1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-03 18:16:28 +01:00

Improved documentation and Requirements sections.

This commit is contained in:
Francois Coppens 2021-09-07 11:22:54 +02:00
parent dcd6428c50
commit 78c574af49

View File

@ -27,7 +27,6 @@ int main() {
#+end_src
* Naïve Sherman-Morrison
** ~qmckl_sherman_morrison~
@ -37,13 +36,12 @@ int main() {
:FRetType: qmckl_exit_code
:END:
This is the simplest of the available Sherman-Morrison-Woodbury
kernels. It applies rank-1 updates one by one in the order
that is given. It only checks if the denominator in the
Sherman-Morrison formula is not too close to zero when an update is evaluated.
It will exit with an error code of the denominator is too close to zero.
The formula that is applied is
This is the simplest of the available Sherman-Morrison-Woodbury kernels. It applies rank-1 updates one by one in
the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to
zero when an update is evaluated. It will exit with an error code of the denominator is too close to zero.
The formula for any update $u_j$ (index $j$ is suppresed for clarity) that is applied is
\[
(S + uv^T)^{-1} = S^{-1} - \frac{S^{-1} uv^T S^{-1}}{1 + v^T S^{-1} u}
\]
@ -53,6 +51,17 @@ int main() {
$u$ and $v^T$ are the column and row vectors containing the updates,
$S^{-1}$ is the inverse of the Slater-matrix.
Even though the Slater-matrix $S$ with all updates applied at once is invertable, during the course of applying
updates to the inverse Slater-matrix $S^{-1}$ one-by-one it can happen that one of the intermediate inverse
matrices $S^{-1}$ becomes singular. Therefore a global threshold value $\epsilon$ is defined that is used to
evaluate each individual update $u_j$ when it is applied.
This value sets the lower bound for which the
denominator $1+v_j^TS^{-1}u_j$ is considered to be too small and will most probably result in a singular matrix
$S$, or at least in an inverse of $S$ of very poor numerical quality. Therefore, when $1+v_j^TS^{-1}u_j \geq \epsilon$,
the update is applied as usual. If $1+v_j^TS^{-1}u_j \leq \epsilon$ the update is rejected and the kernel exits with
return code \texttt{QMCKL_FAILURE}.
#+NAME: qmckl_sherman_morrison_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
@ -64,13 +73,13 @@ int main() {
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
* ~context~ is not ~QMCKL_NULL_CONTEXT~
* ~Dim >= 2~
* ~N_updates >= 1~
* ~Updates~ is allocated with $N_updates \times Dim$ elements
* ~Updates_index~ is allocated with $N_updates$ elements
* ~breakdown~ is a small number such that $0 < breakdown << 1$
* ~Slater_inv~ is allocated with $Dim \times Dim$ elements
*** C header
@ -297,8 +306,8 @@ assert(rc == QMCKL_SUCCESS);
:FRetType: qmckl_exit_code
:END:
The simplest version of the generalised Sherman-Morrison-Woodbury kernels. It is used to apply two
rank-1 updates at once. The formula used in this algorithm is called the Woodbury Matrix Identity
The Woodbury 2x2 kernel. It is used to apply two rank-1 updates at once. The formula used in
this algorithm is called the Woodbury Matrix Identity
\[
(S + U V)^{-1} = S^{-1} - C B^{-1} D
\]
@ -322,11 +331,11 @@ assert(rc == QMCKL_SUCCESS);
*** Requirements
- ~context~ is not ~qmckl_null_context~
- ~dim >= 2~
- ~updates~ is allocated with at least $2 \times 2 \times 8$ bytes
- ~updates_index~ is allocated with $2 \times 8$ bytes
- ~Dim >= 2~
- ~Updates~ is allocated with $2 \times Dim$ elements
- ~Updates_index~ is allocated with $2$ elements
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~slater_inv~ is allocated with at least $dim \times dim \times 8$ bytes
- ~Slater_inv~ is allocated with $Dim \times Dim$ elements
*** C header
@ -438,7 +447,6 @@ qmckl_exit_code qmckl_woodbury_2_c(const qmckl_context context,
#+end_src
*** Performance
This function is most efficient when used in cases where there are only 2 rank-1 updates.
@ -548,11 +556,11 @@ assert(rc == QMCKL_SUCCESS);
*** Requirements
- ~context~ is not ~qmckl_null_context~
- ~dim >= 2~
- ~updates~ is allocated with at least $3 \times 2 \times 8$ bytes
- ~updates_index~ is allocated with $3 \times 8$ bytes
- ~Dim >= 2~
- ~Updates~ is allocated with $3 \times Dim$ elements
- ~Updates_index~ is allocated with $3$ elements
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~slater_inv~ is allocated with at least $dim \times dim \times 8$ bytes
- ~Slater_inv~ is allocated with $Dim \times Dim$ elements
*** C header
@ -790,13 +798,13 @@ assert(rc == QMCKL_SUCCESS);
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
* ~context~ is not ~QMCKL_NULL_CONTEXT~
* ~Dim >= 2~
* ~N_updates >= 1~
* ~Updates~ is allocated with $N_updates \times Dim$ elements
* ~Updates_index~ is allocated with $N_updates$ elements
* ~breakdown~ is a small number such that $0 < breakdown << 1$
* ~Slater_inv~ is allocated with $Dim \times Dim$ elements
*** C header
@ -951,427 +959,6 @@ assert(rc == QMCKL_SUCCESS);
#+end_src
* Woodbury 2x2 with Sherman-Morrison and update splitting
** ~qmckl_sherman_morrison_smw2s~
:PROPERTIES:
:Name: qmckl_sherman_morrison_smw2s
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
The Woodbury 2x2 kernel with Sherman-Morrison and update splitting combines the low-level Woodbury 2x2 kernel
and Sherman-Morrison with update splitting. For a given number of updates $N$ it splits the number of updates
in blocks of two updates. The blocks of two updates are then applied one by one using Woodbury 2x2. If a block
of updates fails, both updates in the block are applied with Sherman-Morrison instead, split if necessary and
with their second half put in a queue. After all blocks are processed the remaining one update --in case there
was an odd number of updates to begin with-- is also aplpied with Sherman-Morrison and split if necessary.
The queue containing the collected second halves of all the processed updates is processed at the very end to
avoid having many intermediate queues containing only a few updates that risks an increased probability
of artificially created non-singular intermediate matrices, resulting from division up the total number of
updates in blocks of three.
#+NAME: qmckl_sherman_morrison_smw2s_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the updates |
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
| double | breakdown | in | Break-down parameter on which to fail or not |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
*** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_sherman_morrison_smw2s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
#+end_src
*** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_sherman_morrison_smw2s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
info = qmckl_sherman_morrison_smw2s (context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw2s_f
#+end_src
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw2s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_2 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
uint64_t n_of_2blocks = N_updates / 2;
uint64_t remainder = N_updates % 2;
uint64_t length_2block = 2 * Dim;
// Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with
// Woodbury 2x2 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_2blocks > 0) {
for (uint64_t i = 0; i < n_of_2blocks; i++) {
const double *Updates_2block = &Updates[i * length_2block];
const uint64_t *Updates_index_2block = &Updates_index[i * 2];
rc = qmckl_woodbury_2_c(context, Dim, Updates_2block, Updates_index_2block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder == 1) { // Apply last remaining update with slagel_splitting
const double *Updates_1block = &Updates[n_of_2blocks * length_2block];
const uint64_t *Updates_index_1block = &Updates_index[2 * n_of_2blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance...
This kernel performs best for the case of two rank-1 update and a low fail-rate.
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_sherman_morrison_smw2s &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
integer(c_int32_t), external :: qmckl_sherman_morrison_smw2s_c
info = qmckl_sherman_morrison_smw2s_c &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw2s
#+end_src
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_sherman_morrison_smw2s &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
end function qmckl_sherman_morrison_smw2s
end interface
#+end_src
*** Test :noexport:
#+begin_src c :tangle (eval c_test)
rc = qmckl_sherman_morrison_smw2s_c(context, Dim, N_updates5, Updates5, Updates_index5, breakdown, Slater_inv5_1);
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
res[i * Dim + j] = 0;
for (unsigned int k = 0; k < Dim; k++) {
res[i * Dim + j] += Slater5[i * Dim + k] * Slater_inv5_1[k * Dim + j];
}
}
}
rc = QMCKL_SUCCESS;
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
if (i == j && fabs(res[i * Dim + j] - 1) > tolerance) {
rc = QMCKL_FAILURE;
}
if (i != j && fabs(res[i * Dim + j]) > tolerance) {
rc = QMCKL_FAILURE;
}
}
}
assert(rc == QMCKL_SUCCESS);
#+end_src
* Woodbury 3x3 with Sherman-Morrison and update splitting
** ~qmckl_sherman_morrison_smw3s~
:PROPERTIES:
:Name: qmckl_sherman_morrison_smw3s
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
The Woodbury 3x3 kernel with Sherman-Morrison and update splitting combines the low-level Woodbury 3x3 kernel
and Sherman-Morrison with update splitting. It works the same as Woodbury 2x2 with Sherman-Morrison and update
splitting, except that the updates are divided in blocks of three rank-1 updates instead of blocks of two
rank-1 updates.
#+NAME: qmckl_sherman_morrison_smw3s_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the updates |
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
| double | breakdown | in | Break-down parameter on which to fail or not |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
*** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_smw3s_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_sherman_morrison_smw3s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
#+end_src
*** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_sherman_morrison_smw3s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_smw3s(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw3s_f
#+end_src
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw3s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
uint64_t n_of_3blocks = N_updates / 3;
uint64_t remainder = N_updates % 3;
uint64_t length_3block = 3 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
// Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_3blocks > 0) {
for (uint64_t i = 0; i < n_of_3blocks; i++) {
const double *Updates_3block = &Updates[i * length_3block];
const uint64_t *Updates_index_3block = &Updates_index[i * 3];
rc = qmckl_woodbury_3_c(context, Dim, Updates_3block, Updates_index_3block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder != 0) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
const double *Updates_remainder_block = &Updates[n_of_3blocks * length_3block];
const uint64_t *Updates_index_remainder_block = &Updates_index[3 * n_of_3blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, remainder, Updates_remainder_block, Updates_index_remainder_block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance...
This kernel performs best for the case of three rank-1 update and a low fail-rate.
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_smw3s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_sherman_morrison_smw3s &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
integer(c_int32_t), external :: qmckl_sherman_morrison_smw3s_c
info = qmckl_sherman_morrison_smw3s_c &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw3s
#+end_src
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_smw3s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_sherman_morrison_smw3s &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
end function qmckl_sherman_morrison_smw3s
end interface
#+end_src
*** Test :noexport:
#+begin_src c :tangle (eval c_test)
rc = qmckl_sherman_morrison_smw3s_c(context, Dim, N_updates5, Updates5, Updates_index5, breakdown, Slater_inv5_2);
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
res[i * Dim + j] = 0;
for (unsigned int k = 0; k < Dim; k++) {
res[i * Dim + j] += Slater5[i * Dim + k] * Slater_inv5_2[k * Dim + j];
}
}
}
rc = QMCKL_SUCCESS;
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
if (i == j && fabs(res[i * Dim + j] - 1) > tolerance) {
rc = QMCKL_FAILURE;
}
if (i != j && fabs(res[i * Dim + j]) > tolerance) {
rc = QMCKL_FAILURE;
}
}
}
assert(rc == QMCKL_SUCCESS);
#+end_src
* Woodbury 3x3 and 2x2 with Sherman-Morrison and update splitting
** ~qmckl_sherman_morrison_smw32s~
@ -1398,13 +985,13 @@ assert(rc == QMCKL_SUCCESS);
*** Requirements
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
* ~context~ is not ~QMCKL_NULL_CONTEXT~
* ~Dim >= 2~
* ~N_updates >= 1~
* ~Updates~ is allocated with $N_updates \times Dim$ elements
* ~Updates_index~ is allocated with $N_updates$ elements
* ~breakdown~ is a small number such that $0 < breakdown << 1$
* ~Slater_inv~ is allocated with $Dim \times Dim$ elements
*** C header
@ -1593,8 +1180,8 @@ assert(rc == QMCKL_SUCCESS);
* Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels.
These functions can only be used internally by higher level functions.
Private helper-functions that are used by the Sherman-Morrison-Woodbury kernels.
These functions can only be used internally by the kernels in this module.
** ~qmckl_slagel_splitting~
:PROPERTIES:
@ -1603,13 +1190,14 @@ These functions can only be used internally by higher level functions.
:FRetType: double precision
:END:
~qmckl_slagel_splitting~ is used internally to apply a list of rank-1 updates while splitting an update if necessary.
In case of a split it applies the first half of the update while putting the second half in waiting queue to be applied at the end.
~qmckl_slagel_splitting~ is the non-recursive, inner part of the 'Sherman-Morrison with update splitting'-kernel.
It is used internally to apply a collection of $N$ of rank-1 updates to the inverse Slater-matrix $S^{-1}$ and
splitting an update in two equal pieces if necessary. In case of a split, it applies the first half of the update,
while putting the second half in a waiting queue to be applied at the end.
For a given update $u_j$ we define a threshold value $\epsilon_j$, which is the minimum value of
$1+v_j^TS^{-1}u_j$ for a non-singular matrix $S$. If $1+v_j^TS^{-1}u_j \geq \epsilon_j$,
the update is applied as usual. Otherwise, $u_j$ will be redefined as $\frac{u_j}{2}$, and the other half
(to be applied at the end) will be defined using vectors $\frac{u_{j'}}{2}$ and $v_{j'}^T=v_{j'}^T$.
Therefore, when $1+v_j^TS^{-1}u_j \geq \epsilon$, the update is applied as usual. Otherwise, $u_j$ will be redefined
as $\frac{1}{2}u_j$. One half is applied immediately, the other half will be applied at the end of the algorithm, using vectors
$u_{j'}=\frac{1}{2}u_j$ and $v_{j'}^T=v_{j}^T$, which are stored in the array \texttt{later_updates}.
#+NAME: qmckl_slagel_splitting_args
| uint64_t | Dim | in | Leading dimension of Slater_inv |
@ -1627,12 +1215,12 @@ These functions can only be used internally by higher level functions.
- ~Dim >= 2~
- ~N_updates >= 1~
- ~Updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~Updates_index~ is allocated with at least $1 \times 8$ bytes
- ~Updates~ is allocated with $N_updates \times Dim$ elements
- ~Updates_index~ is allocated with $N_updates$ elements
- ~breakdown~ is a small number such that $0 < breakdown << 1$
- ~Slater_inv~ is allocated with at least $Dim \times Dim \times 8$ bytes
- ~later_updates~ is allocated with at least $1 \times 2 \times 8$ bytes
- ~later_index~ is allocated with at least $1 \times 8$ bytes
- ~Slater_inv~ is allocated with $Dim \times Dim$ elements
- ~later_updates~ is allocated with $later \times Dim$ elements
- ~later_index~ is allocated with $N_updates$ elements
- ~later >= 0~
*** C header