1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-05 11:00:36 +01:00

Added polynomials

This commit is contained in:
Anthony Scemama 2020-10-25 15:02:37 +01:00
parent 9fde54922e
commit 5e9e74f743
6 changed files with 457 additions and 36 deletions

View File

@ -2,7 +2,7 @@ CC=gcc
CFLAGS=-fPIC -fexceptions -Wall -Werror -Wpedantic -Wextra -g CFLAGS=-fPIC -fexceptions -Wall -Werror -Wpedantic -Wextra -g
FC=gfortran FC=gfortran
FFLAGS=-fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant -Wuninitialized -fbacktrace -ffpe-trap=zero,overflow,underflow -finit-real=nan FFLAGS=-fPIC -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant -Wuninitialized -fbacktrace -ffpe-trap=zero,overflow,underflow -finit-real=nan
LIBS=-lgfortran -lm LIBS=-lgfortran -lm
@ -25,7 +25,7 @@ doc:$(ORG_SOURCE_FILES)
./create_doc.sh $(ORG_SOURCE_FILES) ./create_doc.sh $(ORG_SOURCE_FILES)
clean: clean:
rm -f qmckl.h test_qmckl_* qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h Makefile.generated libqmckl.so rm -f qmckl.h test_qmckl_* test_qmckl.c qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h Makefile.generated libqmckl.so *.html
Makefile.generated: $(ORG_SOURCE_FILES) Makefile create_makefile.sh Makefile.generated: $(ORG_SOURCE_FILES) Makefile create_makefile.sh
./create_makefile.sh $(ORG_SOURCE_FILES) ./create_makefile.sh $(ORG_SOURCE_FILES)

View File

@ -104,6 +104,8 @@ rm ${nb}.md
produced C files should be =xxx.c= and =xxx.h= and the name of the produced C files should be =xxx.c= and =xxx.h= and the name of the
produced Fortran files should be =xxx.f90= produced Fortran files should be =xxx.f90=
Arrays are in uppercase and scalars are in lowercase.
** Application programming interface ** Application programming interface
The application programming interface (API) is designed to be The application programming interface (API) is designed to be
@ -111,17 +113,17 @@ rm ${nb}.md
that the library will be easily usable in any language. that the library will be easily usable in any language.
This implies that only the following data types are allowed in the API: This implies that only the following data types are allowed in the API:
- 32-bit and 64-bit floats and arrays - 32-bit and 64-bit floats and arrays (=real= and =double=)
- 32-bit and 64-bit integers and arrays - 32-bit and 64-bit integers and arrays (=int32_t= and =int64_t=)
- Pointers should be represented as 64-bit integers (even on - Pointers should be represented as 64-bit integers (even on
32-bit architectures) 32-bit architectures)
- ASCII strings are represented as a pointers to a character arrays - ASCII strings are represented as a pointers to a character arrays
and terminated by a zero character (C convention). and terminated by a zero character (C convention).
# TODO : Link to repositories for bindings
To facilitate the use in other languages than C, we provide some To facilitate the use in other languages than C, we provide some
bindings in other languages in other repositories. bindings in other languages in other repositories.
# TODO : Link to repositories for bindings
** Global state ** Global state
@ -186,7 +188,6 @@ rm ${nb}.md
As QMCkl is a general purpose library, multiple algorithms should As QMCkl is a general purpose library, multiple algorithms should
be implemented adapted to different problem sizes. be implemented adapted to different problem sizes.
* Rules for the API * Rules for the API
- =stdint= should be used for integers (=int32_t=, =int64_t=) - =stdint= should be used for integers (=int32_t=, =int64_t=)
@ -200,6 +201,7 @@ rm ${nb}.md
- [[./qmckl_memory.org][Memory management]] - [[./qmckl_memory.org][Memory management]]
- [[./qmckl_context.org][Context]] - [[./qmckl_context.org][Context]]
- [[./qmckl_distance.org][Distance]] - [[./qmckl_distance.org][Distance]]
- [[./qmckl_ao.org][Atomic orbitals]]
* Acknowledgments * Acknowledgments

View File

@ -58,6 +58,7 @@ typedef int64_t qmckl_context ;
#include "qmckl_context.h" #include "qmckl_context.h"
#include "qmckl_distance.h" #include "qmckl_distance.h"
#include "qmckl_ao.h"
#+END_SRC #+END_SRC
* End of header * End of header

400
src/qmckl_ao.org Normal file
View File

@ -0,0 +1,400 @@
# -*- mode: org -*-
# vim: syntax=c
#+TITLE: Atomic Orbitals
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
This files contains all the routines for the computation of the
values, gradients and Laplacian of the atomic basis functions.
3 files are produced:
- a header file : =qmckl_ao.h=
- a source file : =qmckl_ao.f90=
- a test file : =test_qmckl_ao.c=
*** Header
#+BEGIN_SRC C :comments link :tangle qmckl_ao.h
#ifndef QMCKL_AO_H
#define QMCKL_AO_H
#include "qmckl_context.h"
#include "qmckl_distance.h"
#+END_SRC
*** Source
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.f90
#+END_SRC
*** Test
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
#include <math.h>
#include "qmckl.h"
#include "munit.h"
MunitResult test_qmckl_ao() {
qmckl_context context;
context = qmckl_context_create();
#+END_SRC
* Polynomials
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
** =qmckl_ao_powers=
Computes all the powers of the =n= input data up to the given
maximum value given in input for each of the $n$ points:
\[ P_{ij} = X_j^i \]
*** Arguments
| =context= | input | Global state |
| =n= | input | Number of values |
| =X(n)= | input | Array containing the input values |
| =LMAX(n)= | input | Array containing the maximum power for each value |
| =P(LDP,n)= | output | Array containing all the powers of $X$ |
| =LDP= | input | Leading dimension of array =P= |
*** Requirements
- =context= is not 0
- =n= > 0
- =X= is allocated with at least $n \times 8$ bytes
- =LMAX= is allocated with at least $n \times 4$ bytes
- =P= is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytes
- =LDP= >= $\max_i$ =LMAX[i]=
*** Header
#+BEGIN_SRC C :comments link :tangle qmckl_ao.h
qmckl_exit_code qmckl_ao_powers(qmckl_context context,
int64_t n,
double *X, int32_t *LMAX,
double *P, int64_t LDP);
#+END_SRC
*** Source
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.f90
integer function qmckl_ao_powers_f(context, n, X, LMAX, P, ldp) result(info)
implicit none
integer*8 , intent(in) :: context
integer*8 , intent(in) :: n
real*8 , intent(in) :: X(n)
integer , intent(in) :: LMAX(n)
real*8 , intent(out) :: P(ldp,n)
integer*8 , intent(in) :: ldp
integer*8 :: i,j
info = 0
if (context == 0_8) then
info = -1
return
endif
if (LDP < MAXVAL(LMAX)) then
info = -2
return
endif
do j=1,n
P(1,j) = X(j)
do i=2,LMAX(j)
P(i,j) = P(i-1,j) * X(j)
end do
end do
end function qmckl_ao_powers_f
integer(c_int32_t) function qmckl_ao_powers(context, n, X, LMAX, P, ldp) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double) , intent(out) :: P(ldp,n)
integer (c_int64_t) , intent(in) , value :: ldp
integer, external :: qmckl_ao_powers_f
info = qmckl_ao_powers_f(context, n, X, LMAX, P, ldp)
end function qmckl_ao_powers
#+END_SRC
*** Test
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
{
int64_t n, LDP ;
int32_t *LMAX ;
double *X, *P ;
int i, j;
n = 100;
LDP = 10;
X = (double*) qmckl_malloc (context, n*sizeof(double));
LMAX = (int32_t*) qmckl_malloc (context, n*sizeof(int32_t));
P = (double*) qmckl_malloc (context, LDP*n*sizeof(double));
for (j=0 ; j<n ; j++) {
X[j] = -5. + 0.1 * (double) (j);
LMAX[j] = 1 + (j % 9);
}
munit_assert_int64(QMCKL_SUCCESS, ==,
qmckl_ao_powers(context, n, X, LMAX, P, LDP) );
for (j=0 ; j<n ; j++) {
for (i=0 ; i<LMAX[j] ; i++) {
munit_assert_double_equal( P[i+j*LDP], pow(X[j],i+1), 10 );
}
}
qmckl_free(X);
qmckl_free(P);
qmckl_free(LMAX);
}
#+END_SRC
** =qmckl_ao_polynomial_vgl=
Computes the value, gradient and Laplacian of the Polynomials for each
point given in input and for each center
*** Arguments
| =context= | input | Global state |
| =X(3)= | input | Array containing the coordinates of the points |
| =R(3)= | input | Array containing the x,y,z coordinates of the center |
| =lmax= | input | Maximum angular momentum |
| =n= | output | Number of computed polynomials |
| =L(LDL,n)= | output | Contains a,b,c for all =n= results |
| =LDL= | input | Leading dimension of =L= |
| =VGL(LDV,n)= | output | Value, gradients and Laplacian of the polynomials |
| =LDV= | input | Leading dimension of array =VGL= |
*** Requirements
- =context= is not 0
- =n= > 0
- =X= is allocated with at least $3 \times 8$ bytes
- =R= is allocated with at least $3 \times 8$ bytes
- =lmax= >= 0
- On output, =n= should be equal to (=lmax=+1)(=lmax=+2)(=lmax=+3)/6
- =L= is allocated with at least $3 \times n \times 4$ bytes
- =ldl= >= 3
- =VGL= is allocated with at least $5 \times n \times 8$ bytes
- =ldv= >= 5
*** Header
#+BEGIN_SRC C :comments link :tangle qmckl_ao.h
qmckl_exit_code qmckl_ao_polynomial_vgl(qmckl_context context,
double *X, double *R,
int32_t lmax, int64_t *n,
int32_t *L, int64_t ldl,
double *VGL, int64_t ldv);
#+END_SRC
*** Source
#+BEGIN_SRC f90 :comments link :tangle qmckl_ao.f90
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer , intent(in) :: lmax
integer*8 , intent(out) :: n
integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldl
real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
integer :: a,b,c,d
real*8 :: Y(3)
integer :: lmax_array(3)
real*8 :: pows(-2:lmax,3)
integer, external :: qmckl_ao_powers_f
info = 0
if (context == 0_8) then
info = -1
return
endif
n = (lmax+1)*(lmax+2)*(lmax+3)/6
if (ldl < 3) then
info = -2
return
endif
if (ldv < 5) then
info = -3
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
pows(-2:-1,1:3) = 0.d0
pows(0,1:3) = 1.d0
lmax_array(1:3) = lmax
info = qmckl_ao_powers_f(context, 1_8, Y(1), (/lmax/), pows(1,1), size(pows,1,kind=8))
if (info /= 0) return
info = qmckl_ao_powers_f(context, 1_8, Y(2), (/lmax/), pows(1,2), size(pows,1,kind=8))
if (info /= 0) return
info = qmckl_ao_powers_f(context, 1_8, Y(3), (/lmax/), pows(1,3), size(pows,1,kind=8))
if (info /= 0) return
n=1
vgl(1:5,1:n) = 0.d0
l(1:3,n) = 0
vgl(1,n) = 1.d0
do d=1,lmax
do a=0,d
do b=0,d
do c=0,d
if (a+b+c == d) then
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
vgl(1,n) = pows(a,1) * pows(b,2) * pows(c,3)
vgl(2,n) = dble(a) * pows(a-1,1) * pows(b ,2) * pows(c ,3)
vgl(3,n) = dble(b) * pows(a ,1) * pows(b-1,2) * pows(c ,3)
vgl(4,n) = dble(c) * pows(a ,1) * pows(b ,2) * pows(c-1,3)
vgl(5,n) = dble(a) * dble(a-1) * pows(a-2,1) * pows(b ,2) * pows(c ,3) &
+ dble(b) * dble(b-1) * pows(a ,1) * pows(b-2,2) * pows(c ,3) &
+ dble(c) * dble(c-1) * pows(a ,1) * pows(b ,2) * pows(c-2,3)
exit
end if
end do
end do
end do
end do
end function qmckl_ao_polynomial_vgl_f
integer(c_int32_t) function qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(out) :: n
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer (c_int64_t) , intent(in) , value :: ldl
real (c_double) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer (c_int64_t) , intent(in) , value :: ldv
integer, external :: qmckl_ao_polynomial_vgl_f
info = qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv)
end function qmckl_ao_polynomial_vgl
#+END_SRC
*** Test
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
{
#include <stdio.h>
double X[3] = { 1.1 , 2.2 , 3.3 };
double R[3] = { 0.1 , 1.2 , -2.3 };
double Y[3];
int32_t lmax = 4;
int64_t n = 0;
int64_t ldl = 3;
int64_t ldv = 100;
int32_t* L_mem;
int32_t* L[100];
double* VGL_mem;
double* VGL[100];
int j;
int d = (lmax+1)*(lmax+2)*(lmax+3)/6;
L_mem = (int32_t*) malloc(ldl*100*sizeof(int32_t));
VGL_mem = (double*) malloc(ldv*100*sizeof(double));
munit_assert_int64(QMCKL_SUCCESS, ==,
qmckl_ao_polynomial_vgl(context, X, R, lmax, &n, L_mem, ldl, VGL_mem, ldv) );
munit_assert_int64( n, ==, d );
for (j=0 ; j<n ; j++) {
L[j] = &L_mem[j*ldl];
VGL[j] = &VGL_mem[j*ldv];
}
Y[0] = X[0] - R[0];
Y[1] = X[1] - R[1];
Y[2] = X[2] - R[2];
for (j=0 ; j<n ; j++) {
munit_assert_int64( L[j][0], >=, 0 );
munit_assert_int64( L[j][1], >=, 0 );
munit_assert_int64( L[j][2], >=, 0 );
munit_assert_double_equal( VGL[j][0],
pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]), 10 );
if (L[j][0] < 1) {
munit_assert_double_equal( VGL[j][1], 0., 10);
} else {
munit_assert_double_equal( VGL[j][1],
L[j][0] * pow(Y[0],L[j][0]-1) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]), 10 );
}
if (L[j][1] < 1) {
munit_assert_double_equal( VGL[j][2], 0., 10);
} else {
munit_assert_double_equal( VGL[j][2],
L[j][1] * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]-1) * pow(Y[2],L[j][2]), 10 );
}
if (L[j][2] < 1) {
munit_assert_double_equal( VGL[j][3], 0., 10);
} else {
munit_assert_double_equal( VGL[j][3],
L[j][2] * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]-1), 10 );
}
double w = 0.;
if (L[j][0] > 1) w += L[j][0] * (L[j][0]-1) * pow(Y[0],L[j][0]-2) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]);
if (L[j][1] > 1) w += L[j][1] * (L[j][1]-1) * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]-2) * pow(Y[2],L[j][2]);
if (L[j][2] > 1) w += L[j][2] * (L[j][2]-1) * pow(Y[0],L[j][0]) * pow(Y[1],L[j][1]) * pow(Y[2],L[j][2]-2);
munit_assert_double_equal( VGL[j][4], w, 10 );
}
free(L_mem);
free(VGL_mem);
}
#+END_SRC
* TODO Gaussian basis functions
* TODO Slater basis functions
* End of files
*** Header
#+BEGIN_SRC C :comments link :tangle qmckl_ao.h
#endif
#+END_SRC
*** Test
#+BEGIN_SRC C :comments link :tangle test_qmckl_ao.c
if (qmckl_context_destroy(context) != QMCKL_SUCCESS)
return QMCKL_FAILURE;
return MUNIT_OK;
}
#+END_SRC

View File

@ -77,25 +77,24 @@ MunitResult test_qmckl_distance() {
*** Arguments *** Arguments
| =context= | input | Global state | | =context= | input | Global state |
| =m= | input | Number of points in the first set | | =m= | input | Number of points in the first set |
| =n= | input | Number of points in the second set | | =n= | input | Number of points in the second set |
| =LDA= | input | Leading dimension of array =A= | | =A(lda,3)= | input | Array containing the $m \times 3$ matrix $A$ |
| =A= | input | Array containing the $3 \times m$ matrix $A$ | | =lda= | input | Leading dimension of array =A= |
| =LDB= | input | Leading dimension of array =B= | | =B(ldb,3)= | input | Array containing the $n \times 3$ matrix $B$ |
| =B= | input | Array containing the $3 \times n$ matrix $B$ | | =ldb= | input | Leading dimension of array =B= |
| =LDC= | input | Leading dimension of array =C= | | =C(ldc,n)= | output | Array containing the $m \times n$ matrix $C$ |
| =C= | output | Array containing the $m \times n$ matrix $C$ | | =ldc= | input | Leading dimension of array =C= |
| =info= | output | exit status is zero upon success |
*** Requirements *** Requirements
- =context= is not 0 - =context= is not 0
- =m= > 0 - =m= > 0
- =n= > 0 - =n= > 0
- =LDA= >= m - =lda= >= m
- =LDB= >= n - =ldb= >= n
- =LDC= >= m - =ldc= >= m
- =A= is allocated with at least $3 \times m \times 8$ bytes - =A= is allocated with at least $3 \times m \times 8$ bytes
- =B= is allocated with at least $3 \times n \times 8$ bytes - =B= is allocated with at least $3 \times n \times 8$ bytes
- =C= is allocated with at least $m \times n \times 8$ bytes - =C= is allocated with at least $m \times n \times 8$ bytes
@ -104,28 +103,26 @@ MunitResult test_qmckl_distance() {
#+BEGIN_SRC C :comments link :tangle qmckl_distance.h #+BEGIN_SRC C :comments link :tangle qmckl_distance.h
qmckl_exit_code qmckl_distance_sq(qmckl_context context, qmckl_exit_code qmckl_distance_sq(qmckl_context context,
int64_t m, int64_t n, int64_t m, int64_t n,
double *A, int64_t LDA, double *A, int64_t lda,
double *B, int64_t LDB, double *B, int64_t ldb,
double *C, int64_t LDC); double *C, int64_t ldc);
#+END_SRC #+END_SRC
*** Source *** Source
#+BEGIN_SRC f90 :comments link :tangle qmckl_distance.f90 #+BEGIN_SRC f90 :comments link :tangle qmckl_distance.f90
integer(c_int32_t) function qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C, LDC) & integer function qmckl_distance_sq_f(context, m, n, A, LDA, B, LDB, C, LDC) result(info)
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none implicit none
integer (c_int64_t) , intent(in) , value :: context integer*8 , intent(in) :: context
integer (c_int64_t) , intent(in) , value :: m, n integer*8 , intent(in) :: m, n
integer (c_int64_t) , intent(in) , value :: LDA integer*8 , intent(in) :: lda
real (c_double) , intent(in) :: A(LDA,3) real*8 , intent(in) :: A(lda,3)
integer (c_int64_t) , intent(in) , value :: LDB integer*8 , intent(in) :: ldb
real (c_double) , intent(in) :: B(LDB,3) real*8 , intent(in) :: B(ldb,3)
integer (c_int64_t) , intent(in) , value :: LDC integer*8 , intent(in) :: ldc
real (c_double) , intent(out) :: C(LDC,n) real*8 , intent(out) :: C(ldc,n)
integer (c_int64_t) :: i,j integer*8 :: i,j
real (c_double) :: x, y, z real*8 :: x, y, z
info = 0 info = 0
@ -168,6 +165,24 @@ integer(c_int32_t) function qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C,
end do end do
end do end do
end function qmckl_distance_sq_f
! C interface
integer(c_int32_t) function qmckl_distance_sq(context, m, n, A, LDA, B, LDB, C, LDC) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: m, n
integer (c_int64_t) , intent(in) , value :: lda
real (c_double) , intent(in) :: A(lda,3)
integer (c_int64_t) , intent(in) , value :: ldb
real (c_double) , intent(in) :: B(ldb,3)
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double) , intent(out) :: C(ldc,n)
integer, external :: qmckl_distance_sq_f
info = qmckl_distance_sq_f(context, m, n, A, LDA, B, LDB, C, LDC)
end function qmckl_distance_sq end function qmckl_distance_sq
#+END_SRC #+END_SRC

View File

@ -23,6 +23,7 @@ grep BEGIN_SRC *.org | \
#+END_SRC #+END_SRC
#+RESULTS: test-files #+RESULTS: test-files
| test_qmckl_ao.c |
| test_qmckl_context.c | | test_qmckl_context.c |
| test_qmckl_distance.c | | test_qmckl_distance.c |
| test_qmckl_memory.c | | test_qmckl_memory.c |
@ -42,6 +43,7 @@ echo "#+END_SRC"
#+RESULTS: #+RESULTS:
#+NAME: headers #+NAME: headers
#+BEGIN_SRC C :tangle no #+BEGIN_SRC C :tangle no
MunitResult test_qmckl_ao();
MunitResult test_qmckl_context(); MunitResult test_qmckl_context();
MunitResult test_qmckl_distance(); MunitResult test_qmckl_distance();
MunitResult test_qmckl_memory(); MunitResult test_qmckl_memory();
@ -62,6 +64,7 @@ echo "#+END_SRC"
#+RESULTS: #+RESULTS:
#+NAME: calls #+NAME: calls
#+BEGIN_SRC C :tangle no #+BEGIN_SRC C :tangle no
{ (char*) "test_qmckl_ao", test_qmckl_ao, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_context", test_qmckl_context, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL}, { (char*) "test_qmckl_context", test_qmckl_context, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_distance", test_qmckl_distance, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL}, { (char*) "test_qmckl_distance", test_qmckl_distance, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_memory", test_qmckl_memory, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL}, { (char*) "test_qmckl_memory", test_qmckl_memory, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},