1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-06-30 00:44:52 +02:00

Added factor_een. #22

This commit is contained in:
vijay gopal chilkuri 2021-07-07 14:06:18 +05:30
parent e0a291d4a7
commit 55ac5b3787

View File

@ -3641,7 +3641,7 @@ qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context)
if (ctx->jastrow.lkpm_combined_index == NULL) { if (ctx->jastrow.lkpm_combined_index == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(double); mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(int64_t);
int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info); int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info);
if (lkpm_combined_index == NULL) { if (lkpm_combined_index == NULL) {
@ -3904,7 +3904,7 @@ integer function qmckl_compute_lkpm_combined_index_f(context, cord_num, dim_cord
integer(qmckl_context), intent(in) :: context integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(in) :: dim_cord_vect
double precision , intent(out) :: lkpm_combined_index(dim_cord_vect,4) integer*8 , intent(out) :: lkpm_combined_index(dim_cord_vect, 4)
double precision :: x double precision :: x
integer*8 :: i, a, k, l, kk, p, lmax, m integer*8 :: i, a, k, l, kk, p, lmax, m
@ -3937,10 +3937,10 @@ integer function qmckl_compute_lkpm_combined_index_f(context, cord_num, dim_cord
if (iand(p - k - l, 1) .eq. 1) cycle if (iand(p - k - l, 1) .eq. 1) cycle
m = (p - k - l)/2 m = (p - k - l)/2
kk = kk + 1 kk = kk + 1
lkpm_combined_index(1, kk) = l lkpm_combined_index(kk, 1) = l
lkpm_combined_index(2, kk) = k lkpm_combined_index(kk, 2) = k
lkpm_combined_index(3, kk) = p lkpm_combined_index(kk, 3) = p
lkpm_combined_index(4, kk) = m lkpm_combined_index(kk, 4) = m
end do end do
end do end do
end do end do
@ -4045,6 +4045,389 @@ assert(qmckl_electron_provided(context));
#+end_src #+end_src
** Electron-electron-nucleus Jastrow \(f_{een}\)
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~
using the above prepared tables.
TODO: write equations.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_een(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.walk_num * ctx->electron.num;
memcpy(factor_een, ctx->jastrow.factor_een, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_cord_vect_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_een_date) {
/* Allocate array */
if (ctx->jastrow.factor_een == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_een = (double*) qmckl_malloc(context, mem_info);
if (factor_een == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_een",
NULL);
}
ctx->jastrow.factor_een = factor_een;
}
qmckl_exit_code rc =
qmckl_compute_factor_een(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.cord_vect_full,
ctx->jastrow.lkpm_combined_index,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.factor_een);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_en_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_een
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_args
| qmckl_context | context | in | Global state |
| int64_t | walk_num | in | Number of walkers |
| int64_t | elec_num | in | Number of electrons |
| int64_t | nucl_num | in | Number of nucleii |
| int64_t | cord_num | in | order of polynomials |
| int64_t | dim_cord_vect | in | dimension of full coefficient vector |
| double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector |
| int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices |
| double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
| double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
| double | factor_een[walk_num] | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, &
cord_vect_full, lkpm_combined_index, &
een_rescaled_e, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(1, n)
k = lkpm_combined_index(2, n)
p = lkpm_combined_index(3, n)
m = lkpm_combined_index(4, n)
do a = 1, nucl_num
accu2 = 0.0d0
cn = cord_vect_full(n, a)
do j = 1, elec_num
accu = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(nw, i, j, k) * &
een_rescaled_n(nw, i, a, m)
end do
accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l)
end do
factor_een(nw) = factor_een(nw) + accu2 + cn
end do
end do
end do
end function qmckl_compute_factor_een_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_factor_een (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const factor_een );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
real (c_double ) , intent(out) :: factor_een(walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_f
info = qmckl_compute_factor_een_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een)
end function qmckl_compute_factor_een
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
kappa = 1.0
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for j in range(nucl_num):
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
f = 1.0 - kappa * en_distance_rescaled[i][a]
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
third = 1.0 / 3.0
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(3),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
x = en_distance_rescaled[i][a]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (x + 1.0E-18)
for ii in range(4):
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = en_distance_rescaled[i][a]
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[i][a]
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
dx[ii] * invden2 + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
#+end_src
#+RESULTS:
: factor_en_deriv_e[0][0]: 0.11609919541763383
: factor_en_deriv_e[1][0]: -0.23301394780804574
: factor_en_deriv_e[2][0]: 0.17548337641865783
: factor_en_deriv_e[3][0]: -0.9667363412285741
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
// calculate factor_en_deriv_e
double factor_een[walk_num];
rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
//// check factor_en_deriv_e
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
#+end_src
* End of files :noexport: * End of files :noexport:
#+begin_src c :tangle (eval h_private_type) #+begin_src c :tangle (eval h_private_type)