit_code rc = qmckl_exit_code rc =
qmckl_compute_tmp_c(context, qmckl_compute_tmp_c(context,
ctx->jastrow.cord_num, ctx->jastrow.cord_num,
@ -4822,6 +4842,8 @@ qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context)
if (rc != QMCKL_SUCCESS) { if (rc != QMCKL_SUCCESS) {
return rc; return rc;
} }
}
ctx->jastrow.tmp_c_date = ctx->date; ctx->jastrow.tmp_c_date = ctx->date;
} }
@ -5332,6 +5354,134 @@ end function qmckl_compute_tmp_c_f
end function qmckl_compute_tmp_c end function qmckl_compute_tmp_c
#+end_src #+end_src
*** Compute tmp_c (OpenACC offload)
:PROPERTIES:
:Name: qmckl_compute_tmp_c
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_tmp_c_acc_offload_args
| Variable | Type | In/Out | Description |
|------------------+------------------------------------------------------------------+--------+-----------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron rescaled factor |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_tmp_c_acc_offload_f(context, cord_num, elec_num, nucl_num, &
walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: tmp
integer*8 :: i, j, jj, k, l, p, lmax, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
!$acc parallel
!$acc loop independent gang worker vector collapse(5)
do nw=1, walk_num
do i=0, cord_num-1
do j=0,cord_num
do jj=1,nucl_num
do k=1,elec_num
tmp = 0.0
do l=1,elec_num
tmp = tmp + &
een_rescaled_e(k, l, i, nw) * een_rescaled_n(l, jj, j, nw)
end do
tmp_c(k, jj, j, i, nw) = tmp
end do
end do
end do
end do
end do
!$acc end parallel
end function qmckl_compute_tmp_c_acc_offload_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_tmp_c_acc_offload_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_acc_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_tmp_c_acc_offload_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_tmp_c_acc_offload &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_tmp_c_acc_offload_f
info = qmckl_compute_tmp_c_acc_offload_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c)
end function qmckl_compute_tmp_c_acc_offload
#+end_src
*** Compute dtmp_c *** Compute dtmp_c
:PROPERTIES: :PROPERTIES:
@ -5495,19 +5645,10 @@ integer function qmckl_compute_dtmp_c_acc_offload_f(context, cord_num, elec_num,
double precision , intent(in) :: een_rescaled_e_deriv_e(elec_num, 4, elec_num, 0:cord_num, walk_num) double precision , intent(in) :: een_rescaled_e_deriv_e(elec_num, 4, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: x, tmp double precision :: tmp
integer*8 :: i, j, jj, k2, a, l, kk, p, lmax, nw, ii integer*8 :: nw, i, j, jj, k, kk, l
character :: TransA, TransB
double precision :: alpha, beta
integer*8 :: M, N, K, LDA, LDB, LDC
TransA = 'N'
TransB = 'N'
alpha = 1.0d0
beta = 0.0d0
info = QMCKL_SUCCESS info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT info = QMCKL_INVALID_CONTEXT
return return
@ -5528,43 +5669,31 @@ integer function qmckl_compute_dtmp_c_acc_offload_f(context, cord_num, elec_num,
return return
endif endif
M = 4*elec_num !$acc parallel
N = nucl_num*(cord_num + 1) !$acc loop independent gang worker vector collapse(6)
K = elec_num
LDA = 4*size(een_rescaled_e_deriv_e,1)
LDB = size(een_rescaled_n,1)
LDC = 4*size(dtmp_c,1)
do nw=1, walk_num do nw=1, walk_num
do i=0, cord_num-1 do i=0, cord_num-1
! Single DGEMM
do j=0,cord_num do j=0,cord_num
do jj=1,nucl_num do jj=1,nucl_num
do k2=1,4 do k=1,4
do kk=1,elec_num do kk=1,elec_num
tmp = 0.0 tmp = 0.0
do l=1,K do l=1,elec_num
tmp = tmp + & tmp = tmp + &
een_rescaled_e_deriv_e(kk, k2, l, i, nw) * een_rescaled_n(l, jj, j, nw) een_rescaled_e_deriv_e(kk, k, l, i, nw) * een_rescaled_n(l, jj, j, nw)
end do end do
! affect tmp dtmp_c(kk, k, jj, j, i, nw ) = tmp
dtmp_c(kk, k2, jj, j, i, nw ) = tmp
end do end do
end do end do
end do end do
end do end do
!info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, &
! een_rescaled_e_deriv_e(1,1,1,i,nw),LDA*1_8, &
! een_rescaled_n(1,1,0,nw),LDB*1_8, &
! beta, &
! dtmp_c(1,1,1,0,i,nw),LDC)
end do end do
end do end do
!$acc end parallel
end function qmckl_compute_dtmp_c_acc_offload_f end function qmckl_compute_dtmp_c_acc_offload_f
#+end_src #+end_src
@ -5605,8 +5734,8 @@ end function qmckl_compute_dtmp_c_acc_offload_f
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_dtmp_c_f integer(c_int32_t), external :: qmckl_compute_dtmp_c_acc_offload_f
info = qmckl_compute_dtmp_c_f & info = qmckl_compute_dtmp_c_acc_offload_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c) (context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c)
end function qmckl_compute_dtmp_c_acc_offload end function qmckl_compute_dtmp_c_acc_offload
@ -6316,7 +6445,11 @@ qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context)
#ifdef HAVE_OPENACC_OFFLOAD #ifdef HAVE_OPENACC_OFFLOAD
if(ctx->jastrow.offload_type == OFFLOAD_OPENACC) { if(ctx->jastrow.offload_type == OFFLOAD_OPENACC) {
qmckl_exit_code rc = qmckl_exit_code rc =
qmckl_compute_factor_een_deriv_e_acc_offload(context, // CPU version
qmckl_compute_factor_een_deriv_e(context,
// GPU version : No speedup on this kernel yet
// qmckl_compute_factor_een_deriv_e_acc_offload(context,
ctx->electron.walk_num, ctx->electron.walk_num,
ctx->electron.num, ctx->electron.num,
ctx->nucleus.num, ctx->nucleus.num,