1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-08 20:33:40 +01:00

Computation of shells

This commit is contained in:
Anthony Scemama 2021-06-22 23:33:09 +02:00
parent e192c7329c
commit 6b2c188475
2 changed files with 479 additions and 91 deletions

View File

@ -56,6 +56,7 @@ gradients and Laplacian of the atomic basis functions.
#include "config.h"
#endif
#include <stdio.h>
#include <math.h>
#include "chbrclf.h"
@ -105,11 +106,14 @@ int main() {
| ~coefficient~ | ~[prim_num]~ | Array of coefficients |
| ~prim_factor~ | ~[prim_num]~ | Normalization factors of the primtives |
Computed data
Computed data:
|----------------------+-------------------------------------+-----------------------------------------------------------------------------------------------|
| ~nucleus_prim_index~ | ~[nucl_num]~ | Index of the first primitive for each nucleus |
| ~primitive_vgl~ | ~[prim_num][5][walk_num][elec_num]~ | Value, gradients, Laplacian of the primitives at electron positions |
| ~primitive_vgl_date~ | ~uint64_t~ | Late modification date of Value, gradients, Laplacian of the primitives at electron positions |
| ~shell_vgl~ | ~[prim_num][5][walk_num][elec_num]~ | Value, gradients, Laplacian of the primitives at electron positions |
| ~shell_vgl_date~ | ~uint64_t~ | Late modification date of Value, gradients, Laplacian of the shells at electron positions |
|----------------------+-------------------------------------+-----------------------------------------------------------------------------------------------|
| ~nucl_shell_index~ | ~[nucl_num]~ | Index of the first shell for each nucleus |
| ~exponent_sorted~ | ~[prim_num]~ | Array of exponents for sorted primitives |
@ -184,6 +188,8 @@ typedef struct qmckl_ao_basis_struct {
double * prim_factor ;
double * primitive_vgl;
int64_t primitive_vgl_date;
double * shell_vgl;
int64_t shell_vgl_date;
bool provided;
char type;
} qmckl_ao_basis_struct;
@ -220,7 +226,6 @@ qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) {
}
#+end_src
** Access functions
#+begin_src c :comments org :tangle (eval h_private_func) :exports none
@ -1330,7 +1335,7 @@ end function test_qmckl_ao_gaussian_vgl
** TODO General functions for Slater basis functions
** TODO General functions for Radial functions on a grid
** Computation of primitives
** DONE Computation of primitives
*** Get
@ -1471,35 +1476,12 @@ integer function qmckl_compute_ao_basis_primitive_gaussian_vgl_f(context, &
double precision , intent(out) :: primitive_vgl(elec_num,walk_num,5,prim_num)
integer*8 :: inucl, iprim, iwalk, ielec
double precision :: x, y, z, two_a, ar2, r2, v
double precision :: r2_cut(elec_num,walk_num)
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (prim_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_6
return
endif
! Don't compute exponentials when the result will be almost zero.
cutoff = -dlog(1.d-15)
do inucl=1,nucl_num
! C is zero-based, so shift bounds by one
@ -1512,6 +1494,8 @@ integer function qmckl_compute_ao_basis_primitive_gaussian_vgl_f(context, &
r2 = x*x + y*y + z*z
ar2 = expo(iprim)*r2
if (ar2 > cutoff) cycle
v = dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
@ -1634,6 +1618,7 @@ print ( "[39][4][1][15] : %e"% lf(a,x,y))
*** Test
#+begin_src c :tangle (eval c_test) :exports none
{
#define walk_num chbrclf_walk_num
#define elec_num chbrclf_elec_num
#define prim_num chbrclf_prim_num
@ -1672,7 +1657,7 @@ assert( fabs(prim_vgl[39][2][1][15] - ( 2.1423191526963063E-003)) < 1.e-14 );
assert( fabs(prim_vgl[39][3][1][15] - ( 4.3312003523048492E-004)) < 1.e-14 );
assert( fabs(prim_vgl[39][4][1][15] - ( 7.5174404780004771E-003)) < 1.e-14 );
}
#+end_src
@ -1710,6 +1695,435 @@ for (m=0 ; m<walk_num ; ++m) {
// Compute vectorized exponentials on significant values
#+end_src
** Computation of shells
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_ao_basis_shell_vgl(qmckl_context context, double* const shell_vgl);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_ao_basis_shell_vgl(qmckl_context context, double* const shell_vgl) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
size_t sze = ctx->ao_basis.shell_num * 5 * ctx->electron.num * ctx->electron.walk_num;
memcpy(shell_vgl, ctx->ao_basis.shell_vgl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
if (!ctx->ao_basis.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_ao_basis_shell_vgl",
NULL);
}
/* Compute if necessary */
if (ctx->electron.coord_new_date > ctx->ao_basis.shell_vgl_date) {
/* Allocate array */
if (ctx->ao_basis.shell_vgl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.prim_num * 5 * ctx->electron.num *
ctx->electron.walk_num * sizeof(double);
double* shell_vgl = (double*) qmckl_malloc(context, mem_info);
if (shell_vgl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ao_basis_shell_vgl",
NULL);
}
ctx->ao_basis.shell_vgl = shell_vgl;
}
qmckl_exit_code rc;
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_ao_basis_shell_gaussian_vgl(context,
ctx->ao_basis.prim_num,
ctx->ao_basis.shell_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.shell_prim_index,
ctx->ao_basis.shell_prim_num,
ctx->electron.coord_new,
ctx->nucleus.coord,
ctx->ao_basis.exponent,
ctx->ao_basis.coefficient,
ctx->ao_basis.shell_vgl);
} else {
return qmckl_failwith( context,
QMCKL_FAILURE,
"compute_ao_basis_shell_vgl",
"Not yet implemented");
}
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->ao_basis.shell_vgl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_ao_basis_shell_gaussian_vgl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ao_basis_shell_gaussian_vgl_args
| ~qmckl_context~ | ~context~ | in | Global state |
| ~int64_t~ | ~prim_num~ | in | Number of primitives |
| ~int64_t~ | ~shell_num~ | in | Number of shells |
| ~int64_t~ | ~elec_num~ | in | Number of electrons |
| ~int64_t~ | ~nucl_num~ | in | Number of nuclei |
| ~int64_t~ | ~walk_num~ | in | Number of walkers |
| ~int64_t~ | ~nucleus_shell_num[nucl_num]~ | in | Number of shells for each nucleus |
| ~int64_t~ | ~nucleus_index[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~int64_t~ | ~shell_prim_index[shell_num]~ | in | Index of the 1st primitive of each shell |
| ~int64_t~ | ~shell_prim_num[shell_num]~ | in | Number of primitives per shell |
| ~double~ | ~elec_coord[walk_num][3][elec_num]~ | in | Electron coordinates |
| ~double~ | ~nucl_coord[3][elec_num]~ | in | Nuclear coordinates |
| ~double~ | ~expo[prim_num]~ | in | Exponents of the primitives |
| ~double~ | ~coef[prim_num]~ | in | Coefficients of the primitives |
| ~double~ | ~shell_vgl[shell_num][5][walk_num][elec_num]~ | out | Value, gradients and Laplacian of the shells |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_ao_basis_shell_gaussian_vgl_f(context, &
prim_num, shell_num, elec_num, nucl_num, walk_num, &
nucleus_shell_num, nucleus_index, shell_prim_index, shell_prim_num, &
elec_coord, nucl_coord, expo, coef, shell_vgl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: prim_num
integer*8 , intent(in) :: shell_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: nucleus_shell_num(nucl_num)
integer*8 , intent(in) :: nucleus_index(nucl_num)
integer*8 , intent(in) :: shell_prim_index(shell_num)
integer*8 , intent(in) :: shell_prim_num(shell_num)
double precision , intent(in) :: elec_coord(elec_num,3,walk_num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(in) :: expo(prim_num)
double precision , intent(in) :: coef(prim_num)
double precision , intent(out) :: shell_vgl(elec_num,walk_num,5,shell_num)
integer*8 :: inucl, iprim, iwalk, ielec, ishell
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
! Don't compute exponentials when the result will be almost zero.
cutoff = -dlog(1.d-15)
do inucl=1,nucl_num
do ishell=nucleus_index(inucl)+1, nucleus_index(inucl)+nucleus_shell_num(inucl)
! C is zero-based, so shift bounds by one
do iwalk = 1, walk_num
do ielec = 1, elec_num
shell_vgl(ielec, iwalk, 1:5, ishell) = 0.d0
x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1)
y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2)
z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
do iprim = shell_prim_index(ishell)+1, shell_prim_index(ishell)+shell_prim_num(ishell)
ar2 = expo(iprim)*r2
if (ar2 > cutoff) then
cycle
end if
v = coef(iprim) * dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
shell_vgl(ielec, iwalk, 1, ishell) = &
shell_vgl(ielec, iwalk, 1, ishell) + v
shell_vgl(ielec, iwalk, 2, ishell) = &
shell_vgl(ielec, iwalk, 2, ishell) + two_a * x
shell_vgl(ielec, iwalk, 3, ishell) = &
shell_vgl(ielec, iwalk, 3, ishell) + two_a * y
shell_vgl(ielec, iwalk, 4, ishell) = &
shell_vgl(ielec, iwalk, 4, ishell) + two_a * z
shell_vgl(ielec, iwalk, 5, ishell) = &
shell_vgl(ielec, iwalk, 5, ishell) + two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end do
end do
end function qmckl_compute_ao_basis_shell_gaussian_vgl_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_ao_basis_shell_gaussian_vgl(
const qmckl_context context,
const int64_t prim_num,
const int64_t shell_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const int64_t* nucleus_shell_num,
const int64_t* shell_prim_index,
const int64_t* nucleus_index,
const int64_t* shell_prim_num,
const double* elec_coord,
const double* nucl_coord,
const double* expo,
const double* coef,
double* const shell_vgl);
#+end_src
#+CALL: generate_c_interface(table=qmckl_ao_basis_shell_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_basis_shell_gaussian_vgl"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_ao_basis_shell_gaussian_vgl &
(context, &
prim_num, &
shell_num, &
elec_num, &
nucl_num, &
walk_num, &
nucleus_shell_num, &
nucleus_index, &
shell_prim_index, &
shell_prim_num, &
elec_coord, &
nucl_coord, &
expo, &
coef, &
shell_vgl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: prim_num
integer (c_int64_t) , intent(in) , value :: shell_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num)
integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num)
integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num)
integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num)
real (c_double ) , intent(in) :: elec_coord(elec_num,3,walk_num)
real (c_double ) , intent(in) :: nucl_coord(elec_num,3)
real (c_double ) , intent(in) :: expo(prim_num)
real (c_double ) , intent(in) :: coef(prim_num)
real (c_double ) , intent(out) :: shell_vgl(elec_num,walk_num,5,shell_num)
integer(c_int32_t), external :: qmckl_compute_ao_basis_shell_gaussian_vgl_f
info = qmckl_compute_ao_basis_shell_gaussian_vgl_f &
(context, &
prim_num, &
shell_num, &
elec_num, &
nucl_num, &
walk_num, &
nucleus_shell_num, &
nucleus_index, &
shell_prim_index, &
shell_prim_num, &
elec_coord, &
nucl_coord, &
expo, &
coef, &
shell_vgl)
end function qmckl_compute_ao_basis_shell_gaussian_vgl
#+end_src
#+begin_src python :results output :exports none
import numpy as np
def f(a,x,y):
return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
def df(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0)
def d2f(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2
def lf(a,x,y):
return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3)
elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] )
elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] )
nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] )
nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] )
#double prim_vgl[prim_num][5][walk_num][elec_num];
x = elec_26_w1 ; y = nucl_1
a = [( 8.236000E+03, -1.130000E-04 ),
( 1.235000E+03, -8.780000E-04 ),
( 2.808000E+02, -4.540000E-03 ),
( 7.927000E+01, -1.813300E-02 ),
( 2.559000E+01, -5.576000E-02 ),
( 8.997000E+00, -1.268950E-01 ),
( 3.319000E+00, -1.703520E-01 ),
( 9.059000E-01, 1.403820E-01 ),
( 3.643000E-01, 5.986840E-01 ),
( 1.285000E-01, 3.953890E-01 )]
print ( "[1][0][0][26] : %e"% f(a,x,y))
print ( "[1][1][0][26] : %e"% df(a,x,y,1))
print ( "[1][2][0][26] : %e"% df(a,x,y,2))
print ( "[1][3][0][26] : %e"% df(a,x,y,3))
print ( "[1][4][0][26] : %e"% lf(a,x,y))
x = elec_15_w2 ; y = nucl_2
a = [(3.387000E+01, 6.068000E-03),
(5.095000E+00, 4.530800E-02),
(1.159000E+00, 2.028220E-01),
(3.258000E-01, 5.039030E-01),
(1.027000E-01, 3.834210E-01)]
print ( "[14][0][1][15] : %e"% f(a,x,y))
print ( "[14][1][1][15] : %e"% df(a,x,y,1))
print ( "[14][2][1][15] : %e"% df(a,x,y,2))
print ( "[14][3][1][15] : %e"% df(a,x,y,3))
print ( "[14][4][1][15] : %e"% lf(a,x,y))
#+end_src
#+RESULTS:
#+begin_example
[1][0][0][26] : 1.875569e-01
[1][1][0][26] : -2.615250e-02
[1][2][0][26] : -1.333535e-01
[1][3][0][26] : 1.218483e-01
[1][4][0][26] : 3.227973e-02
[14][0][1][15] : 4.509748e-02
[14][1][1][15] : 3.203918e-02
[14][2][1][15] : 2.887081e-02
[14][3][1][15] : 5.836910e-03
[14][4][1][15] : 1.564721e-02
#+end_example
*** Test
#+begin_src c :tangle (eval c_test) :exports none
{
#define walk_num chbrclf_walk_num
#define elec_num chbrclf_elec_num
#define shell_num chbrclf_shell_num
int64_t elec_up_num = chbrclf_elec_up_num;
int64_t elec_dn_num = chbrclf_elec_dn_num;
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert (rc == QMCKL_SUCCESS);
rc = qmckl_set_electron_walk_num (context, walk_num);
assert (rc == QMCKL_SUCCESS);
assert(qmckl_electron_provided(context));
rc = qmckl_set_electron_coord (context, 'N', elec_coord);
assert(rc == QMCKL_SUCCESS);
double shell_vgl[shell_num][5][walk_num][elec_num];
rc = qmckl_get_ao_basis_shell_vgl(context, &(shell_vgl[0][0][0][0]));
assert (rc == QMCKL_SUCCESS);
printf(" shell_vgl[1][0][0][26] %25.15e\n", shell_vgl[1][0][0][26]);
printf(" shell_vgl[1][1][0][26] %25.15e\n", shell_vgl[1][1][0][26]);
printf(" shell_vgl[1][2][0][26] %25.15e\n", shell_vgl[1][2][0][26]);
printf(" shell_vgl[1][3][0][26] %25.15e\n", shell_vgl[1][3][0][26]);
printf(" shell_vgl[1][4][0][26] %25.15e\n", shell_vgl[1][4][0][26]);
printf(" shell_vgl[14][0][1][15] %25.15e\n", shell_vgl[14][0][1][15]);
printf(" shell_vgl[14][1][1][15] %25.15e\n", shell_vgl[14][1][1][15]);
printf(" shell_vgl[14][2][1][15] %25.15e\n", shell_vgl[14][2][1][15]);
printf(" shell_vgl[14][3][1][15] %25.15e\n", shell_vgl[14][3][1][15]);
printf(" shell_vgl[14][4][1][15] %25.15e\n", shell_vgl[14][4][1][15]);
assert( fabs(shell_vgl[1][0][0][26] - ( 1.875568658202993e-01)) < 1.e-14 );
assert( fabs(shell_vgl[1][1][0][26] - ( -2.615250164814435e-02)) < 1.e-14 );
assert( fabs(shell_vgl[1][2][0][26] - ( -1.333535498894419e-01)) < 1.e-14 );
assert( fabs(shell_vgl[1][3][0][26] - ( 1.218482800201208e-01)) < 1.e-14 );
assert( fabs(shell_vgl[1][4][0][26] - ( 3.197054084474042e-02)) < 1.e-14 );
assert( fabs(shell_vgl[14][0][1][15] - ( 4.509748459243634e-02)) < 1.e-14 );
assert( fabs(shell_vgl[14][1][1][15] - ( 3.203917730584210e-02)) < 1.e-14 );
assert( fabs(shell_vgl[14][2][1][15] - ( 2.887080725789477e-02)) < 1.e-14 );
assert( fabs(shell_vgl[14][3][1][15] - ( 5.836910453297223e-03)) < 1.e-14 );
assert( fabs(shell_vgl[14][4][1][15] - ( 1.572966698871693e-02)) < 1.e-14 );
}
#+end_src
* Polynomial part
** General functions for Powers of $x-X_i$
:PROPERTIES:

View File

@ -20,18 +20,18 @@
** Table of function arguments
#+NAME: test
| qmckl_context | context | in | Global state |
| char | transa | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed |
| char | transb | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed |
| int64_t | m | in | Number of points in the first set |
| int64_t | n | in | Number of points in the second set |
| double | A[][lda] | in | Array containing the $m \times 3$ matrix $A$ |
| int64_t | lda | in | Leading dimension of array ~A~ |
| double | B[][ldb] | in | Array containing the $n \times 3$ matrix $B$ |
| int64_t | ldb | in | Leading dimension of array ~B~ |
| double | C[n][ldc] | out | Array containing the $m \times n$ matrix $C$ |
| int64_t | ldc | in | Leading dimension of array ~C~ |
| ~qmckl_context~ | ~context~ | in | Global state |
| ~char~ | ~transa~ | in | Array ~A~ is ~'N'~: Normal, ~'T'~: Transposed |
| ~char~ | ~transb~ | in | Array ~B~ is ~'N'~: Normal, ~'T'~: Transposed |
| ~int64_t~ | ~m~ | in | Number of points in the first set |
| ~int64_t~ | ~n~ | in | Number of points in the second set |
| ~double~ | ~A[][lda]~ | in | Array containing the $m \times 3$ matrix $A$ |
| ~int64_t~ | ~lda~ | in | Leading dimension of array ~A~ |
| ~double~ | ~B[][ldb]~ | in | Array containing the $n \times 3$ matrix $B$ |
| ~int64_t~ | ~ldb~ | in | Leading dimension of array ~B~ |
| ~double~ | ~C[n][ldc]~ | out | Array containing the $m \times n$ matrix $C$ |
| ~int64_t~ | ~ldc~ | in | Leading dimension of array ~C~ |
*** Fortran-C type conversions
@ -48,11 +48,6 @@ f_of_c_d = { '' : ''
}
#+END_SRC
#+RESULTS: f_of_c
#+begin_src f90 :tangle (eval f) :comments org :exports none
None
#+end_src
#+NAME:c_of_f
#+BEGIN_SRC python :var table=test :var rettyp="integer" :var fname=[] :results value :noweb yes :wrap "src f90 :tangle (eval f) :comments org :exports none"
ctypeid_d = { '' : ''
@ -66,11 +61,6 @@ ctypeid_d = { '' : ''
}
#+END_SRC
#+RESULTS: c_of_f
#+begin_src f90 :tangle (eval f) :comments org :exports none
None
#+end_src
*** Parse the table
#+NAME: parse_table
@ -78,7 +68,7 @@ ctypeid_d = { '' : ''
def parse_table(table):
result = []
for line in table:
for line in [ [x.replace('~','') for x in y] for y in table]:
d = { "c_type" : line[0],
"inout" : line[2].lower(),
"name" : line[1],
@ -106,10 +96,11 @@ def parse_table(table):
return result
#+END_SRC
*** Generates a C header
#+NAME: generate_c_header
#+BEGIN_SRC python :var table=[] :var rettyp=[] :var fname=[] :results drawer :noweb yes :wrap "src c :tangle (eval h_func) :comments org"
#+BEGIN_SRC python :var table=test :var rettyp=[] :var fname=[] :results drawer :noweb yes :wrap "src c :tangle (eval h_func) :comments org"
<<parse_table>>
results = []
@ -139,21 +130,6 @@ return template
#+END_SRC
#+RESULTS: generate_c_header
#+begin_src c :tangle (eval h_func) :comments org
[] [] (
const qmckl_context context,
const char transa,
const char transb,
const int64_t m,
const int64_t n,
const double* const A,
const int64_t lda,
const double* const B,
const int64_t ldb,
double* const C,
const int64_t ldc );
#+end_src
*** Generates a C interface to the Fortran function
@ -165,6 +141,9 @@ return template
d = parse_table(table)
args = ", ".join([ x["name"] for x in d ])
if len(args) > 100:
args = args.replace(",",""", &
""")
rettyp_c = ctypeid_d[rettyp.lower()]
@ -208,6 +187,23 @@ results='\n'.join(results)
return results
#+END_SRC
#+RESULTS: generate_c_interface
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function [] &
() &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer(c_int32_t), external :: []_f
info = []_f &
()
end function []
#+end_src
*** Generates a Fortran interface to the C function
#+NAME: generate_f_interface
@ -261,27 +257,5 @@ return results
#+RESULTS: generate_f_interface
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function [] &
(context, transa, transb, m, n, A, lda, B, ldb, C, ldc) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context), intent(in) , value :: context
character , intent(in) , value :: transa
character , intent(in) , value :: transb
integer (c_int64_t) , intent(in) , value :: m
integer (c_int64_t) , intent(in) , value :: n
real (c_double ) , intent(in) :: A(lda,3)
integer (c_int64_t) , intent(in) , value :: lda
real (c_double ) , intent(in) :: B(ldb,3)
integer (c_int64_t) , intent(in) , value :: ldb
real (c_double ) , intent(out) :: C(ldc,n)
integer (c_int64_t) , intent(in) , value :: ldc
end function []
end interface
#+end_src