mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2025-01-03 18:16:28 +01:00
Merge branch 'master' into ao_mo_vj
This commit is contained in:
commit
8db2c94d67
@ -61,7 +61,7 @@ int main() {
|
||||
#include "qmckl_jastrow_private_func.h"
|
||||
#include "qmckl_jastrow_private_type.h"
|
||||
#+end_src
|
||||
|
||||
|
||||
* Context
|
||||
:PROPERTIES:
|
||||
:Name: qmckl_jastrow
|
||||
@ -202,7 +202,7 @@ for i in range(elec_num):
|
||||
type_nucl_num = 1
|
||||
aord_num = 5
|
||||
bord_num = 5
|
||||
cord_num = 23
|
||||
cord_num = 5
|
||||
dim_cord_vect= 23
|
||||
type_nucl_vector = [ 1, 1]
|
||||
aord_vector = [
|
||||
@ -609,7 +609,7 @@ qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, doub
|
||||
}
|
||||
|
||||
assert (ctx->jastrow.cord_vector != NULL);
|
||||
memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_num*sizeof(double));
|
||||
memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.dim_cord_vect*sizeof(double));
|
||||
return QMCKL_SUCCESS;
|
||||
}
|
||||
|
||||
@ -860,19 +860,22 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons
|
||||
|
||||
int32_t mask = 1 << 5;
|
||||
|
||||
int64_t cord_num;
|
||||
qmckl_exit_code rc = qmckl_get_jastrow_cord_num(context, &cord_num);
|
||||
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
|
||||
if (rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
int64_t dim_cord_vect;
|
||||
rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect);
|
||||
if (rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
int64_t type_nucl_num;
|
||||
rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num);
|
||||
if (rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
if (cord_num == 0) {
|
||||
if (dim_cord_vect == 0) {
|
||||
return qmckl_failwith( context,
|
||||
QMCKL_FAILURE,
|
||||
"qmckl_set_jastrow_coefficient",
|
||||
"cord_num is not set");
|
||||
"dim_cord_vect is not set");
|
||||
}
|
||||
|
||||
if (cord_vector == NULL) {
|
||||
@ -892,7 +895,7 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons
|
||||
}
|
||||
|
||||
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
|
||||
mem_info.size = cord_num * type_nucl_num * sizeof(double);
|
||||
mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double);
|
||||
double* new_array = (double*) qmckl_malloc(context, mem_info);
|
||||
|
||||
if(new_array == NULL) {
|
||||
@ -1324,20 +1327,20 @@ end function qmckl_compute_asymp_jasb_f
|
||||
#+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_src c :tangle (eval h_private_func) :comments org
|
||||
#+BEGIN_src c :tangle (eval h_func) :comments org
|
||||
qmckl_exit_code qmckl_compute_asymp_jasb (
|
||||
const qmckl_context context,
|
||||
const int64_t bord_num,
|
||||
const double* bord_vector,
|
||||
const double rescale_factor_kappa_ee,
|
||||
double* const asymp_jasb );
|
||||
#+end_src
|
||||
#+END_src
|
||||
|
||||
|
||||
#+CALL: generate_c_interface(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_src f90 :tangle (eval f) :comments org :exports none
|
||||
#+BEGIN_src f90 :tangle (eval f) :comments org :exports none
|
||||
integer(c_int32_t) function qmckl_compute_asymp_jasb &
|
||||
(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) &
|
||||
bind(C) result(info)
|
||||
@ -1356,7 +1359,7 @@ end function qmckl_compute_asymp_jasb_f
|
||||
(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb)
|
||||
|
||||
end function qmckl_compute_asymp_jasb
|
||||
#+end_src
|
||||
#+END_src
|
||||
|
||||
*** Test
|
||||
#+name: asymp_jasb
|
||||
@ -1380,15 +1383,10 @@ print("asymp_jasb[1] : ", asymp_jasb[1])
|
||||
#+end_src
|
||||
|
||||
#+RESULTS: asymp_jasb
|
||||
: asym_one : 0.6634291325000664
|
||||
: asymp_jasb[0] : 1.043287918508297
|
||||
: asymp_jasb[1] : 0.7115733522582638
|
||||
|
||||
#+RESULTS:
|
||||
: asym_one : 0.43340325572525706
|
||||
: asymp_jasb[0] : 0.5323750557252571
|
||||
: asymp_jasb[1] : 0.31567342786262853
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
assert(qmckl_electron_provided(context));
|
||||
|
||||
@ -1416,6 +1414,8 @@ rc = qmckl_set_jastrow_aord_vector(context, aord_vector);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
rc = qmckl_set_jastrow_cord_vector(context, cord_vector);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
rc = qmckl_set_jastrow_dependencies(context);
|
||||
@ -2114,28 +2114,16 @@ print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0])
|
||||
print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0])
|
||||
print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0])
|
||||
print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0])
|
||||
print(factor_ee_deriv_e)
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
asym_one : 0.43340325572525706
|
||||
asymp_jasb[0] : 0.5323750557252571
|
||||
asymp_jasb[1] : 0.31567342786262853
|
||||
factor_ee_deriv_e[0][0]: 0.16364894652107934
|
||||
factor_ee_deriv_e[1][0]: -0.6927548119830084
|
||||
factor_ee_deriv_e[2][0]: 0.073267755223968
|
||||
factor_ee_deriv_e[3][0]: 1.5111672803213185
|
||||
[[ 0.16364895 0.60354957 -0.19825547 0.02359797 -0.13123153 -0.18789233
|
||||
0.07762515 -0.42459184 0.27920265 -0.2056531 ]
|
||||
[-0.69275481 0.15690393 0.09831069 0.18490587 0.04361723 0.3250686
|
||||
0.12657961 -0.01736522 -0.40149005 0.17622416]
|
||||
[ 0.07326776 -0.27532276 0.22396943 0.18771633 -0.34506246 0.07298062
|
||||
0.63302352 -0.00910198 -0.30238713 -0.25908332]
|
||||
[ 1.51116728 1.5033247 0.00325003 2.89377255 0.1338393 2.15893795
|
||||
1.74732003 0.23561147 2.67455607 0.82810434]]
|
||||
#+end_example
|
||||
: asym_one : 0.43340325572525706
|
||||
: asymp_jasb[0] : 0.5323750557252571
|
||||
: asymp_jasb[1] : 0.31567342786262853
|
||||
: factor_ee_deriv_e[0][0]: 0.16364894652107934
|
||||
: factor_ee_deriv_e[1][0]: -0.6927548119830084
|
||||
: factor_ee_deriv_e[2][0]: 0.073267755223968
|
||||
: factor_ee_deriv_e[3][0]: 1.5111672803213185
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
@ -2429,7 +2417,7 @@ for a in range(0,nucl_num):
|
||||
print("factor_en :",factor_en)
|
||||
|
||||
#+end_src
|
||||
|
||||
|
||||
#+RESULTS:
|
||||
: factor_en : -5.865822569188727
|
||||
|
||||
@ -2547,7 +2535,7 @@ qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context)
|
||||
return QMCKL_SUCCESS;
|
||||
}
|
||||
#+end_src
|
||||
|
||||
|
||||
*** Compute
|
||||
:PROPERTIES:
|
||||
:Name: qmckl_compute_factor_en_deriv_e
|
||||
@ -3039,6 +3027,13 @@ integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cor
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
do l = 0, cord_num
|
||||
do j = 1, elec_num
|
||||
een_rescaled_e(l, j, j, nw) = 0.0d0
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
|
||||
end function qmckl_compute_een_rescaled_e_f
|
||||
@ -3124,6 +3119,10 @@ for l in range(1,cord_num+1):
|
||||
een_rescaled_e[j, i, l] = x
|
||||
k = k + 1
|
||||
|
||||
for l in range(0,cord_num+1):
|
||||
for j in range(0, elec_num):
|
||||
een_rescaled_e[j,j,l] = 0.0
|
||||
|
||||
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1])
|
||||
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1])
|
||||
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1])
|
||||
@ -3135,7 +3134,7 @@ print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2])
|
||||
#+RESULTS:
|
||||
: een_rescaled_e[0, 2, 1] = 0.08084493981483197
|
||||
: een_rescaled_e[0, 3, 1] = 0.1066745707571846
|
||||
: een_rescaled_e[0, 4, 1] = 0.01754273169464735
|
||||
: een_rescaled_e[0, 4, 1] = 0.017542731694647366
|
||||
: een_rescaled_e[1, 3, 2] = 0.02214680362033448
|
||||
: een_rescaled_e[1, 4, 2] = 0.0005700154999202759
|
||||
: een_rescaled_e[1, 5, 2] = 0.3424402276009091
|
||||
@ -3158,10 +3157,11 @@ assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12);
|
||||
#+end_src
|
||||
|
||||
** Electron-electron rescaled distances for each order and derivatives
|
||||
|
||||
~een_rescaled_e~ stores the table of the rescaled distances between all
|
||||
pairs of electrons and raised to the power \(p\) defined by ~cord_num~.
|
||||
Here we take its derivatives required for the een jastrow.
|
||||
|
||||
~een_rescaled_e_deriv_e~ stores the table of the derivatives of the
|
||||
rescaled distances between all pairs of electrons and raised to the
|
||||
power \(p\) defined by ~cord_num~. Here we take its derivatives
|
||||
required for the een jastrow.
|
||||
|
||||
TODO: write formulae
|
||||
|
||||
@ -3419,7 +3419,7 @@ end function qmckl_compute_factor_een_rescaled_e_deriv_e_f
|
||||
#+end_src
|
||||
|
||||
*** Test
|
||||
|
||||
#+name: een_e_deriv_e
|
||||
#+begin_src python :results output :exports none :noweb yes
|
||||
import numpy as np
|
||||
|
||||
@ -3431,6 +3431,16 @@ for i in range(elec_num):
|
||||
for j in range(elec_num):
|
||||
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
|
||||
|
||||
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
|
||||
for j in range(elec_num):
|
||||
for i in range(elec_num):
|
||||
rij_inv = 1.0 / elec_dist[i, j]
|
||||
for ii in range(3):
|
||||
elec_dist_deriv_e[ii, i, j] = -(elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv
|
||||
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
|
||||
elec_dist_deriv_e[:, j, j] = 0.0
|
||||
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
|
||||
@ -3458,29 +3468,53 @@ for l in range(1,cord_num+1):
|
||||
een_rescaled_e[j, i, l] = x
|
||||
k = k + 1
|
||||
|
||||
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1])
|
||||
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1])
|
||||
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1])
|
||||
print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2])
|
||||
print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2])
|
||||
print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2])
|
||||
een_rescaled_e_deriv_e = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float)
|
||||
for l in range(0,cord_num+1):
|
||||
kappa_l = -1.0 * kappa * l
|
||||
for j in range(0,elec_num):
|
||||
for i in range(0,elec_num):
|
||||
for ii in range(0,4):
|
||||
een_rescaled_e_deriv_e[i,ii,j,l] = kappa_l * elec_dist_deriv_e[ii,i,j]
|
||||
een_rescaled_e_deriv_e[i,3,j,l] = een_rescaled_e_deriv_e[i,3,j,l] + \
|
||||
een_rescaled_e_deriv_e[i,0,j,l] * een_rescaled_e_deriv_e[i,0,j,l] + \
|
||||
een_rescaled_e_deriv_e[i,1,j,l] * een_rescaled_e_deriv_e[i,1,j,l] + \
|
||||
een_rescaled_e_deriv_e[i,2,j,l] * een_rescaled_e_deriv_e[i,2,j,l]
|
||||
|
||||
for ii in range(0,4):
|
||||
een_rescaled_e_deriv_e[i,ii,j,l] = een_rescaled_e_deriv_e[i,ii,j,l] * een_rescaled_e[i,j,l]
|
||||
|
||||
#print(" een_rescaled_e_deriv_e[1, 1, 3, 1] = ",een_rescaled_e_deriv_e[0, 0, 2, 1])
|
||||
#print(" een_rescaled_e_deriv_e[1, 1, 4, 1] = ",een_rescaled_e_deriv_e[0, 0, 3, 1])
|
||||
#print(" een_rescaled_e_deriv_e[1, 1, 5, 1] = ",een_rescaled_e_deriv_e[0, 0, 4, 1])
|
||||
#print(" een_rescaled_e_deriv_e[2, 1, 4, 2] = ",een_rescaled_e_deriv_e[1, 0, 3, 2])
|
||||
#print(" een_rescaled_e_deriv_e[2, 1, 5, 2] = ",een_rescaled_e_deriv_e[1, 0, 4, 2])
|
||||
#print(" een_rescaled_e_deriv_e[2, 1, 6, 2] = ",een_rescaled_e_deriv_e[1, 0, 5, 2])
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: een_rescaled_e[0, 2, 1] = 0.08084493981483197
|
||||
: een_rescaled_e[0, 3, 1] = 0.1066745707571846
|
||||
: een_rescaled_e[0, 4, 1] = 0.01754273169464735
|
||||
: een_rescaled_e[1, 3, 2] = 0.02214680362033448
|
||||
: een_rescaled_e[1, 4, 2] = 0.0005700154999202759
|
||||
: een_rescaled_e[1, 5, 2] = 0.3424402276009091
|
||||
#+RESULTS: een_e_deriv_e
|
||||
: een_rescaled_e_deriv_e[1, 1, 3, 1] = 0.05991352796887283
|
||||
: een_rescaled_e_deriv_e[1, 1, 4, 1] = 0.011714035071545248
|
||||
: een_rescaled_e_deriv_e[1, 1, 5, 1] = 0.00441398875758468
|
||||
: een_rescaled_e_deriv_e[2, 1, 4, 2] = 0.013553180060167595
|
||||
: een_rescaled_e_deriv_e[2, 1, 5, 2] = 0.00041342909359870457
|
||||
: een_rescaled_e_deriv_e[2, 1, 6, 2] = 0.5880599146214673
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
//assert(qmckl_electron_provided(context));
|
||||
double een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][(cord_num + 1)];
|
||||
rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0]));
|
||||
|
||||
// value of (0,0,0,2,1)
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][0][0][2][1] + 0.05991352796887283 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][0][0][3][1] + 0.011714035071545248 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][0][0][4][1] + 0.00441398875758468 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][1][0][3][2] + 0.013553180060167595 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][1][0][4][2] + 0.00041342909359870457) < 1.e-12);
|
||||
assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1.e-12);
|
||||
#+end_src
|
||||
|
||||
** Electron-nucleus rescaled distances for each order
|
||||
|
||||
|
||||
~een_rescaled_n~ stores the table of the rescaled distances between
|
||||
electrons and nucleii raised to the power \(p\) defined by ~cord_num~:
|
||||
|
||||
@ -4076,6 +4110,14 @@ for i in range(elec_num):
|
||||
for a in range(nucl_num):
|
||||
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
|
||||
|
||||
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
rij_inv = 1.0 / elnuc_dist[i, a]
|
||||
for ii in range(3):
|
||||
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
|
||||
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
|
||||
@ -4090,24 +4132,50 @@ for l in range(2,cord_num+1):
|
||||
for i in range(elec_num):
|
||||
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
|
||||
|
||||
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1])
|
||||
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1])
|
||||
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1])
|
||||
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2])
|
||||
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
|
||||
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
|
||||
een_rescaled_n_deriv_e = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float)
|
||||
for l in range(0,cord_num+1):
|
||||
kappa_l = -1.0 * kappa * l
|
||||
for j in range(0,elec_num):
|
||||
for a in range(0,nucl_num):
|
||||
for ii in range(0,4):
|
||||
een_rescaled_n_deriv_e[j,ii,a,l] = kappa_l * elnuc_dist_deriv_e[ii,j,a]
|
||||
een_rescaled_n_deriv_e[j,3,a,l] = een_rescaled_n_deriv_e[j,3,a,l] + \
|
||||
een_rescaled_n_deriv_e[j,0,a,l] * een_rescaled_n_deriv_e[j,0,a,l] + \
|
||||
een_rescaled_n_deriv_e[j,1,a,l] * een_rescaled_n_deriv_e[j,1,a,l] + \
|
||||
een_rescaled_n_deriv_e[j,2,a,l] * een_rescaled_n_deriv_e[j,2,a,l]
|
||||
|
||||
for ii in range(0,4):
|
||||
een_rescaled_n_deriv_e[j,ii,a,l] = een_rescaled_n_deriv_e[j,ii,a,l] * een_rescaled_n[a,j,l]
|
||||
|
||||
print(" een_rescaled_n_deriv_e[1, 1, 3, 1] = ",een_rescaled_n_deriv_e[2, 0, 0, 1])
|
||||
print(" een_rescaled_n_deriv_e[1, 1, 4, 1] = ",een_rescaled_n_deriv_e[3, 0, 0, 1])
|
||||
print(" een_rescaled_n_deriv_e[1, 1, 5, 1] = ",een_rescaled_n_deriv_e[4, 0, 0, 1])
|
||||
print(" een_rescaled_n_deriv_e[2, 1, 4, 2] = ",een_rescaled_n_deriv_e[3, 0, 1, 2])
|
||||
print(" een_rescaled_n_deriv_e[2, 1, 5, 2] = ",een_rescaled_n_deriv_e[4, 0, 1, 2])
|
||||
print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2])
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: een_rescaled_n[0, 2, 1] = 0.10612983920006765
|
||||
: een_rescaled_n[0, 3, 1] = 0.135652809635553
|
||||
: een_rescaled_n[0, 4, 1] = 0.023391817607642338
|
||||
: een_rescaled_n[1, 3, 2] = 0.880957224822116
|
||||
: een_rescaled_n[1, 4, 2] = 0.027185942659395074
|
||||
: een_rescaled_n[1, 5, 2] = 0.01343938025140174
|
||||
: een_rescaled_n_deriv_e[1, 1, 3, 1] = -0.07633444246999128
|
||||
: een_rescaled_n_deriv_e[1, 1, 4, 1] = 0.00033282346259738276
|
||||
: een_rescaled_n_deriv_e[1, 1, 5, 1] = -0.004775370547333061
|
||||
: een_rescaled_n_deriv_e[2, 1, 4, 2] = 0.1362654644223866
|
||||
: een_rescaled_n_deriv_e[2, 1, 5, 2] = -0.0231253431662794
|
||||
: een_rescaled_n_deriv_e[2, 1, 6, 2] = 0.001593334817691633
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
//assert(qmckl_electron_provided(context));
|
||||
assert(qmckl_electron_provided(context));
|
||||
|
||||
double een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][(cord_num + 1)];
|
||||
rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0]));
|
||||
|
||||
// value of (0,2,1)
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][2][0][0][1]+0.07633444246999128 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][3][0][0][1]-0.00033282346259738276) < 1.e-12);
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][4][0][0][1]+0.004775370547333061 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][3][0][1][2]-0.1362654644223866 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][4][0][1][2]+0.0231253431662794 ) < 1.e-12);
|
||||
assert(fabs(een_rescaled_n_deriv_e[0][5][0][1][2]-0.001593334817691633 ) < 1.e-12);
|
||||
|
||||
#+end_src
|
||||
|
||||
@ -4264,7 +4332,6 @@ qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context)
|
||||
qmckl_exit_code rc =
|
||||
qmckl_compute_cord_vect_full(context,
|
||||
ctx->nucleus.num,
|
||||
ctx->jastrow.cord_num,
|
||||
ctx->jastrow.dim_cord_vect,
|
||||
ctx->jastrow.type_nucl_num,
|
||||
ctx->jastrow.type_nucl_vector,
|
||||
@ -4424,28 +4491,26 @@ end function qmckl_compute_dim_cord_vect_f
|
||||
:END:
|
||||
|
||||
#+NAME: qmckl_factor_cord_vect_full_args
|
||||
| qmckl_context | context | in | Global state |
|
||||
| int64_t | nucl_num | in | Number of atoms |
|
||||
| int64_t | cord_num | in | Order of polynomials |
|
||||
| int64_t | dim_cord_vect | in | dimension of cord full table |
|
||||
| int64_t | type_nucl_num | in | dimension of cord full table |
|
||||
| int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table |
|
||||
| double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table |
|
||||
| double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
|
||||
| qmckl_context | context | in | Global state |
|
||||
| int64_t | nucl_num | in | Number of atoms |
|
||||
| int64_t | dim_cord_vect | in | dimension of cord full table |
|
||||
| int64_t | type_nucl_num | in | dimension of cord full table |
|
||||
| int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table |
|
||||
| double | cord_vector[dim_cord_vect][type_nucl_num] | in | dimension of cord full table |
|
||||
| double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
|
||||
|
||||
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
|
||||
integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, &
|
||||
integer function qmckl_compute_cord_vect_full_f(context, nucl_num, dim_cord_vect, type_nucl_num, &
|
||||
type_nucl_vector, cord_vector, cord_vect_full) &
|
||||
result(info)
|
||||
use qmckl
|
||||
implicit none
|
||||
integer(qmckl_context), intent(in) :: context
|
||||
integer*8 , intent(in) :: nucl_num
|
||||
integer*8 , intent(in) :: cord_num
|
||||
integer*8 , intent(in) :: dim_cord_vect
|
||||
integer*8 , intent(in) :: type_nucl_num
|
||||
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
|
||||
double precision , intent(in) :: cord_vector(cord_num, type_nucl_num)
|
||||
double precision , intent(in) :: cord_vector(type_nucl_num, dim_cord_vect)
|
||||
double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
|
||||
double precision :: x
|
||||
integer*8 :: i, a, k, l, nw
|
||||
@ -4462,11 +4527,6 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim
|
||||
return
|
||||
endif
|
||||
|
||||
if (cord_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_3
|
||||
return
|
||||
endif
|
||||
|
||||
if (type_nucl_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_4
|
||||
return
|
||||
@ -4479,7 +4539,7 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim
|
||||
|
||||
|
||||
do a = 1, nucl_num
|
||||
cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a))
|
||||
cord_vect_full(a,1:dim_cord_vect) = cord_vector(type_nucl_vector(a),1:dim_cord_vect)
|
||||
end do
|
||||
|
||||
end function qmckl_compute_cord_vect_full_f
|
||||
@ -4492,7 +4552,6 @@ end function qmckl_compute_cord_vect_full_f
|
||||
qmckl_exit_code qmckl_compute_cord_vect_full (
|
||||
const qmckl_context context,
|
||||
const int64_t nucl_num,
|
||||
const int64_t cord_num,
|
||||
const int64_t dim_cord_vect,
|
||||
const int64_t type_nucl_num,
|
||||
const int64_t* type_nucl_vector,
|
||||
@ -4506,14 +4565,7 @@ end function qmckl_compute_cord_vect_full_f
|
||||
#+RESULTS:
|
||||
#+begin_src f90 :tangle (eval f) :comments org :exports none
|
||||
integer(c_int32_t) function qmckl_compute_cord_vect_full &
|
||||
(context, &
|
||||
nucl_num, &
|
||||
cord_num, &
|
||||
dim_cord_vect, &
|
||||
type_nucl_num, &
|
||||
type_nucl_vector, &
|
||||
cord_vector, &
|
||||
cord_vect_full) &
|
||||
(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) &
|
||||
bind(C) result(info)
|
||||
|
||||
use, intrinsic :: iso_c_binding
|
||||
@ -4521,23 +4573,15 @@ end function qmckl_compute_cord_vect_full_f
|
||||
|
||||
integer (c_int64_t) , intent(in) , value :: context
|
||||
integer (c_int64_t) , intent(in) , value :: nucl_num
|
||||
integer (c_int64_t) , intent(in) , value :: cord_num
|
||||
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
|
||||
integer (c_int64_t) , intent(in) , value :: type_nucl_num
|
||||
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
|
||||
real (c_double ) , intent(in) :: cord_vector(type_nucl_num,cord_num)
|
||||
real (c_double ) , intent(in) :: cord_vector(type_nucl_num,dim_cord_vect)
|
||||
real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
|
||||
|
||||
integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f
|
||||
info = qmckl_compute_cord_vect_full_f &
|
||||
(context, &
|
||||
nucl_num, &
|
||||
cord_num, &
|
||||
dim_cord_vect, &
|
||||
type_nucl_num, &
|
||||
type_nucl_vector, &
|
||||
cord_vector, &
|
||||
cord_vect_full)
|
||||
(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full)
|
||||
|
||||
end function qmckl_compute_cord_vect_full
|
||||
#+end_src
|
||||
@ -4644,9 +4688,9 @@ end function qmckl_compute_lkpm_combined_index_f
|
||||
end function qmckl_compute_lkpm_combined_index
|
||||
#+end_src
|
||||
|
||||
|
||||
*** Test
|
||||
|
||||
#+name: helper_funcs
|
||||
#+begin_src python :results output :exports none :noweb yes
|
||||
import numpy as np
|
||||
|
||||
@ -4673,21 +4717,46 @@ for l in range(2,cord_num+1):
|
||||
for i in range(elec_num):
|
||||
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
|
||||
|
||||
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1])
|
||||
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1])
|
||||
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1])
|
||||
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2])
|
||||
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
|
||||
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
|
||||
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
|
||||
for i in range(elec_num):
|
||||
for j in range(elec_num):
|
||||
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
|
||||
een_rescaled_e_ij[:,0] = 1.0
|
||||
|
||||
k = 0
|
||||
for j in range(elec_num):
|
||||
for i in range(j):
|
||||
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
|
||||
k = k + 1
|
||||
|
||||
for l in range(2, cord_num + 1):
|
||||
for k in range(elec_num * (elec_num - 1)//2):
|
||||
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
|
||||
|
||||
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
|
||||
een_rescaled_e[:,:,0] = 1.0
|
||||
|
||||
for l in range(1,cord_num+1):
|
||||
k = 0
|
||||
for j in range(elec_num):
|
||||
for i in range(j):
|
||||
x = een_rescaled_e_ij[k, l]
|
||||
een_rescaled_e[i, j, l] = x
|
||||
een_rescaled_e[j, i, l] = x
|
||||
k = k + 1
|
||||
|
||||
for l in range(0,cord_num+1):
|
||||
for j in range(0, elec_num):
|
||||
een_rescaled_e[j,j,l] = 0.0
|
||||
|
||||
lkpm_of_cindex = np.array(lkpm_combined_index).T
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: een_rescaled_n[0, 2, 1] = 0.10612983920006765
|
||||
: een_rescaled_n[0, 3, 1] = 0.135652809635553
|
||||
: een_rescaled_n[0, 4, 1] = 0.023391817607642338
|
||||
: een_rescaled_n[1, 3, 2] = 0.880957224822116
|
||||
: een_rescaled_n[1, 4, 2] = 0.027185942659395074
|
||||
: een_rescaled_n[1, 5, 2] = 0.01343938025140174
|
||||
#+RESULTS: helper_funcs
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
//assert(qmckl_electron_provided(context));
|
||||
@ -4696,7 +4765,7 @@ print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
|
||||
#+end_src
|
||||
|
||||
** Electron-electron-nucleus Jastrow \(f_{een}\)
|
||||
|
||||
|
||||
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~
|
||||
using the above prepared tables.
|
||||
|
||||
@ -4834,10 +4903,10 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu
|
||||
implicit none
|
||||
integer(qmckl_context), intent(in) :: context
|
||||
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
|
||||
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
|
||||
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
|
||||
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
|
||||
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
|
||||
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
|
||||
double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
|
||||
double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
|
||||
double precision , intent(out) :: factor_een(walk_num)
|
||||
|
||||
integer*8 :: i, a, j, l, k, p, m, n, nw
|
||||
@ -4874,23 +4943,27 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu
|
||||
|
||||
do nw =1, walk_num
|
||||
do n = 1, dim_cord_vect
|
||||
l = lkpm_combined_index(1, n)
|
||||
k = lkpm_combined_index(2, n)
|
||||
p = lkpm_combined_index(3, n)
|
||||
m = lkpm_combined_index(4, n)
|
||||
l = lkpm_combined_index(n, 1)
|
||||
k = lkpm_combined_index(n, 2)
|
||||
p = lkpm_combined_index(n, 3)
|
||||
m = lkpm_combined_index(n, 4)
|
||||
|
||||
do a = 1, nucl_num
|
||||
accu2 = 0.0d0
|
||||
cn = cord_vect_full(n, a)
|
||||
cn = cord_vect_full(a, n)
|
||||
do j = 1, elec_num
|
||||
accu = 0.0d0
|
||||
do i = 1, elec_num
|
||||
accu = accu + een_rescaled_e(nw, i, j, k) * &
|
||||
een_rescaled_n(nw, i, a, m)
|
||||
accu = accu + een_rescaled_e(k,i,j,nw) * &
|
||||
een_rescaled_n(m,a,i,nw)
|
||||
!if(nw .eq. 1) then
|
||||
! print *,l,k,p,m,j,i,een_rescaled_e(k,i,j,nw), een_rescaled_n(m,a,i,nw), accu
|
||||
!endif
|
||||
end do
|
||||
accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l)
|
||||
accu2 = accu2 + accu * een_rescaled_n(m + l,a,j,nw)
|
||||
!print *, l,m,nw,accu, accu2, een_rescaled_n(m + l, a, j, nw), cn, factor_een(nw)
|
||||
end do
|
||||
factor_een(nw) = factor_een(nw) + accu2 + cn
|
||||
factor_een(nw) = factor_een(nw) + accu2 * cn
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -4916,7 +4989,6 @@ end function qmckl_compute_factor_een_f
|
||||
double* const factor_een );
|
||||
#+end_src
|
||||
|
||||
|
||||
#+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
#+RESULTS:
|
||||
@ -4973,100 +5045,44 @@ import numpy as np
|
||||
|
||||
<<jastrow_data>>
|
||||
|
||||
<<helper_funcs>>
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
elec_coord = np.array(elec_coord)[0]
|
||||
nucl_coord = np.array(nucl_coord)
|
||||
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
|
||||
for i in range(elec_num):
|
||||
for j in range(nucl_num):
|
||||
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
|
||||
factor_een = 0.0
|
||||
|
||||
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
rij_inv = 1.0 / elnuc_dist[i, a]
|
||||
for ii in range(3):
|
||||
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
|
||||
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
|
||||
|
||||
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
f = 1.0 - kappa * en_distance_rescaled[i][a]
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
|
||||
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
|
||||
|
||||
third = 1.0 / 3.0
|
||||
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
|
||||
dx = np.zeros(shape=(4),dtype=float)
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if abs(x) < 1e-18:
|
||||
continue
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
|
||||
invden = 1.0 / den
|
||||
invden2 = invden * invden
|
||||
invden3 = invden2 * invden
|
||||
xinv = 1.0 / (x + 1.0E-18)
|
||||
|
||||
for ii in range(4):
|
||||
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
|
||||
|
||||
lap1 = 0.0
|
||||
lap2 = 0.0
|
||||
lap3 = 0.0
|
||||
for ii in range(3):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if x < 1e-18:
|
||||
continue
|
||||
for p in range(2,aord_num+1):
|
||||
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
|
||||
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
|
||||
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
|
||||
lap2 = lap2 + y
|
||||
x = x * en_distance_rescaled[i][a]
|
||||
|
||||
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
|
||||
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
|
||||
dx[ii] * invden2 + pow_ser_g[ii]
|
||||
|
||||
ii = 3
|
||||
lap2 = lap2 * dx[ii] * third
|
||||
lap3 = lap3 + den * dx[ii]
|
||||
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
|
||||
|
||||
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
|
||||
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
|
||||
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
|
||||
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
|
||||
for n in range(0, dim_cord_vect):
|
||||
l = lkpm_of_cindex[0,n]
|
||||
k = lkpm_of_cindex[1,n]
|
||||
p = lkpm_of_cindex[2,n]
|
||||
m = lkpm_of_cindex[3,n]
|
||||
|
||||
for a in range(0, nucl_num):
|
||||
accu2 = 0.0
|
||||
cn = cord_vector_full[a][n]
|
||||
for j in range(0, elec_num):
|
||||
accu = 0.0
|
||||
for i in range(0, elec_num):
|
||||
accu = accu + een_rescaled_e[i,j,k] * \
|
||||
een_rescaled_n[a,i,m]
|
||||
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
|
||||
factor_een = factor_een + accu2 * cn
|
||||
|
||||
print("factor_een:",factor_een)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: factor_en_deriv_e[0][0]: 0.11609919541763383
|
||||
: factor_en_deriv_e[1][0]: -0.23301394780804574
|
||||
: factor_en_deriv_e[2][0]: 0.17548337641865783
|
||||
: factor_en_deriv_e[3][0]: -0.9667363412285741
|
||||
: factor_een: -0.37407972141304213
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
/* Check if Jastrow is properly initialized */
|
||||
//assert(qmckl_jastrow_provided(context));
|
||||
//
|
||||
assert(qmckl_jastrow_provided(context));
|
||||
|
||||
double factor_een[walk_num];
|
||||
rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
|
||||
|
||||
assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12);
|
||||
#+end_src
|
||||
|
||||
** Electron-electron-nucleus Jastrow \(f_{een}\) derivative
|
||||
@ -5221,12 +5237,12 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num,
|
||||
implicit none
|
||||
integer(qmckl_context), intent(in) :: context
|
||||
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
|
||||
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
|
||||
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
|
||||
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num)
|
||||
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect, 4)
|
||||
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
|
||||
double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
|
||||
double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
|
||||
double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num)
|
||||
double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num)
|
||||
double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num)
|
||||
|
||||
integer*8 :: i, a, j, l, k, p, m, n, nw
|
||||
@ -5264,41 +5280,41 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num,
|
||||
|
||||
do nw =1, walk_num
|
||||
do n = 1, dim_cord_vect
|
||||
l = lkpm_combined_index(1, n)
|
||||
k = lkpm_combined_index(2, n)
|
||||
p = lkpm_combined_index(3, n)
|
||||
m = lkpm_combined_index(4, n)
|
||||
l = lkpm_combined_index(n, 1)
|
||||
k = lkpm_combined_index(n, 2)
|
||||
p = lkpm_combined_index(n, 3)
|
||||
m = lkpm_combined_index(n, 4)
|
||||
|
||||
do a = 1, nucl_num
|
||||
cn = cord_vect_full(n, a)
|
||||
cn = cord_vect_full(a, n)
|
||||
do j = 1, elec_num
|
||||
accu = 0.0d0
|
||||
accu2 = 0.0d0
|
||||
daccu = 0.0d0
|
||||
daccu2 = 0.0d0
|
||||
do i = 1, elec_num
|
||||
accu = accu + een_rescaled_e(nw, i, j, k) * &
|
||||
een_rescaled_n(nw, i, a, m)
|
||||
accu2 = accu2 + een_rescaled_e(nw, i, j, k) * &
|
||||
een_rescaled_n(nw, i, a, m + l)
|
||||
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
|
||||
een_rescaled_n(nw, i, a, m)
|
||||
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
|
||||
een_rescaled_n(nw, i, a, m + l)
|
||||
accu = accu + een_rescaled_e(k, i, j, nw) * &
|
||||
een_rescaled_n(m, a, i, nw)
|
||||
accu2 = accu2 + een_rescaled_e(k, i, j, nw) * &
|
||||
een_rescaled_n(m + l, a, i, nw)
|
||||
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
|
||||
een_rescaled_n(m, a, i, nw)
|
||||
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
|
||||
een_rescaled_n(m + l, a, i, nw)
|
||||
end do
|
||||
factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + &
|
||||
(accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) &
|
||||
+ daccu(1:4) * een_rescaled_n(nw, j, a, m + l) &
|
||||
+ daccu2(1:4) * een_rescaled_n(nw, j, a, m) &
|
||||
+ accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn
|
||||
(accu * een_rescaled_n_deriv_e(m + l, a, 1:4, j, nw) &
|
||||
+ daccu(1:4) * een_rescaled_n(m + l, a, j, nw) &
|
||||
+ daccu2(1:4) * een_rescaled_n(m, a, j, nw) &
|
||||
+ accu2 * een_rescaled_n_deriv_e(m, a, 1:4, j, nw)) * cn
|
||||
|
||||
factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( &
|
||||
daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + &
|
||||
daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + &
|
||||
daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + &
|
||||
daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + &
|
||||
daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + &
|
||||
daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn
|
||||
daccu (1) * een_rescaled_n_deriv_e(m + l, a, 1, j, nw) + &
|
||||
daccu (2) * een_rescaled_n_deriv_e(m + l, a, 2, j, nw) + &
|
||||
daccu (3) * een_rescaled_n_deriv_e(m + l, a, 3, j, nw) + &
|
||||
daccu2(1) * een_rescaled_n_deriv_e(m, a, 1, j, nw ) + &
|
||||
daccu2(2) * een_rescaled_n_deriv_e(m, a, 2, j, nw ) + &
|
||||
daccu2(3) * een_rescaled_n_deriv_e(m, a, 3, j, nw ) ) * cn
|
||||
|
||||
end do
|
||||
end do
|
||||
@ -5391,98 +5407,60 @@ import numpy as np
|
||||
|
||||
<<jastrow_data>>
|
||||
|
||||
<<een_e_deriv_e>>
|
||||
|
||||
<<helper_funcs>>
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
elec_coord = np.array(elec_coord)[0]
|
||||
nucl_coord = np.array(nucl_coord)
|
||||
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
|
||||
for i in range(elec_num):
|
||||
for j in range(nucl_num):
|
||||
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
|
||||
factor_een = 0.0
|
||||
|
||||
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
rij_inv = 1.0 / elnuc_dist[i, a]
|
||||
for ii in range(3):
|
||||
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
|
||||
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
|
||||
daccu = np.zeros(4, dtype=float)
|
||||
daccu2 = np.zeros(4, dtype=float)
|
||||
een_rescaled_e_deriv_e_t = een_rescaled_e_deriv_e.T
|
||||
print(een_rescaled_e_deriv_e_t.shape)
|
||||
for n in range(0, dim_cord_vect):
|
||||
l = lkpm_of_cindex[0,n]
|
||||
k = lkpm_of_cindex[1,n]
|
||||
p = lkpm_of_cindex[2,n]
|
||||
m = lkpm_of_cindex[3,n]
|
||||
|
||||
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
f = 1.0 - kappa * en_distance_rescaled[i][a]
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
|
||||
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
|
||||
|
||||
third = 1.0 / 3.0
|
||||
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
|
||||
dx = np.zeros(shape=(4),dtype=float)
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if abs(x) < 1e-18:
|
||||
continue
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
|
||||
invden = 1.0 / den
|
||||
invden2 = invden * invden
|
||||
invden3 = invden2 * invden
|
||||
xinv = 1.0 / (x + 1.0E-18)
|
||||
|
||||
for ii in range(4):
|
||||
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
|
||||
|
||||
lap1 = 0.0
|
||||
lap2 = 0.0
|
||||
lap3 = 0.0
|
||||
for ii in range(3):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if x < 1e-18:
|
||||
continue
|
||||
for p in range(2,aord_num+1):
|
||||
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
|
||||
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
|
||||
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
|
||||
lap2 = lap2 + y
|
||||
x = x * en_distance_rescaled[i][a]
|
||||
|
||||
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
|
||||
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
|
||||
dx[ii] * invden2 + pow_ser_g[ii]
|
||||
|
||||
ii = 3
|
||||
lap2 = lap2 * dx[ii] * third
|
||||
lap3 = lap3 + den * dx[ii]
|
||||
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
|
||||
|
||||
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
|
||||
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
|
||||
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
|
||||
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
|
||||
for a in range(0, nucl_num):
|
||||
cn = cord_vector_full[a][n]
|
||||
for j in range(0, elec_num):
|
||||
accu = 0.0
|
||||
accu2 = 0.0
|
||||
daccu = 0.0
|
||||
daccu2 = 0.0
|
||||
for i in range(0, elec_num):
|
||||
accu = accu + een_rescaled_e[i,j,k] * \
|
||||
een_rescaled_n[a,i,m]
|
||||
accu2 = accu2 + een_rescaled_e[i,j,k] * \
|
||||
een_rescaled_n[a,i,m+l]
|
||||
# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
|
||||
# een_rescaled_n[a,i,m]
|
||||
# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
|
||||
# een_rescaled_n[a,i,m]
|
||||
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
|
||||
# factor_een = factor_een + accu2 * cn
|
||||
|
||||
print("factor_een:",factor_een)
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: factor_en_deriv_e[0][0]: 0.11609919541763383
|
||||
: factor_en_deriv_e[1][0]: -0.23301394780804574
|
||||
: factor_en_deriv_e[2][0]: 0.17548337641865783
|
||||
: factor_en_deriv_e[3][0]: -0.9667363412285741
|
||||
: (6, 10, 4, 10)
|
||||
: factor_een: 0.0
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
///* Check if Jastrow is properly initialized */
|
||||
/* Check if Jastrow is properly initialized */
|
||||
assert(qmckl_jastrow_provided(context));
|
||||
|
||||
double factor_een_deriv_e[walk_num][elec_num];
|
||||
rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0]));
|
||||
|
||||
assert(fabs(factor_een_deriv_e[0][0] + 0.0005481671107226865) < 1e-12);
|
||||
#+end_src
|
||||
|
||||
* End of files :noexport:
|
||||
|
@ -1117,7 +1117,7 @@ double n2_elec_coord[n2_walk_num][n2_elec_num][3] = { {
|
||||
#define n2_type_nucl_num ((int64_t) 1)
|
||||
#define n2_aord_num ((int64_t) 5)
|
||||
#define n2_bord_num ((int64_t) 5)
|
||||
#define n2_cord_num ((int64_t) 23)
|
||||
#define n2_cord_num ((int64_t) 5)
|
||||
#define n2_dim_cord_vec ((int64_t) 23)
|
||||
|
||||
int64_t n2_type_nucl_vector[n2_nucl_num] = {
|
||||
@ -1140,7 +1140,7 @@ double n2_bord_vector[n2_bord_num + 1] = {
|
||||
0.0073096 ,
|
||||
0.002866 };
|
||||
|
||||
double n2_cord_vector[n2_cord_num][n2_type_nucl_num] = {
|
||||
double n2_cord_vector[n2_dim_cord_vec][n2_type_nucl_num] = {
|
||||
{ 5.717020e-01},
|
||||
{-5.142530e-01},
|
||||
{-5.130430e-01},
|
||||
|
Loading…
Reference in New Issue
Block a user