1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-06 19:33:14 +01:00

Added Python example.

This commit is contained in:
Anthony Scemama 2022-05-20 23:20:06 +02:00
parent ce1aeb324d
commit 7e854175cc

View File

@ -7,16 +7,20 @@ For simplicity, we assume that the wave function parameters are stored
in a [[https://github.com/TREX-CoE/trexio][TREXIO]] file.
* Python
** Check numerically that MOs are orthonormal
In this example, we will compute the numerically the overlap
In this example, we will compute numerically the overlap
between the molecular orbitals:
\[
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
\]
\[
S_{ij} = \langle \phi_i | \phi_j \rangle
\sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle
\langle \mathbf{r}_k | \phi_j \rangle
\]
@ -27,9 +31,9 @@ import qmckl
#+RESULTS:
First, we create a context for the QMCkl calculation, and load the
wave function stored in =h2o_5z.h5= inside it:
wave function stored in =h2o_5z.h5= inside it. It is a Hartree-Fock
determinant for the water molecule in the cc-pV5Z basis set.
#+begin_src python :session
trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5"
@ -41,12 +45,12 @@ qmckl.trexio_read(context, trexio_filename)
#+RESULTS:
: None
We now define the grid points as a regular grid around the
We now define the grid points $\mathbf{r}_k$ as a regular grid around the
molecule.
We fetch the nuclear coordinates from the context,
#+begin_src python :session :results output
#+begin_src python :session :results output :export both
nucl_num = qmckl.get_nucleus_num(context)
nucl_charge = qmckl.get_nucleus_charge(context, nucl_num)
@ -61,21 +65,22 @@ for i in range(nucl_num):
nucl_coord[i,2]) )
#+end_src
#+RESULTS:
: 8 +0.000000 +0.000000 +0.000000
: 1 -1.430429 +0.000000 -1.107157
: 1 +1.430429 +0.000000 -1.107157
#+begin_example
8 +0.000000 +0.000000 +0.000000
1 -1.430429 +0.000000 -1.107157
1 +1.430429 +0.000000 -1.107157
#+end_example
and compute the coordinates of the grid points:
#+begin_src python :session
nx = ( 40, 40, 40 )
nx = ( 120, 120, 120 )
shift = np.array([5.,5.,5.])
point_num = nx[0] * nx[1] * nx[2]
rmin = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) )
rmax = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) )
shift = np.array([5.,5.,5.])
linspace = [ None for i in range(3) ]
step = [ None for i in range(3) ]
@ -86,15 +91,13 @@ for a in range(3):
retstep=True)
dr = step[0] * step[1] * step[2]
dr
#+end_src
#+RESULTS:
: 0.024081249137090373
Now the grid is ready, we can create the list of grid points on
which the MOs will be evaluated, and transfer them to the QMCkl
context:
Now the grid is ready, we can create the list of grid points
$\mathbf{r}_k$ on which the MOs $\phi_i$ will be evaluated, and
transfer them to the QMCkl context:
#+begin_src python :session
point = []
@ -104,13 +107,63 @@ for x in linspace[0]:
point += [ [x, y, z] ]
point = np.array(point)
qmckl.set_point(context, 'N', len(point), point)
point_num = len(point)
qmckl.set_point(context, 'N', point_num, np.reshape(point, (point_num*3)))
#+end_src
#+RESULTS:
: None
Then, will first evaluate all the MOs at the grid points, and then we will
compute the overlap between all the MOs.
Then, we evaluate all the MOs at the grid points (and time the execution),
and thus obtain the matrix $M_{ki} = \langle \mathbf{r}_k | \phi_i \rangle =
\phi_i(\mathbf{r}_k)$.
#+begin_src python :session :results output :export both
import time
mo_num = qmckl.get_mo_basis_mo_num(context)
before = time.time()
mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
after = time.time()
mo_value = np.reshape( mo_value, (point_num, mo_num) )
print("Number of MOs: ", mo_num)
print("Number of grid points: ", point_num)
print("Execution time : ", (after - before), "seconds")
#+end_src
#+begin_example
Number of MOs: 201
Number of grid points: 1728000
Execution time : 3.511528968811035 seconds
#+end_example
and finally we compute the overlap between all the MOs as
$M^\dagger M$.
#+begin_src python :session :results output
overlap = mo_value.T @ mo_value * dr
print (overlap)
#+end_src
#+begin_example
[[ 9.88693941e-01 2.34719693e-03 -1.50518232e-08 ... 3.12084178e-09
-5.81064929e-10 3.70130091e-02]
[ 2.34719693e-03 9.99509628e-01 3.18930040e-09 ... -2.46888958e-10
-1.06064273e-09 -7.65567973e-03]
[-1.50518232e-08 3.18930040e-09 9.99995073e-01 ... -5.84882580e-06
-1.21598117e-06 4.59036468e-08]
...
[ 3.12084178e-09 -2.46888958e-10 -5.84882580e-06 ... 1.00019107e+00
-2.03342837e-04 -1.36954855e-08]
[-5.81064929e-10 -1.06064273e-09 -1.21598117e-06 ... -2.03342837e-04
9.99262427e-01 1.18264754e-09]
[ 3.70130091e-02 -7.65567973e-03 4.59036468e-08 ... -1.36954855e-08
1.18264754e-09 8.97215950e-01]]
#+end_example
* Fortran
** Checking errors
@ -278,7 +331,7 @@ program ao_grid
We give the points to QMCkl:
#+begin_src f90
rc = qmckl_set_point(qmckl_ctx, 'T', points, point_num)
rc = qmckl_set_point(qmckl_ctx, 'T', point_num, points, size(points)*1_8 )
call qmckl_check_error(rc, 'Setting points')
#+end_src
@ -292,11 +345,11 @@ program ao_grid
call qmckl_check_error(rc, 'Setting points')
#+end_src
We finally print the value of the AO:
We finally print the value and Laplacian of the AO:
#+begin_src f90
do ipoint=1, point_num
print '(3(F16.10,X),E20.10)', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint)
print '(3(F10.6,X),2(E20.10,X))', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint), ao_vgl(ao_id,5,ipoint)
end do
#+end_src