1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-12-31 08:36:11 +01:00

Debugging Jastrow

This commit is contained in:
Anthony Scemama 2023-05-22 19:15:17 +02:00
parent 95b579dfc8
commit 92705b7c87
3 changed files with 217 additions and 204 deletions

View File

@ -427,12 +427,12 @@ AC_ARG_ENABLE(debug, [AS_HELP_STRING([--enable-debug],[compile for debugging])],
AS_IF([test "x$ok" = "xyes"], [
AS_IF([test "x$GCC" = "xyes"], [
CPPFLAGS="-Wdate-time -D_FORTIFY_SOURCE=2"
CFLAGS="$CFLAGS \
-g -Wall -W -Wbad-function-cast -Wcast-qual -Warray-bounds -Wdisabled-optimization \
-fsanitize=address -fno-omit-frame-pointer -fstack-protector-strong -Wformat -Werror=format-security \
CFLAGS="$CFLAGS -g \
-Wall -W -Wbad-function-cast -Wcast-qual -Warray-bounds -Wdisabled-optimization \
-fno-omit-frame-pointer -fstack-protector-strong -Wformat -Werror=format-security \
-Wpointer-arith -Wcast-align -Wpedantic -Wextra -Walloc-zero -Werror \
"
LDFLAGS="$LDFLAGS -fsanitize=address"
LDFLAGS="$LDFLAGS"
])
AS_IF([test "x$GFC" = "xyes"], [
FCFLAGS="$FCFLAGS \

View File

@ -19,9 +19,9 @@
\[
J_{\text{eN}}(\mathbf{r},\mathbf{R}) =
\sum_{\alpha=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}}
\sum_{\alpha=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}} -
\frac{a_{1\,\alpha}\, f_\alpha(R_{i\alpha})}{1+a_{2\,\alpha}\, f_\alpha(R_{i\alpha})} +
\sum_{p=2}^{N_\text{ord}^a} a_{p+1\,\alpha}\, [f_\alpha(R_{i\alpha})]^p - J_{\text{eN}}^{\infty \alpha}
\sum_{p=2}^{N_\text{ord}^a} - a_{p+1\,\alpha}\, [f_\alpha(R_{i\alpha})]^p - J_{\text{eN}}^{\infty \alpha}
\]
$J_{\text{ee}}$ contains electron-electron terms:
@ -60,6 +60,7 @@
$J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero.
The eN and eeN parameters are the same of all identical nuclei.
The types of nuclei use zero-based indexing.
* Headers :noexport:
#+begin_src elisp :noexport :results none
@ -281,7 +282,7 @@ aord_num = 5
bord_num = 5
cord_num = 5
dim_c_vector= 23
type_nucl_vector = [ 1, 1]
type_nucl_vector = [ 0, 0]
a_vector = np.array([
[0.000000000000000E+000],
[0.000000000000000E+000],
@ -353,7 +354,7 @@ typedef struct qmckl_jastrow_champ_struct{
int64_t * restrict lkpm_combined_index;
int64_t * restrict type_nucl_vector;
double * restrict asymp_jasa;
double * restrict asymp_jasb;
double asymp_jasb[2];
double * restrict a_vector;
double * restrict b_vector;
double * restrict c_vector;
@ -559,7 +560,13 @@ qmckl_set_jastrow_champ_cord_num(qmckl_context context, const int64_t cord_num)
ctx->jastrow_champ.cord_num = cord_num;
ctx->jastrow_champ.dim_c_vector = dim_c_vector;
ctx->jastrow_champ.uninitialized |= (1 << 7);
// If cord_num == 0, a_vector can't be set
if (cord_num > 0) {
ctx->jastrow_champ.uninitialized |= (1 << 7);
} else {
ctx->jastrow_champ.uninitialized &= ~(1 << 7);
}
<<post2>>
}
@ -1680,8 +1687,8 @@ assert(qmckl_nucleus_provided(context));
Calculate the asymptotic component ~asymp_jasb~ to be substracted from the
electron-electron jastrow factor \(J_{\text{ee}}\). Two values are
computed. The first one is for antiparallel spin pairs, and the
second one for parallel spin pairs.
computed. The first one is for parallel spin pairs, and the
second one for antiparallel spin pairs.
\[
J_{\text{ee}}^{\infty} = \frac{\frac{1}{2}(1+\delta^{\uparrow \downarrow})\,b_1 \kappa_\text{ee}^{-1}}{1 + b_2\,
@ -1780,22 +1787,6 @@ qmckl_exit_code qmckl_provide_jastrow_champ_asymp_jasb(qmckl_context context)
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.asymp_jasb_date) {
/* Allocate array */
if (ctx->jastrow_champ.asymp_jasb == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 2 * sizeof(double);
double* asymp_jasb = (double*) qmckl_malloc(context, mem_info);
if (asymp_jasb == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_asymp_jasb",
NULL);
}
ctx->jastrow_champ.asymp_jasb = asymp_jasb;
}
rc = qmckl_compute_jastrow_champ_asymp_jasb(context,
ctx->jastrow_champ.bord_num,
ctx->jastrow_champ.b_vector,
@ -1879,15 +1870,15 @@ integer function qmckl_compute_jastrow_champ_asymp_jasb_doc_f(context, bord_num,
endif
asym_one = b_vector(1) * kappa_inv / (1.0d0 + b_vector(2) * kappa_inv)
asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/)
asymp_jasb(:) = (/0.5d0*asym_one, asym_one/)
do i = 1, 2
x = kappa_inv
do p = 2, bord_num
x = x * kappa_inv
asymp_jasb(i) = asymp_jasb(i) + b_vector(p + 1) * x
end do
end do
x = kappa_inv
do p = 2, bord_num
x = x * kappa_inv
do i = 1, 2
asymp_jasb(i) = asymp_jasb(i) + b_vector(p + 1) * x
end do
end do
end function qmckl_compute_jastrow_champ_asymp_jasb_doc_f
#+end_src
@ -1928,17 +1919,17 @@ qmckl_compute_jastrow_champ_asymp_jasb_hpc (const qmckl_context context,
const double kappa_inv = 1.0 / rescale_factor_ee;
const double asym_one = b_vector[0] * kappa_inv / (1.0 + b_vector[1] * kappa_inv);
asymp_jasb[0] = asym_one;
asymp_jasb[1] = 0.5 * asym_one;
for (int i = 0 ; i<2 ; ++i) {
double x = kappa_inv;
for (int p = 1; p < bord_num; ++p) {
x *= kappa_inv;
asymp_jasb[i] += b_vector[p+1]*x;
}
double f = 0.;
double x = kappa_inv;
for (int k = 2; k <= bord_num; ++k) {
x *= kappa_inv;
f += b_vector[k]*x;
}
asymp_jasb[0] = 0.5 * asym_one + f;
asymp_jasb[1] = asym_one + f;
return QMCKL_SUCCESS;
}
#+end_src
@ -1977,7 +1968,7 @@ import numpy as np
<<jastrow_data>>
asym_one = b_vector[0] * kappa_inv / (1.0 + b_vector[1]*kappa_inv)
asymp_jasb = np.array([asym_one, 0.5 * asym_one])
asymp_jasb = np.array([0.5*asym_one, asym_one])
for i in range(2):
x = kappa_inv
@ -1992,8 +1983,8 @@ print("asymp_jasb[1] : ", asymp_jasb[1])
#+RESULTS: asymp_jasb
: asym_one : 0.43340325572525706
: asymp_jasb[0] : 0.5323750557252571
: asymp_jasb[1] : 0.31567342786262853
: asymp_jasb[0] : 0.31567342786262853
: asymp_jasb[1] : 0.5323750557252571
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
@ -2079,8 +2070,8 @@ double asymp_jasb[2];
rc = qmckl_get_jastrow_champ_asymp_jasb(context, asymp_jasb,2);
// calculate asymp_jasb
assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12);
assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);
assert(fabs(asymp_jasb[0]-0.31567342786262853) < 1.e-12);
assert(fabs(asymp_jasb[1]-0.5323750557252571) < 1.e-12);
#+end_src
@ -2091,7 +2082,7 @@ assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);
\[
f_\text{ee} = \sum_{i,j<i} \left[
\frac{\delta_{ij}^{\uparrow\downarrow} B_0\, C_{ij}}{1 - B_1\,
\frac{\delta_{ij}^{\uparrow\downarrow} B_0\, C_{ij}}{1 + B_1\,
C_{ij}} + \sum_{k=2}^{n_\text{ord}} B_k\, C_{ij}^k - {J_{\text{ee}}^{\infty}}_{ij} \right]
\]
@ -2156,7 +2147,7 @@ interface
end function qmckl_get_jastrow_champ_factor_ee
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee(qmckl_context context);
@ -2280,8 +2271,8 @@ integer function qmckl_compute_jastrow_champ_factor_ee_doc_f(context, walk_num,
double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee(walk_num)
integer*8 :: i, j, p, ipar, nw
double precision :: x, power_ser, spin_fact
integer*8 :: i, j, k, nw
double precision :: x, xk
info = QMCKL_SUCCESS
@ -2305,34 +2296,27 @@ integer function qmckl_compute_jastrow_champ_factor_ee_doc_f(context, walk_num,
return
endif
factor_ee = 0.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, j - 1
factor_ee(nw) = 0.0d0
do j=1,elec_num
do i=1,j-1
x = ee_distance_rescaled(i,j,nw)
power_ser = 0.0d0
spin_fact = 1.0d0
ipar = 1
do p = 2, bord_num
x = x * ee_distance_rescaled(i,j,nw)
power_ser = power_ser + b_vector(p + 1) * x
end do
if(j <= up_num .or. i > up_num) then
spin_fact = 0.5d0
ipar = 2
if ( (j <= up_num).or.(i > up_num) ) then
factor_ee(nw) = factor_ee(nw) + 0.5d0 * b_vector(1) * x / (1.d0 + b_vector(2) * x) - asymp_jasb(1)
else
factor_ee(nw) = factor_ee(nw) + b_vector(1) * x / (1.d0 + b_vector(2) * x) - asymp_jasb(2)
endif
factor_ee(nw) = factor_ee(nw) + spin_fact * b_vector(1) * &
ee_distance_rescaled(i,j,nw) / &
(1.0d0 + b_vector(2) * &
ee_distance_rescaled(i,j,nw)) &
+ power_ser - asymp_jasb(ipar)
xk = x
do k=2,bord_num
xk = xk * x
factor_ee(nw) = factor_ee(nw) + b_vector(k+1)* xk
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_ee_doc_f
@ -2418,30 +2402,25 @@ qmckl_exit_code qmckl_compute_jastrow_champ_factor_ee_hpc (
}
for (int nw = 0; nw < walk_num; ++nw) {
factor_ee[nw] = 0.0; // put init array here.
factor_ee[nw] = 0.;
size_t ishift = nw * elec_num * elec_num;
for (int i = 0; i < elec_num; ++i ) {
for (int j = 0; j < i; ++j) {
double x = ee_distance_rescaled[j + i * elec_num + ishift];
const double x1 = x;
double power_ser = 0.0;
double spin_fact = 1.0;
int ipar = 0; // index of asymp_jasb
for (int j = 0; j < elec_num; ++j ) {
for (int i = 0; i < j; ++i) {
const double x = ee_distance_rescaled[i + j * elec_num + ishift];
for (int p = 1; p < bord_num; ++p) {
x = x * x1;
power_ser += b_vector[p + 1] * x;
if(j < up_num || i >= up_num) {
factor_ee[nw] += 0.5 * b_vector[0]*x / (1. + b_vector[1]*x) - asymp_jasb[0];
} else {
factor_ee[nw] += b_vector[0]*x / (1. + b_vector[1]*x) - asymp_jasb[1];
}
if(i < up_num || j >= up_num) {
spin_fact = 0.5;
ipar = 1;
double xk = x;
for (int k = 2; k <= bord_num; ++k) {
xk *= x;
factor_ee[nw] += b_vector[k] * xk;
}
factor_ee[nw] += spin_fact * b_vector[0] *
x1 / (1.0 + b_vector[1] * x1)
- asymp_jasb[ipar] + power_ser;
}
}
}
@ -2595,6 +2574,22 @@ qmckl_get_jastrow_champ_factor_ee_deriv_e(qmckl_context context,
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_ee_deriv_e (context, &
factor_ee_deriv_e, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
double precision, intent(out) :: factor_ee_deriv_e(size_max)
end function qmckl_get_jastrow_champ_factor_ee_deriv_e
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee_deriv_e(qmckl_context context);
@ -3020,7 +3015,6 @@ integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_ee_deriv_e_doc &
#+end_src
**** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
@ -3647,7 +3641,7 @@ rc = qmckl_get_jastrow_champ_ee_distance_rescaled_deriv_e(context, ee_distance_r
via the ~a_vector~ and the electron-nucleus rescale factors ~rescale_factor_en~.
\[
J_{\text{en}}^{\infty \alpha} = \frac{a_1 \kappa_\alpha^{-1}}{1 + a_2 \kappa_\alpha^{-1}}
J_{\text{en}}^{\infty \alpha} = -\frac{a_1 \kappa_\alpha^{-1}}{1 + a_2 \kappa_\alpha^{-1}}
\]
**** Get
@ -3808,7 +3802,6 @@ integer function qmckl_compute_jastrow_champ_asymp_jasa_f(context, aord_num, typ
integer*8 :: i, j, p
double precision :: kappa_inv, x, asym_one
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
@ -3825,12 +3818,12 @@ integer function qmckl_compute_jastrow_champ_asymp_jasa_f(context, aord_num, typ
kappa_inv = 1.0d0 / rescale_factor_en(i)
asymp_jasa(i) = a_vector(1,i) * kappa_inv / (1.0d0 + a_vector(2,i) * kappa_inv)
asymp_jasa(i) = - a_vector(1,i) * kappa_inv / (1.0d0 + a_vector(2,i) * kappa_inv)
x = kappa_inv
do p = 2, aord_num
x = x * kappa_inv
asymp_jasa(i) = asymp_jasa(i) + a_vector(p+1, i) * x
asymp_jasa(i) = asymp_jasa(i) - a_vector(p+1, i) * x
end do
end do
@ -3883,25 +3876,25 @@ import numpy as np
<<jastrow_data>>
asymp_jasa = a_vector[0] * kappa_inv / (1.0 + a_vector[1]*kappa_inv)
asymp_jasa = -a_vector[0] * kappa_inv / (1.0 + a_vector[1]*kappa_inv)
x = kappa_inv
for p in range(1,aord_num):
x = x * kappa_inv
asymp_jasa += a_vector[p + 1] * x
asymp_jasa -= a_vector[p + 1] * x
print("asymp_jasa[i] : ", asymp_jasa)
#+end_src
#+RESULTS: asymp_jasa
: asymp_jasa[i] : [-0.548554]
: asymp_jasa[i] : [0.548554]
#+begin_src c :tangle (eval c_test)
double asymp_jasa[2];
rc = qmckl_get_jastrow_champ_asymp_jasa(context, asymp_jasa, type_nucl_num);
// calculate asymp_jasb
printf("%e %e\n", asymp_jasa[0], -0.548554);
assert(fabs(-0.548554 - asymp_jasa[0]) < 1.e-12);
printf("%e %e\n", asymp_jasa[0], 0.548554);
assert(fabs(0.548554 - asymp_jasa[0]) < 1.e-12);
#+end_src
@ -3911,7 +3904,7 @@ assert(fabs(-0.548554 - asymp_jasa[0]) < 1.e-12);
coeffecients and the electron-nucleus rescaled distances ~en_distance_rescaled~.
\[
f_{\alpha}(R_{i\alpha}) = \sum_{i,j<i} \left\{ \frac{ A_0 C_{ij}}{1 - A_1 C_{ij}} + \sum^{N^\alpha_{\text{ord}}}_{k}A_k C_{ij}^k \right\}
f_{\alpha}(R_{i\alpha}) = - \sum_{i,j<i} \left[ \frac{ A_0 C_{ij}}{1 - A_1 C_{ij}} + \sum^{N^\alpha_{\text{ord}}}_{k}A_k C_{ij}^k \right]
\]
@ -4144,12 +4137,12 @@ integer function qmckl_compute_jastrow_champ_factor_en_doc_f( &
do i = 1, elec_num
x = en_distance_rescaled(i, a, nw)
factor_en(nw) = factor_en(nw) + a_vector(1, type_nucl_vector(a)) * x / &
(1.0d0 + a_vector(2, type_nucl_vector(a)) * x) - asymp_jasa(type_nucl_vector(a))
factor_en(nw) = factor_en(nw) - a_vector(1, type_nucl_vector(a)+1) * x / &
(1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x) - asymp_jasa(type_nucl_vector(a)+1)
do p = 2, aord_num
x = x * en_distance_rescaled(i, a, nw)
factor_en(nw) = factor_en(nw) + a_vector(p + 1, type_nucl_vector(a)) * x
factor_en(nw) = factor_en(nw) - a_vector(p + 1, type_nucl_vector(a)+1) * x
end do
end do
@ -4280,19 +4273,19 @@ for a in range(0,nucl_num):
for p in range(2,aord_num+1):
x = x * en_distance_rescaled[i][a]
pow_ser = pow_ser + a_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
pow_ser = pow_ser + a_vector[(p-1) + 1][type_nucl_vector[a]] * x
factor_en = factor_en + a_vector[0][type_nucl_vector[a]-1] * x \
/ (1.0 + a_vector[1][type_nucl_vector[a]-1] * x) \
+ pow_ser
factor_en -= asymp_jasa[type_nucl_vector[a]-1]
factor_en = factor_en - a_vector[0][type_nucl_vector[a]] * x \
/ (1.0 + a_vector[1][type_nucl_vector[a]] * x) \
- pow_ser
factor_en -= asymp_jasa[type_nucl_vector[a]]
print("factor_en :",factor_en)
#+end_src
#+RESULTS:
: asymp_jasa[i] : [-0.548554]
: factor_en : 5.1052574308112755
: asymp_jasa[i] : [0.548554]
: factor_en : -5.1052574308112755
#+begin_src c :tangle (eval c_test)
@ -4303,7 +4296,8 @@ double factor_en[walk_num];
rc = qmckl_get_jastrow_champ_factor_en(context, factor_en,walk_num);
// calculate factor_en
assert(fabs(5.1052574308112755 - factor_en[0]) < 1.e-12);
printf("%f %f\n", factor_en[0], -5.1052574308112755);
assert(fabs(-5.1052574308112755 - factor_en[0]) < 1.e-12);
#+end_src
@ -4522,7 +4516,7 @@ integer function qmckl_compute_jastrow_champ_factor_en_deriv_e_f( &
x = en_distance_rescaled(i,a,nw)
if(abs(x) < 1.0d-18) continue
power_ser_g = 0.0d0
den = 1.0d0 + a_vector(2, type_nucl_vector(a)) * x
den = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
@ -4538,26 +4532,26 @@ integer function qmckl_compute_jastrow_champ_factor_en_deriv_e_f( &
do ii = 1, 3
x = en_distance_rescaled(i, a, nw)
do p = 2, aord_num
y = p * a_vector(p + 1, type_nucl_vector(a)) * x
y = p * a_vector(p + 1, type_nucl_vector(a)+1) * x
power_ser_g(ii) = power_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * en_distance_rescaled(i, a, nw)
end do
lap3 = lap3 - 2.0d0 * a_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii)
lap3 = lap3 - 2.0d0 * a_vector(2, type_nucl_vector(a)+1) * dx(ii) * dx(ii)
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + a_vector(1, type_nucl_vector(a)) &
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) - a_vector(1, type_nucl_vector(a)+1) &
,* dx(ii) * invden2 &
+ power_ser_g(ii)
- power_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * a_vector(1, type_nucl_vector(a)) * invden3
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + lap1 + lap2 + lap3
lap3 = lap3 * a_vector(1, type_nucl_vector(a)+1) * invden3
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) - lap1 - lap2 - lap3
end do
end do
@ -4680,7 +4674,7 @@ for a in range(nucl_num):
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + a_vector[1][type_nucl_vector[a]-1] * x
den = 1.0 + a_vector[1][type_nucl_vector[a]] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
@ -4697,22 +4691,22 @@ for a in range(nucl_num):
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * a_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
y = p * a_vector[(p-1) + 1][type_nucl_vector[a]] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[i][a]
lap3 = lap3 - 2.0 * a_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
lap3 = lap3 - 2.0 * a_vector[1][type_nucl_vector[a]] * dx[ii] * dx[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + a_vector[0][type_nucl_vector[a]-1] * \
dx[ii] * invden2 + pow_ser_g[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] - a_vector[0][type_nucl_vector[a]] * \
dx[ii] * invden2 - pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (a_vector[0][type_nucl_vector[a]-1] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
lap3 = lap3 * (a_vector[0][type_nucl_vector[a]] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] - lap1 - lap2 - lap3
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
@ -4723,6 +4717,11 @@ print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
#+end_src
#+RESULTS:
: factor_en_deriv_e[0][0]: -0.11609919541763383
: factor_en_deriv_e[1][0]: 0.23301394780804574
: factor_en_deriv_e[2][0]: -0.17548337641865783
: factor_en_deriv_e[3][0]: 0.9667363412285741
: factor_en_deriv_e[0][0]: 0.11609919541763383
: factor_en_deriv_e[1][0]: -0.23301394780804574
: factor_en_deriv_e[2][0]: 0.17548337641865783
@ -4738,10 +4737,10 @@ double factor_en_deriv_e[walk_num][4][elec_num];
rc = qmckl_get_jastrow_champ_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0]),walk_num*4*elec_num);
// check factor_en_deriv_e
assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][0][0]+0.11609919541763383) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][1][0]-0.23301394780804574) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][2][0]+0.17548337641865783) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][3][0]-0.9667363412285741 ) < 1.e-12);
#+end_src
@ -4850,6 +4849,7 @@ qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context)
ctx->electron.walker.point.coord.data,
ctx->nucleus.coord.data,
ctx->jastrow_champ.en_distance_rescaled);
if (rc != QMCKL_SUCCESS) {
return rc;
}
@ -4928,9 +4928,9 @@ integer function qmckl_compute_en_distance_rescaled_f(context, elec_num, nucl_nu
do i=1, nucl_num
coord(1:3) = nucl_coord(i,1:3)
do k=1,walk_num
info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, 1_8, &
elec_coord(1,k,1), elec_num*walk_num, coord, 1_8, &
en_distance_rescaled(1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)))
info = qmckl_distance_rescaled(context, 'T', 'N', elec_num, 1_8, &
elec_coord(1,k,1), elec_num*walk_num, coord, 3_8, &
en_distance_rescaled(1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)+1))
if (info /= QMCKL_SUCCESS) then
return
endif
@ -5247,7 +5247,7 @@ integer function qmckl_compute_en_distance_rescaled_deriv_e_f(context, elec_num,
do k=1,walk_num
info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, 1_8, &
elec_coord(1,k,1), elec_num*walk_num, coord, 1_8, &
en_distance_rescaled_deriv_e(1,1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)))
en_distance_rescaled_deriv_e(1,1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)+1))
if (info /= QMCKL_SUCCESS) then
return
endif
@ -6474,7 +6474,7 @@ integer function qmckl_compute_een_rescaled_n_f( &
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_en(type_nucl_vector(a)) * en_distance(a, i, nw))
een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_en(type_nucl_vector(a)+1) * en_distance(a, i, nw))
end do
end do
@ -6912,7 +6912,7 @@ integer function qmckl_compute_jastrow_champ_factor_een_rescaled_n_deriv_e_f( &
do l = 0, cord_num
do a = 1, nucl_num
kappa_l = - dble(l) * rescale_factor_en(type_nucl_vector(a))
kappa_l = - dble(l) * rescale_factor_en(type_nucl_vector(a)+1)
do i = 1, elec_num
een_rescaled_n_deriv_e(i, 1, a, l, nw) = kappa_l * elnuc_dist_deriv_e(1, i, a)
een_rescaled_n_deriv_e(i, 2, a, l, nw) = kappa_l * elnuc_dist_deriv_e(2, i, a)
@ -7585,7 +7585,7 @@ integer function qmckl_compute_c_vector_full_doc_f( &
do a = 1, nucl_num
c_vector_full(a,1:dim_c_vector) = c_vector(type_nucl_vector(a),1:dim_c_vector)
c_vector_full(a,1:dim_c_vector) = c_vector(type_nucl_vector(a)+1,1:dim_c_vector)
end do
end function qmckl_compute_c_vector_full_doc_f
@ -7645,7 +7645,7 @@ qmckl_exit_code qmckl_compute_c_vector_full_hpc (
for (int i=0; i < dim_c_vector; ++i) {
for (int a=0; a < nucl_num; ++a){
c_vector_full[a + i*nucl_num] = c_vector[(type_nucl_vector[a]-1)+i*type_nucl_num];
c_vector_full[a + i*nucl_num] = c_vector[(type_nucl_vector[a])+i*type_nucl_num];
}
}
@ -8512,27 +8512,31 @@ qmckl_exit_code qmckl_provide_jastrow_champ_factor_een(qmckl_context context)
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (ctx->jastrow_champ.cord_num > 0) {
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
}
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_een_date) {
@ -8565,16 +8569,16 @@ qmckl_exit_code qmckl_provide_jastrow_champ_factor_een(qmckl_context context)
}
rc = qmckl_compute_jastrow_champ_factor_een(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.factor_een);
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.factor_een);
if (rc != QMCKL_SUCCESS) {
return rc;
}
@ -8823,6 +8827,8 @@ integer function qmckl_compute_jastrow_champ_factor_een_doc_f( &
factor_een = 0.0d0
if (cord_num == 0) return
do nw =1, walk_num
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
@ -8951,7 +8957,6 @@ qmckl_compute_jastrow_champ_factor_een (const qmckl_context context,
end function qmckl_compute_jastrow_champ_factor_een_doc
#+end_src
**** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
@ -9062,37 +9067,41 @@ qmckl_exit_code qmckl_provide_jastrow_champ_factor_een_deriv_e(qmckl_context con
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
if (ctx->jastrow_champ.cord_num > 0) {
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if dtmp_c is provided */
rc = qmckl_provide_dtmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if dtmp_c is provided */
rc = qmckl_provide_dtmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
}
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_een_deriv_e_date) {
@ -9126,18 +9135,18 @@ qmckl_exit_code qmckl_provide_jastrow_champ_factor_een_deriv_e(qmckl_context con
}
rc = qmckl_compute_jastrow_champ_factor_een_deriv_e(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.dtmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_deriv_e,
ctx->jastrow_champ.factor_een_deriv_e);
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.dtmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_deriv_e,
ctx->jastrow_champ.factor_een_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
@ -9421,6 +9430,8 @@ integer function qmckl_compute_jastrow_champ_factor_een_deriv_e_doc_f( &
factor_een_deriv_e = 0.0d0
if (cord_num == 0) return
do nw =1, walk_num
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
@ -9636,6 +9647,8 @@ qmckl_compute_jastrow_champ_factor_een_deriv_e_hpc(const qmckl_context context,
memset(factor_een_deriv_e, 0, elec_num*4*walk_num*sizeof(double));
if (cord_num == 0) return QMCKL_SUCCESS;
const size_t elec_num2 = elec_num << 1;
const size_t elec_num3 = elec_num * 3;

View File

@ -60114,8 +60114,8 @@ double n2_elec_coord[n2_walk_num][n2_elec_num][3] = { {
#define n2_dim_c_vec ((int64_t) 23)
int64_t n2_type_nucl_vector[n2_nucl_num] = {
1,
1};
0,
0};
double n2_a_vector[n2_aord_num + 1][n2_type_nucl_num] = {
{ 0. },