1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-03 10:06:09 +01:00

Added AO basis in context. Tests to do

This commit is contained in:
Anthony Scemama 2020-11-14 18:27:38 +01:00
parent 8a53306a63
commit 6b797bd5d4
3 changed files with 494 additions and 180 deletions

View File

@ -1,58 +1,53 @@
#+TITLE: QMCkl source code documentation #+TITLE: QMCkl source code documentation
#+EXPORT_FILE_NAME: index.html #+EXPORT_FILE_NAME: index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/> #+SETUPFILE: https://fniessen.github.io/org-html-themes/setup/theme-readtheorg.setup
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Introduction * Introduction
The ultimate goal of QMCkl is to provide a high-performance The ultimate goal of QMCkl is to provide a high-performance
implementation of the main kernels of QMC. In this particular implementation of the main kernels of QMC. In this particular
repository, we focus on the definition of the API and the tests, repository, we focus on the definition of the API and the tests, and
and on a /pedagogical/ presentation of the algorithms. We expect the on a /pedagogical/ presentation of the algorithms. We expect the
HPC experts to use this repository as a reference for re-writing HPC experts to use this repository as a reference for re-writing
optimized libraries. optimized libraries.
Literate programming is particularly adapted in this context. Literate programming is particularly adapted in this context.
Source files are written in [[https://karl-voit.at/2017/09/23/orgmode-as-markup-only/][org-mode]] format, to provide useful Source files are written in [[https://karl-voit.at/2017/09/23/orgmode-as-markup-only/][org-mode]] format, to provide useful
comments and LaTex formulas close to the code. There exists multiple comments and LaTex formulas close to the code. There exists multiple
possibilities to convert org-mode files into different formats such as possibilities to convert org-mode files into different formats such
HTML or pdf. as HTML or pdf. For a tutorial on literate programming with
For a tutorial on literate programming with org-mode, follow org-mode, follow [[http://www.howardism.org/Technical/Emacs/literate-programming-tutorial.html][this link]].
[[http://www.howardism.org/Technical/Emacs/literate-programming-tutorial.html][this link]].
The code is extracted from the org files using Emacs as a command-line The code is extracted from the org files using Emacs as a
tool in the =Makefile=, and then the produced files are compiled. command-line tool in the =Makefile=, and then the produced files are
compiled.
** Language used ** Language used
Fortran is one of the most common languages used by the community, Fortran is one of the most common languages used by the community,
and is simple enough to make the algorithms readable. Hence we and is simple enough to make the algorithms readable. Hence we
propose in this pedagogical implementation of QMCkl to use Fortran propose in this pedagogical implementation of QMCkl to use Fortran
to express the algorithms. For specific internal functions where to express the algorithms. For specific internal functions where
the C language is more natural, C is used. the C language is more natural, C is used.
As Fortran modules generate compiler-dependent files, the use of As Fortran modules generate compiler-dependent files, the use of
modules is restricted to the internal use of the library, otherwise modules is restricted to the internal use of the library, otherwise
the compliance with C is violated. the compliance with C is violated.
The external dependencies should be kept as small as possible, so The external dependencies should be kept as small as possible, so
external libraries should be used /only/ if their used is strongly external libraries should be used /only/ if their used is strongly
justified. justified.
** Source code editing ** Source code editing
Any text editor can be used to edit org-mode files. For a better Any text editor can be used to edit org-mode files. For a better
user experience Emacs is recommended. user experience Emacs is recommended. For users hating Emacs, it
For users hating Emacs, it is good to know that Emacs can behave is good to know that Emacs can behave like Vim when switched into
like Vim when switched into ``Evil'' mode. There also exists ``Evil'' mode. There also exists [[https://www.spacemacs.org][Spacemacs]] which helps the
[[https://www.spacemacs.org][Spacemacs]] which helps the transition for Vim users. transition for Vim users.
For users with a preference for Jupyter notebooks, the following For users with a preference for Jupyter notebooks, the following
script can convert jupyter notebooks to org-mode files: script can convert jupyter notebooks to org-mode files:
#+BEGIN_SRC sh tangle: nb_to_org.sh #+BEGIN_SRC sh tangle: nb_to_org.sh
@ -72,24 +67,25 @@ rm ${nb}.md
** Writing in Fortran ** Writing in Fortran
The Fortran source files should provide a C interface using The Fortran source files should provide a C interface using
=iso_c_binding=. The name of the Fortran source files should end =iso_c_binding=. The name of the Fortran source files should end
with =_f.f90= to be properly handled by the Makefile. with =_f.f90= to be properly handled by the Makefile. The names of
The names of the functions defined in fortran should be the same as the functions defined in fortran should be the same as those
those exposed in the API suffixed by =_f=. exposed in the API suffixed by =_f=. Fortran interface files
Fortran interface files should also be written in a file with a should also be written in the =qmckl_f.f90= file.
=.fh= extension.
For more guidelines on using Fortran to generate a C interface, see For more guidelines on using Fortran to generate a C interface, see
[[http://fortranwiki.org/fortran/show/Generating+C+Interfaces][this link]] [[http://fortranwiki.org/fortran/show/Generating+C+Interfaces][this link]].
** Coding style ** Coding style
# TODO: decide on a coding style # TODO: decide on a coding style
To improve readability, we maintain a consistent coding style in the library. To improve readability, we maintain a consistent coding style in
the library.
- For C source files, we will use __(decide on a coding style)__ - For C source files, we will use __(decide on a coding style)__
- For Fortran source files, we will use __(decide on a coding style)__ - For Fortran source files, we will use __(decide on a coding
style)__
Coding style can be automatically checked with [[https://clang.llvm.org/docs/ClangFormat.html][clang-format]]. Coding style can be automatically checked with [[https://clang.llvm.org/docs/ClangFormat.html][clang-format]].
@ -99,103 +95,105 @@ rm ${nb}.md
- deal with memory transfers between CPU and accelerators - deal with memory transfers between CPU and accelerators
- use different levels of floating-point precision - use different levels of floating-point precision
We chose a multi-layered design with low-level and high-level We chose a multi-layered design with low-level and high-level
functions (see below). functions (see below).
*** Naming conventions *** Naming conventions
Use =qmckl_= as a prefix for all exported functions and variables. Use =qmckl_= as a prefix for all exported functions and variables.
All exported header files should have a filename with the prefix All exported header files should have a filename with the prefix
=qmckl_=. =qmckl_=.
If the name of the org-mode file is =xxx.org=, the name of the If the name of the org-mode file is =xxx.org=, the name of the
produced C files should be =xxx.c= and =xxx.h= and the name of the produced C files should be =xxx.c= and =xxx.h= and the name of the
produced Fortran files should be =xxx.f90= produced Fortran files should be =xxx.f90=
Arrays are in uppercase and scalars are in lowercase. Arrays are in uppercase and scalars are in lowercase.
In the names of the variables and functions, only the singular
form is allowed.
*** Application programming interface *** Application programming interface
The application programming interface (API) is designed to be The application programming interface (API) is designed to be
compatible with the C programming language (not C++), to ensure compatible with the C programming language (not C++), to ensure
that the library will be easily usable in any language. that the library will be easily usable in /any/ language. This
This implies that only the following data types are allowed in the API: implies that only the following data types are allowed in the API:
- 32-bit and 64-bit floats and arrays (=real= and =double=) - 32-bit and 64-bit floats and arrays (=real= and =double=)
- 32-bit and 64-bit integers and arrays (=int32_t= and =int64_t=) - 32-bit and 64-bit integers and arrays (=int32_t= and =int64_t=)
- Pointers should be represented as 64-bit integers (even on - Pointers should be represented as 64-bit integers (even on
32-bit architectures) 32-bit architectures)
- ASCII strings are represented as a pointers to a character arrays - ASCII strings are represented as a pointers to a character
and terminated by a zero character (C convention). arrays and terminated by a zero character (C convention).
Complex numbers can be represented by an array of 2 floats. Complex numbers can be represented by an array of 2 floats.
# TODO : Link to repositories for bindings # TODO : Link to repositories for bindings
To facilitate the use in other languages than C, we provide some To facilitate the use in other languages than C, we provide some
bindings in other languages in other repositories. bindings in other languages in other repositories.
*** Global state *** Global state
Global variables should be avoided in the library, because it is Global variables should be avoided in the library, because it is
possible that one single program needs to use multiple instances of possible that one single program needs to use multiple instances
the library. To solve this problem we propose to use a pointer to a of the library. To solve this problem we propose to use a pointer
=context= variable, built by the library with the to a =context= variable, built by the library with the
=qmckl_context_create= function. The =context= contains the global =qmckl_context_create= function. The =context= contains the global
state of the library, and is used as the first argument of many state of the library, and is used as the first argument of many
QMCkl functions. QMCkl functions.
Modifying the state is done by setters and getters, prefixed The internal structure of the context is not specified, to give a
by =qmckl_context_set_= an =qmckl_context_get_=. maximum of freedom to the different implementations. Modifying
When a context variable is modified by a setter, a copy of the old the state is done by setters and getters, prefixed by
data structure is made and updated, and the pointer to the new data =qmckl_context_set_= an =qmckl_context_get_=. When a context
structure is returned, such that the old contexts can still be variable is modified by a setter, a copy of the old data structure
accessed. is made and updated, and the pointer to the new data structure is
It is also possible to modify the state in an impure fashion, using returned, such that the old contexts can still be accessed. It is
the =qmckl_context_update_= functions. also possible to modify the state in an impure fashion, using the
The context and its old versions can be destroyed with =qmckl_context_update_= functions. The context and its old
=qmckl_context_destroy=. versions can be destroyed with =qmckl_context_destroy=.
*** Low-level functions *** Low-level functions
Low-level functions are very simple functions which are leaves of the Low-level functions are very simple functions which are leaves of
function call tree (they don't call any other QMCkl function). the function call tree (they don't call any other QMCkl function).
This functions are /pure/, and unaware of the QMCkl =context=. They are These functions are /pure/, and unaware of the QMCkl
not allowed to allocate/deallocate memory, and if they need =context=. They are not allowed to allocate/deallocate memory, and
temporary memory it should be provided in input. if they need temporary memory it should be provided in input.
*** High-level functions *** High-level functions
High-level functions are at the top of the function call tree. High-level functions are at the top of the function call tree.
They are able to choose which lower-level function to call They are able to choose which lower-level function to call
depending on the required precision, and do the corresponding type depending on the required precision, and do the corresponding type
conversions. conversions. These functions are also responsible for allocating
These functions are also responsible for allocating temporary temporary storage, to simplify the use of accelerators.
storage, to simplify the use of accelerators.
The high-level functions should be pure, unless the introduction of The high-level functions should be pure, unless the introduction
non-purity is justified. All the side effects should be made in the of non-purity is justified. All the side effects should be made in
=context= variable. the =context= variable.
# TODO : We need an identifier for impure functions # TODO : We need an identifier for impure functions
*** Numerical precision *** Numerical precision
The number of bits of precision required for a function should be The number of bits of precision required for a function should be
given as an input of low-level computational functions. This input will given as an input of low-level computational functions. This input
be used to define the values of the different thresholds that might will be used to define the values of the different thresholds that
be used to avoid computing unnecessary noise. might be used to avoid computing unnecessary noise. High-level
High-level functions will use the precision specified in the functions will use the precision specified in the =context=
=context= variable. variable.
** Algorithms ** Algorithms
Reducing the scaling of an algorithm usually implies also reducing Reducing the scaling of an algorithm usually implies also reducing
its arithmetic complexity (number of flops per byte). Therefore, its arithmetic complexity (number of flops per byte). Therefore,
for small sizes \(\mathcal{O}(N^3)\) and \(\mathcal{O}(N^2)\) algorithms for small sizes \(\mathcal{O}(N^3)\) and \(\mathcal{O}(N^2)\)
are better adapted than linear scaling algorithms. algorithms are better adapted than linear scaling algorithms. As
As QMCkl is a general purpose library, multiple algorithms should QMCkl is a general purpose library, multiple algorithms should be
be implemented adapted to different problem sizes. implemented adapted to different problem sizes.
** Rules for the API ** Rules for the API
@ -206,4 +204,4 @@ rm ${nb}.md
* Documentation * Documentation

View File

@ -1,7 +1,7 @@
** Atomic Orbitals ** Atomic Orbitals
This files contains all the routines for the computation of the This files contains all the routines for the computation of the
values, gradients and Laplacian of the atomic basis functions. values, gradients and Laplacian of the atomic basis functions.
3 files are produced: 3 files are produced:
@ -25,9 +25,12 @@ MunitResult test_qmckl_ao() {
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
\] \]
\begin{eqnarray*} \begin{eqnarray*}
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
\end{eqnarray*} \end{eqnarray*}
\begin{eqnarray*} \begin{eqnarray*}
\left( \frac{\partial }{\partial x^2} + \left( \frac{\partial }{\partial x^2} +
@ -39,9 +42,9 @@ MunitResult test_qmckl_ao() {
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}
\end{eqnarray*} \end{eqnarray*}
**** =qmckl_ao_powers= **** =qmckl_ao_power=
Computes all the powers of the =n= input data up to the given Computes all the powers of the =n= input data up to the given
maximum value given in input for each of the $n$ points: maximum value given in input for each of the $n$ points:
\[ P_{ij} = X_j^i \] \[ P_{ij} = X_j^i \]
@ -66,7 +69,7 @@ MunitResult test_qmckl_ao() {
***** Header ***** Header
#+BEGIN_SRC C :tangle qmckl.h #+BEGIN_SRC C :tangle qmckl.h
qmckl_exit_code qmckl_ao_powers(const qmckl_context context, qmckl_exit_code qmckl_ao_power(const qmckl_context context,
const int64_t n, const int64_t n,
const double *X, const int32_t *LMAX, const double *X, const int32_t *LMAX,
const double *P, const int64_t LDP); const double *P, const int64_t LDP);
@ -74,7 +77,7 @@ qmckl_exit_code qmckl_ao_powers(const qmckl_context context,
***** Source ***** Source
#+BEGIN_SRC f90 :tangle qmckl_ao.f90 #+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer function qmckl_ao_powers_f(context, n, X, LMAX, P, ldp) result(info) integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info)
implicit none implicit none
integer*8 , intent(in) :: context integer*8 , intent(in) :: context
integer*8 , intent(in) :: n integer*8 , intent(in) :: n
@ -104,12 +107,12 @@ integer function qmckl_ao_powers_f(context, n, X, LMAX, P, ldp) result(info)
end do end do
end do end do
end function qmckl_ao_powers_f end function qmckl_ao_power_f
#+END_SRC #+END_SRC
***** C interface :noexport: ***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_ao.f90 #+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) & integer(c_int32_t) function qmckl_ao_power(context, n, X, LMAX, P, ldp) &
bind(C) result(info) bind(C) result(info)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
implicit none implicit none
@ -120,14 +123,14 @@ integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) &
real (c_double) , intent(out) :: P(ldp,n) real (c_double) , intent(out) :: P(ldp,n)
integer (c_int64_t) , intent(in) , value :: ldp integer (c_int64_t) , intent(in) , value :: ldp
integer, external :: qmckl_ao_powers_f integer, external :: qmckl_ao_power_f
info = qmckl_ao_powers_f(context, n, X, LMAX, P, ldp) info = qmckl_ao_power_f(context, n, X, LMAX, P, ldp)
end function qmckl_ao_powers end function qmckl_ao_power
#+END_SRC #+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90 #+BEGIN_SRC f90 :tangle qmckl_f.f90
interface interface
integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) bind(C) integer(c_int32_t) function qmckl_ao_power(context, n, X, LMAX, P, ldp) bind(C)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: n
@ -135,13 +138,13 @@ end function qmckl_ao_powers
real (c_double) , intent(in) :: X(n) real (c_double) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n) integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double) , intent(out) :: P(ldp,n) real (c_double) , intent(out) :: P(ldp,n)
end function qmckl_ao_powers end function qmckl_ao_power
end interface end interface
#+END_SRC #+END_SRC
***** Test :noexport: ***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90 #+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_powers(context) bind(C) integer(c_int32_t) function test_qmckl_ao_power(context) bind(C)
use qmckl use qmckl
implicit none implicit none
@ -165,10 +168,10 @@ integer(c_int32_t) function test_qmckl_ao_powers(context) bind(C)
LMAX(j) = 1 + int(mod(j, 5),4) LMAX(j) = 1 + int(mod(j, 5),4)
end do end do
test_qmckl_ao_powers = qmckl_ao_powers(context, n, X, LMAX, P, LDP) test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
if (test_qmckl_ao_powers /= 0) return if (test_qmckl_ao_power /= 0) return
test_qmckl_ao_powers = -1 test_qmckl_ao_power = -1
do j=1,n do j=1,n
do i=1,LMAX(j) do i=1,LMAX(j)
@ -180,14 +183,14 @@ integer(c_int32_t) function test_qmckl_ao_powers(context) bind(C)
end do end do
end do end do
test_qmckl_ao_powers = 0 test_qmckl_ao_power = 0
deallocate(X,P,LMAX) deallocate(X,P,LMAX)
end function test_qmckl_ao_powers end function test_qmckl_ao_power
#+END_SRC #+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_ao.c #+BEGIN_SRC C :tangle test_qmckl_ao.c
int test_qmckl_ao_powers(qmckl_context context); int test_qmckl_ao_power(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_powers(context)); munit_assert_int(0, ==, test_qmckl_ao_power(context));
#+END_SRC #+END_SRC
@ -248,7 +251,7 @@ integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL,
real*8 :: Y(3) real*8 :: Y(3)
integer :: lmax_array(3) integer :: lmax_array(3)
real*8 :: pows(-2:lmax,3) real*8 :: pows(-2:lmax,3)
integer, external :: qmckl_ao_powers_f integer, external :: qmckl_ao_power_f
double precision :: xy, yz, xz double precision :: xy, yz, xz
double precision :: da, db, dc, dd double precision :: da, db, dc, dd
@ -281,11 +284,11 @@ integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL,
pows(-2:-1,1:3) = 0.d0 pows(-2:-1,1:3) = 0.d0
pows(0,1:3) = 1.d0 pows(0,1:3) = 1.d0
lmax_array(1:3) = lmax lmax_array(1:3) = lmax
info = qmckl_ao_powers_f(context, 1_8, Y(1), (/lmax/), pows(1,1), size(pows,1,kind=8)) info = qmckl_ao_power_f(context, 1_8, Y(1), (/lmax/), pows(1,1), size(pows,1,kind=8))
if (info /= 0) return if (info /= 0) return
info = qmckl_ao_powers_f(context, 1_8, Y(2), (/lmax/), pows(1,2), size(pows,1,kind=8)) info = qmckl_ao_power_f(context, 1_8, Y(2), (/lmax/), pows(1,2), size(pows,1,kind=8))
if (info /= 0) return if (info /= 0) return
info = qmckl_ao_powers_f(context, 1_8, Y(3), (/lmax/), pows(1,3), size(pows,1,kind=8)) info = qmckl_ao_power_f(context, 1_8, Y(3), (/lmax/), pows(1,3), size(pows,1,kind=8))
if (info /= 0) return if (info /= 0) return
@ -482,7 +485,7 @@ munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
*** Gaussian basis functions *** Gaussian basis functions
**** =qmckl_ao_gaussians_vgl= **** =qmckl_ao_gaussian_vgl=
Computes the values, gradients and Laplacians at a given point of Computes the values, gradients and Laplacians at a given point of
=n= Gaussian functions centered at the same point: =n= Gaussian functions centered at the same point:
@ -516,7 +519,7 @@ munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
***** Header ***** Header
#+BEGIN_SRC C :tangle qmckl.h #+BEGIN_SRC C :tangle qmckl.h
qmckl_exit_code qmckl_ao_gaussians_vgl(const qmckl_context context, qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context,
const double *X, const double *R, const double *X, const double *R,
const int64_t *n, const int64_t *A, const int64_t *n, const int64_t *A,
const double *VGL, const int64_t ldv); const double *VGL, const int64_t ldv);
@ -524,7 +527,7 @@ qmckl_exit_code qmckl_ao_gaussians_vgl(const qmckl_context context,
***** Source ***** Source
#+BEGIN_SRC f90 :tangle qmckl_ao.f90 #+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer function qmckl_ao_gaussians_vgl_f(context, X, R, n, A, VGL, ldv) result(info) integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info)
implicit none implicit none
integer*8 , intent(in) :: context integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3) real*8 , intent(in) :: X(3), R(3)
@ -582,12 +585,12 @@ integer function qmckl_ao_gaussians_vgl_f(context, X, R, n, A, VGL, ldv) result(
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
end do end do
end function qmckl_ao_gaussians_vgl_f end function qmckl_ao_gaussian_vgl_f
#+END_SRC #+END_SRC
***** C interface :noexport: ***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_ao.f90 #+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer(c_int32_t) function qmckl_ao_gaussians_vgl(context, X, R, n, A, VGL, ldv) & integer(c_int32_t) function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) &
bind(C) result(info) bind(C) result(info)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
implicit none implicit none
@ -598,14 +601,14 @@ integer(c_int32_t) function qmckl_ao_gaussians_vgl(context, X, R, n, A, VGL, ldv
real (c_double) , intent(out) :: VGL(ldv,5) real (c_double) , intent(out) :: VGL(ldv,5)
integer (c_int64_t) , intent(in) , value :: ldv integer (c_int64_t) , intent(in) , value :: ldv
integer, external :: qmckl_ao_gaussians_vgl_f integer, external :: qmckl_ao_gaussian_vgl_f
info = qmckl_ao_gaussians_vgl_f(context, X, R, n, A, VGL, ldv) info = qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv)
end function qmckl_ao_gaussians_vgl end function qmckl_ao_gaussian_vgl
#+END_SRC #+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90 #+BEGIN_SRC f90 :tangle qmckl_f.f90
interface interface
integer(c_int32_t) function qmckl_ao_gaussians_vgl(context, X, R, n, A, VGL, ldv) & integer(c_int32_t) function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) &
bind(C) bind(C)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: context
@ -613,12 +616,12 @@ end function qmckl_ao_gaussians_vgl
integer (c_int64_t) , intent(in) , value :: n integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: X(3), R(3), A(n) real (c_double) , intent(in) :: X(3), R(3), A(n)
real (c_double) , intent(out) :: VGL(ldv,5) real (c_double) , intent(out) :: VGL(ldv,5)
end function qmckl_ao_gaussians_vgl end function qmckl_ao_gaussian_vgl
end interface end interface
#+END_SRC #+END_SRC
***** Test :noexport: ***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90 #+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_gaussians_vgl(context) bind(C) integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C)
use qmckl use qmckl
implicit none implicit none
@ -645,49 +648,48 @@ integer(c_int32_t) function test_qmckl_ao_gaussians_vgl(context) bind(C)
end do end do
test_qmckl_ao_gaussians_vgl = & test_qmckl_ao_gaussian_vgl = &
qmckl_ao_gaussians_vgl(context, X, R, n, A, VGL, ldv) qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
if (test_qmckl_ao_gaussians_vgl /= 0) return if (test_qmckl_ao_gaussian_vgl /= 0) return
test_qmckl_ao_gaussians_vgl = -1 test_qmckl_ao_gaussian_vgl = -1
do i=1,n do i=1,n
test_qmckl_ao_gaussians_vgl = -11 test_qmckl_ao_gaussian_vgl = -11
if (dabs(1.d0 - VGL(i,1) / (& if (dabs(1.d0 - VGL(i,1) / (&
dexp(-A(i) * r2) & dexp(-A(i) * r2) &
)) > epsilon ) return )) > epsilon ) return
test_qmckl_ao_gaussians_vgl = -12 test_qmckl_ao_gaussian_vgl = -12
if (dabs(1.d0 - VGL(i,2) / (& if (dabs(1.d0 - VGL(i,2) / (&
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) & -2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) &
)) > epsilon ) return )) > epsilon ) return
test_qmckl_ao_gaussians_vgl = -13 test_qmckl_ao_gaussian_vgl = -13
if (dabs(1.d0 - VGL(i,3) / (& if (dabs(1.d0 - VGL(i,3) / (&
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) & -2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) &
)) > epsilon ) return )) > epsilon ) return
test_qmckl_ao_gaussians_vgl = -14 test_qmckl_ao_gaussian_vgl = -14
if (dabs(1.d0 - VGL(i,4) / (& if (dabs(1.d0 - VGL(i,4) / (&
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) & -2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) &
)) > epsilon ) return )) > epsilon ) return
test_qmckl_ao_gaussians_vgl = -15 test_qmckl_ao_gaussian_vgl = -15
if (dabs(1.d0 - VGL(i,5) / (& if (dabs(1.d0 - VGL(i,5) / (&
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) & A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) &
)) > epsilon ) return )) > epsilon ) return
end do end do
test_qmckl_ao_gaussians_vgl = 0 test_qmckl_ao_gaussian_vgl = 0
deallocate(VGL) deallocate(VGL)
end function test_qmckl_ao_gaussians_vgl end function test_qmckl_ao_gaussian_vgl
#+END_SRC #+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_ao.c #+BEGIN_SRC C :tangle test_qmckl_ao.c
int test_qmckl_ao_gaussians_vgl(qmckl_context context); int test_qmckl_ao_gaussian_vgl(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_gaussians_vgl(context)); munit_assert_int(0, ==, test_qmckl_ao_gaussian_vgl(context));
#+END_SRC
#+END_SRC #+END_SRC

View File

@ -1,7 +1,7 @@
** Context ** Context
This file is written in C because it is more natural to express the context in This file is written in C because it is more natural to express the
C than in Fortran. context in C than in Fortran.
2 files are produced: 2 files are produced:
- a source file : =qmckl_context.c= - a source file : =qmckl_context.c=
@ -18,46 +18,82 @@
MunitResult test_qmckl_context() { MunitResult test_qmckl_context() {
#+END_SRC #+END_SRC
*** Context *** Context
The context variable is a handle for the state of the library, and The context variable is a handle for the state of the library, and
is stored in the following data structure, which can't be seen is stored in the following data structure, which can't be seen
outside of the library. To simplify compatibility with other outside of the library. To simplify compatibility with other
languages, the pointer to the internal data structure is converted languages, the pointer to the internal data structure is converted
into a 64-bit signed integer, defined in the =qmckl_context= type. into a 64-bit signed integer, defined in the =qmckl_context= type.
A value of 0 for the context is equivalent to a =NULL= pointer. A value of 0 for the context is equivalent to a =NULL= pointer.
#+BEGIN_SRC C :comments org :tangle qmckl.h # The following code block should be kept to insert comments into
# the qmckl.h file
#+BEGIN_SRC C :comments org :tangle qmckl.h :export none
#+END_SRC #+END_SRC
***** Source **** Basis set data structure
The tag is used internally to check if the memory domain pointed by
a pointer is a valid context.
#+BEGIN_SRC C :comments org :tangle qmckl_context.c Data structure for the info related to the atomic orbitals
basis set.
#+BEGIN_SRC C :comments org :tangle qmckl_context.c
typedef struct qmckl_ao_basis_struct {
int64_t shell_num;
int64_t prim_num;
int64_t * shell_center;
int32_t * shell_ang_mom;
double * shell_factor;
double * exponent ;
double * coefficient ;
int64_t * shell_prim_num;
char type;
} qmckl_ao_basis_struct;
#+END_SRC
**** Source
The tag is used internally to check if the memory domain pointed
by a pointer is a valid context.
#+BEGIN_SRC C :comments org :tangle qmckl_context.c
typedef struct qmckl_context_struct { typedef struct qmckl_context_struct {
struct qmckl_context_struct * prev; struct qmckl_context_struct * prev;
/* Molecular system */
// struct qmckl_nucleus_struct * nucleus;
// struct qmckl_electron_struct * electron;
struct qmckl_ao_basis_struct * ao_basis;
// struct qmckl_mo_struct * mo;
// struct qmckl_determinant_struct * det;
/* Numerical precision */
uint32_t tag; uint32_t tag;
int32_t precision; int32_t precision;
int32_t range; int32_t range;
} qmckl_context_struct; } qmckl_context_struct;
#define VALID_TAG 0xBEEFFACE #define VALID_TAG 0xBEEFFACE
#define INVALID_TAG 0xDEADBEEF #define INVALID_TAG 0xDEADBEEF
#+END_SRC #+END_SRC
***** Test :noexport: **** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_context.c #+BEGIN_SRC C :tangle test_qmckl_context.c
qmckl_context context; qmckl_context context;
qmckl_context new_context; qmckl_context new_context;
#+END_SRC #+END_SRC
**** =qmckl_context_check= **** =qmckl_context_check=
Checks if the domain pointed by the pointer is a valid context. Checks if the domain pointed by the pointer is a valid context.
Returns the input =qmckl_context= if the context is valid, 0 otherwise. Returns the input =qmckl_context= if the context is valid, 0
otherwise.
#+BEGIN_SRC C :comments org :tangle qmckl.h #+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_check(const qmckl_context context) ; qmckl_context qmckl_context_check(const qmckl_context context) ;
@ -98,6 +134,7 @@ qmckl_context qmckl_context_create() {
} }
context->prev = NULL; context->prev = NULL;
context->ao_basis = NULL;
context->precision = QMCKL_DEFAULT_PRECISION; context->precision = QMCKL_DEFAULT_PRECISION;
context->range = QMCKL_DEFAULT_RANGE; context->range = QMCKL_DEFAULT_RANGE;
context->tag = VALID_TAG; context->tag = VALID_TAG;
@ -153,6 +190,7 @@ qmckl_context qmckl_context_copy(const qmckl_context context) {
} }
new_context->prev = old_context; new_context->prev = old_context;
new_context->ao_basis = old_context->ao_basis;
new_context->precision = old_context->precision; new_context->precision = old_context->precision;
new_context->range = old_context->range; new_context->range = old_context->range;
new_context->tag = VALID_TAG; new_context->tag = VALID_TAG;
@ -231,9 +269,9 @@ munit_assert_int64(qmckl_context_previous((qmckl_context) 0), ==, (qmckl_context
- Fails if the 0-valued context is given in argument - Fails if the 0-valued context is given in argument
- Fails if the the pointer is not a valid context - Fails if the the pointer is not a valid context
#+BEGIN_SRC C :comments org :tangle qmckl.h #+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code qmckl_context_destroy(qmckl_context context); qmckl_exit_code qmckl_context_destroy(qmckl_context context);
#+END_SRC #+END_SRC
***** Source ***** Source
#+BEGIN_SRC C :tangle qmckl_context.c #+BEGIN_SRC C :tangle qmckl_context.c
@ -271,16 +309,296 @@ munit_assert_int64(qmckl_context_check(new_context), ==, (qmckl_context) 0);
munit_assert_int64(qmckl_context_destroy((qmckl_context) 0), ==, QMCKL_FAILURE); munit_assert_int64(qmckl_context_destroy((qmckl_context) 0), ==, QMCKL_FAILURE);
#+END_SRC #+END_SRC
*** Basis set
For H_2 with the following basis set,
#+BEGIN_EXAMPLE
HYDROGEN
S 5
1 3.387000E+01 6.068000E-03
2 5.095000E+00 4.530800E-02
3 1.159000E+00 2.028220E-01
4 3.258000E-01 5.039030E-01
5 1.027000E-01 3.834210E-01
S 1
1 3.258000E-01 1.000000E+00
S 1
1 1.027000E-01 1.000000E+00
P 1
1 1.407000E+00 1.000000E+00
P 1
1 3.880000E-01 1.000000E+00
D 1
1 1.057000E+00 1.0000000
#+END_EXAMPLE
we have:
#+BEGIN_EXAMPLE
type = 'G'
shell_num = 12
prim_num = 20
SHELL_CENTER = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]
SHELL_ANG_MOM = ['S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D']
SHELL_PRIM_NUM = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1]
prim_index = [1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20]
EXPONENT = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027,
1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027,
0.3258, 0.1027, 1.407, 0.388, 1.057]
COEFFICIENT = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421,
1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822,
0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0]
#+END_EXAMPLE
**** =qmckl_context_update_ao_basis=
Updates the data describing the AO basis set into the context.
| =type= | Gaussian or Slater |
| =shell_num= | Number of shells |
| =prim_num= | Total number of primitives |
| =SHELL_CENTER(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_ANG_MOM(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_FACTOR(shell_num)= | Normalization factor for the shell |
| =SHELL_PRIM_NUM(shell_num)= | Number of primitives in the shell |
| =SHELL_PRIM_INDEX(shell_num)= | Address of the first primitive of the shelll in the =EXPONENT= array |
| =EXPONENT(prim_num)= | Array of exponents |
| =COEFFICIENT(prim_num)= | Array of coefficients |
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code
qmckl_context_update_ao_basis(qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_exit_code
qmckl_context_update_ao_basis(qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT)
{
int64_t i;
/* Check input */
if (type != 'G' && type != 'S') return QMCKL_FAILURE;
if (shell_num <= 0) return QMCKL_FAILURE;
if (prim_num <= 0) return QMCKL_FAILURE;
if (prim_num < shell_num) return QMCKL_FAILURE;
for (i=0 ; i<shell_num ; i++) {
if (SHELL_CENTER[i] <= 0) return QMCKL_FAILURE;
if (SHELL_PRIM_NUM[i] <= 0) return QMCKL_FAILURE;
if (SHELL_ANG_MOM[i] < 0) return QMCKL_FAILURE;
if (SHELL_PRIM_INDEX[i] < 0) return QMCKL_FAILURE;
}
for (i=0 ; i<prim_num ; i++) {
if (EXPONENT[i] <= 0) return QMCKL_FAILURE;
}
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
if (ctx == NULL) return QMCKL_FAILURE;
qmckl_ao_basis_struct* basis = (qmckl_ao_basis_struct*) malloc (sizeof(qmckl_ao_basis_struct));
if (basis == NULL) return QMCKL_FAILURE;
/* Memory allocations */
basis->shell_center = (int64_t*) malloc (shell_num * sizeof(int64_t));
if (basis->shell_center == NULL) {
free(basis);
return QMCKL_FAILURE;
}
basis->shell_ang_mom = (int32_t*) malloc (shell_num * sizeof(int32_t));
if (basis->shell_ang_mom == NULL) {
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->shell_prim_num= (int64_t*) malloc (shell_num * sizeof(int64_t));
if (basis->shell_prim_num == NULL) {
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->shell_factor = (double *) malloc (shell_num * sizeof(double ));
if (basis->shell_factor == NULL) {
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->exponent = (double *) malloc (prim_num * sizeof(double ));
if (basis->exponent == NULL) {
free(basis->shell_factor);
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->coefficient = (double *) malloc (prim_num * sizeof(double ));
if (basis->coefficient == NULL) {
free(basis->exponent);
free(basis->shell_factor);
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
/* Assign data */
basis->type = type;
basis->shell_num = shell_num;
basis->prim_num = prim_num;
for (i=0 ; i<shell_num ; i++) {
basis->shell_center [i] = SHELL_CENTER [i];
basis->shell_ang_mom [i] = SHELL_ANG_MOM [i];
basis->shell_prim_num[i] = SHELL_PRIM_NUM[i];
basis->shell_factor [i] = SHELL_FACTOR [i];
}
for (i=0 ; i<prim_num ; i++) {
basis->exponent [i] = EXPONENT[i];
basis->coefficient[i] = COEFFICIENT[i];
}
ctx->ao_basis = basis;
return QMCKL_SUCCESS;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_update_ao_basis(context, &
typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, &
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
character(c_char) , intent(in), value :: typ
integer (c_int64_t), intent(in), value :: shell_num
integer (c_int64_t), intent(in), value :: prim_num
integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num)
integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num)
double precision , intent(in) :: SHELL_FACTOR(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num)
double precision , intent(in) :: EXPONENT(prim_num)
double precision , intent(in) :: COEFFICIENT(prim_num)
end function qmckl_context_update_ao_basis
end interface
#+END_SRC
***** TODO Test
**** =qmckl_context_set_ao_basis=
Sets the data describing the AO basis set into the context.
| =type= | Gaussian or Slater |
| =shell_num= | Number of shells |
| =prim_num= | Total number of primitives |
| =SHELL_CENTER(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_ANG_MOM(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_FACTOR(shell_num)= | Normalization factor for the shell |
| =SHELL_PRIM_NUM(shell_num)= | Number of primitives in the shell |
| =SHELL_PRIM_INDEX(shell_num)= | Address of the first primitive of the shelll in the =EXPONENT= array |
| =EXPONENT(prim_num)= | Array of exponents |
| =COEFFICIENT(prim_num)= | Array of coefficients |
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context
qmckl_context_set_ao_basis(const qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context
qmckl_context_set_ao_basis(const qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT)
{
qmckl_context new_context = qmckl_context_copy(context);
if (new_context == 0) return 0;
if (qmckl_context_update_ao_basis(context, type, shell_num, prim_num,
SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR,
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT,
COEFFICIENT
) == QMCKL_FAILURE)
return 0;
return new_context;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_set_ao_basis(context, &
typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, &
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
character(c_char) , intent(in), value :: typ
integer (c_int64_t), intent(in), value :: shell_num
integer (c_int64_t), intent(in), value :: prim_num
integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num)
integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num)
double precision , intent(in) :: SHELL_FACTOR(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num)
double precision , intent(in) :: EXPONENT(prim_num)
double precision , intent(in) :: COEFFICIENT(prim_num)
end function qmckl_context_set_ao_basis
end interface
#+END_SRC
***** TODO Test
*** Precision *** Precision
The following functions set and get the expected required precision The following functions set and get the expected required
and range. =precision= should be an integer between 2 and 53, and precision and range. =precision= should be an integer between 2
=range= should be an integer between 2 and 11. and 53, and =range= should be an integer between 2 and 11.
The setter functions functions return a new context as a 64-bit integer. The setter functions functions return a new context as a 64-bit
The getter functions return the value, as a 32-bit integer. integer. The getter functions return the value, as a 32-bit
The update functions return =QMCKL_SUCCESS= or =QMCKL_FAILURE=. integer. The update functions return =QMCKL_SUCCESS= or
=QMCKL_FAILURE=.
**** =qmckl_context_update_precision= **** =qmckl_context_update_precision=
Modifies the parameter for the numerical precision in a given context. Modifies the parameter for the numerical precision in a given context.
@ -350,7 +668,7 @@ qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const in
***** TODO Tests :noexport: ***** TODO Tests :noexport:
**** =qmckl_context_set_precision= **** =qmckl_context_set_precision=
Returns a copy of the context with a different precision parameter. Returns a copy of the context with a different precision parameter.
#+BEGIN_SRC C :comments or :tangle qmckl.h #+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision); qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision);
#+END_SRC #+END_SRC
@ -369,7 +687,7 @@ qmckl_context qmckl_context_set_precision(const qmckl_context context, const int
***** Fortran interface ***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90 #+BEGIN_SRC f90 :tangle qmckl_f.f90
interface interface
integer (c_int32_t) function qmckl_context_set_precision(context, precision) bind(C) integer (c_int64_t) function qmckl_context_set_precision(context, precision) bind(C)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: precision integer (c_int32_t), intent(in), value :: precision
@ -399,7 +717,7 @@ qmckl_context qmckl_context_set_range(const qmckl_context context, const int ran
***** Fortran interface ***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90 #+BEGIN_SRC f90 :tangle qmckl_f.f90
interface interface
integer (c_int32_t) function qmckl_context_set_range(context, range) bind(C) integer (c_int64_t) function qmckl_context_set_range(context, range) bind(C)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: range integer (c_int32_t), intent(in), value :: range
@ -486,11 +804,7 @@ double qmckl_context_get_epsilon(const qmckl_context context) {
***** TODO Tests :noexport: ***** TODO Tests :noexport:
*** Info about the molecular system
**** TODO =qmckl_context_set_nucl_coord=
**** TODO =qmckl_context_set_nucl_charge=
**** TODO =qmckl_context_set_elec_num=
*** End of files :noexport: *** End of files :noexport: