diff --git a/org/qmckl_jastrow.org b/org/qmckl_jastrow.org index 533a9f9..abeac12 100644 --- a/org/qmckl_jastrow.org +++ b/org/qmckl_jastrow.org @@ -58,7 +58,7 @@ The terms $J_{\text{ee}}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that $J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero. - + * Headers :noexport: #+begin_src elisp :noexport :results none (org-babel-lob-ingest "../tools/lib.org") @@ -412,10 +412,10 @@ qmckl_exit_code qmckl_get_jastrow_aord_num (qmckl_context context, int qmckl_exit_code qmckl_get_jastrow_bord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_cord_num (qmckl_context context, int64_t* const bord_num); qmckl_exit_code qmckl_get_jastrow_type_nucl_num (qmckl_context context, int64_t* const type_nucl_num); -qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num); -qmckl_exit_code qmckl_get_jastrow_aord_vector (qmckl_context context, double * const aord_vector); -qmckl_exit_code qmckl_get_jastrow_bord_vector (qmckl_context context, double * const bord_vector); -qmckl_exit_code qmckl_get_jastrow_cord_vector (qmckl_context context, double * const cord_vector); +qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num, int64_t* size_max); +qmckl_exit_code qmckl_get_jastrow_aord_vector (qmckl_context context, double * const aord_vector, int64_t* size_max); +qmckl_exit_code qmckl_get_jastrow_bord_vector (qmckl_context context, double * const bord_vector, int64_t* size_max); +qmckl_exit_code qmckl_get_jastrow_cord_vector (qmckl_context context, double * const cord_vector, int64_t* size_max); #+end_src Along with these core functions, calculation of the jastrow factor @@ -559,7 +559,7 @@ qmckl_exit_code qmckl_get_jastrow_type_nucl_num (const qmckl_context context, in return QMCKL_SUCCESS; } -qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (const qmckl_context context, int64_t * const type_nucl_vector) { +qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (const qmckl_context context, int64_t * const type_nucl_vector, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; @@ -583,10 +583,11 @@ qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (const qmckl_context context, assert (ctx->jastrow.type_nucl_vector != NULL); memcpy(type_nucl_vector, ctx->jastrow.type_nucl_vector, ctx->jastrow.type_nucl_num*sizeof(int64_t)); + (*size_max) = ctx->jastrow.type_nucl_num; return QMCKL_SUCCESS; } -qmckl_exit_code qmckl_get_jastrow_aord_vector (const qmckl_context context, double * const aord_vector) { +qmckl_exit_code qmckl_get_jastrow_aord_vector (const qmckl_context context, double * const aord_vector, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; @@ -609,11 +610,13 @@ qmckl_exit_code qmckl_get_jastrow_aord_vector (const qmckl_context context, doub } assert (ctx->jastrow.aord_vector != NULL); - memcpy(aord_vector, ctx->jastrow.aord_vector, ctx->jastrow.aord_num*sizeof(double)); + int64_t sze = (ctx->jastrow.aord_num + 1)*ctx->jastrow.type_nucl_num; + memcpy(aord_vector, ctx->jastrow.aord_vector, sze*sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } -qmckl_exit_code qmckl_get_jastrow_bord_vector (const qmckl_context context, double * const bord_vector) { +qmckl_exit_code qmckl_get_jastrow_bord_vector (const qmckl_context context, double * const bord_vector, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; @@ -636,11 +639,13 @@ qmckl_exit_code qmckl_get_jastrow_bord_vector (const qmckl_context context, doub } assert (ctx->jastrow.bord_vector != NULL); - memcpy(bord_vector, ctx->jastrow.bord_vector, ctx->jastrow.bord_num*sizeof(double)); + int64_t sze=ctx->jastrow.bord_num +1; + memcpy(bord_vector, ctx->jastrow.bord_vector, sze*sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } -qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, double * const cord_vector) { +qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, double * const cord_vector, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return (char) 0; @@ -663,7 +668,14 @@ qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, doub } assert (ctx->jastrow.cord_vector != NULL); - memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.dim_cord_vect*sizeof(double)); + + int64_t dim_cord_vect; + qmckl_exit_code rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); + if (rc != QMCKL_SUCCESS) return rc; + + int64_t sze=dim_cord_vect * ctx->jastrow.type_nucl_num; + memcpy(cord_vector, ctx->jastrow.cord_vector, sze*sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -678,9 +690,9 @@ qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, doub qmckl_exit_code qmckl_set_jastrow_ord_num (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_num (qmckl_context context, const int64_t type_nucl_num); qmckl_exit_code qmckl_set_jastrow_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t nucl_num); -qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector); -qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector); -qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector); +qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector, int64_t size_max); +qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector, int64_t size_max); +qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector, int64_t size_max); #+end_src #+NAME:pre2 @@ -804,7 +816,7 @@ qmckl_exit_code qmckl_set_jastrow_type_nucl_vector(qmckl_context context, int64_ <> } -qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double const * aord_vector) { +qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double const * aord_vector, int64_t size_max) { <> int32_t mask = 1 << 3; @@ -837,11 +849,19 @@ qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double cons return qmckl_failwith( context, rc, "qmckl_set_ord_vector", NULL); - } +} } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (aord_num + 1) * type_nucl_num * sizeof(double); + + if (size_max < mem_info.size/sizeof(double)) { + return qmckl_failwith( context, + QMCKL_INVALID_ARG_3, + "qmckl_set_jastrow_aord_vector", + "Array too small. Expected (aord_num+1)*type_nucl_num"); + } + double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { @@ -858,7 +878,7 @@ qmckl_exit_code qmckl_set_jastrow_aord_vector(qmckl_context context, double cons <> } -qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double const * bord_vector) { +qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double const * bord_vector, int64_t size_max) { <> int32_t mask = 1 << 4; @@ -892,6 +912,14 @@ qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double cons qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = (bord_num + 1) * sizeof(double); + + if (size_max < mem_info.size/sizeof(double)) { + return qmckl_failwith( context, + QMCKL_INVALID_ARG_3, + "qmckl_set_jastrow_bord_vector", + "Array too small. Expected (bord_num+1)"); + } + double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { @@ -908,7 +936,7 @@ qmckl_exit_code qmckl_set_jastrow_bord_vector(qmckl_context context, double cons <> } -qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double const * cord_vector) { +qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double const * cord_vector, int64_t size_max) { <> int32_t mask = 1 << 5; @@ -949,6 +977,14 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double); + + if (size_max < mem_info.size/sizeof(double)) { + return qmckl_failwith( context, + QMCKL_INVALID_ARG_3, + "qmckl_set_jastrow_cord_vector", + "Array too small. Expected dim_cord_vect * type_nucl_num"); + } + double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { @@ -1210,11 +1246,11 @@ assert(qmckl_nucleus_provided(context)); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb); +qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb) +qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -1230,6 +1266,7 @@ qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* cons size_t sze = 2; memcpy(asymp_jasb, ctx->jastrow.asymp_jasb, sze * sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -1420,7 +1457,7 @@ print("asym_one : ", asym_one) print("asymp_jasb[0] : ", asymp_jasb[0]) print("asymp_jasb[1] : ", asymp_jasb[1]) #+end_src - + #+RESULTS: asymp_jasb : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 @@ -1437,6 +1474,7 @@ int64_t cord_num = n2_cord_num; double* aord_vector = &(n2_aord_vector[0][0]); double* bord_vector = &(n2_bord_vector[0]); double* cord_vector = &(n2_cord_vector[0][0]); +int64_t dim_cord_vect=0; /* Initialize the Jastrow data */ rc = qmckl_init_jastrow(context); @@ -1449,20 +1487,21 @@ rc = qmckl_set_jastrow_type_nucl_num(context, type_nucl_num); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_type_nucl_vector(context, type_nucl_vector, nucl_num); assert(rc == QMCKL_SUCCESS); -rc = qmckl_set_jastrow_aord_vector(context, aord_vector); +rc = qmckl_set_jastrow_aord_vector(context, aord_vector,(aord_num+1)*type_nucl_num); assert(rc == QMCKL_SUCCESS); -rc = qmckl_set_jastrow_bord_vector(context, bord_vector); +rc = qmckl_set_jastrow_bord_vector(context, bord_vector,(bord_num+1)); assert(rc == QMCKL_SUCCESS); -rc = qmckl_set_jastrow_bord_vector(context, bord_vector); +rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); assert(rc == QMCKL_SUCCESS); -rc = qmckl_set_jastrow_cord_vector(context, cord_vector); +rc = qmckl_set_jastrow_cord_vector(context, cord_vector,dim_cord_vect*type_nucl_num); assert(rc == QMCKL_SUCCESS); /* Check if Jastrow is properly initialized */ assert(qmckl_jastrow_provided(context)); double asymp_jasb[2]; -rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb); +int64_t size_max=0; +rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb,&size_max); // calculate asymp_jasb assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12); @@ -1482,11 +1521,11 @@ f_{ee} = \sum_{i,jjastrow.factor_ee, ctx->electron.walk_num*sizeof(double)); + int64_t sze=ctx->electron.walk_num; + memcpy(factor_ee, ctx->jastrow.factor_ee, sze*sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -1597,7 +1638,7 @@ integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) - double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num) + double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num, walk_num) double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee(walk_num) @@ -1631,13 +1672,13 @@ integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, do nw =1, walk_num do j = 1, elec_num do i = 1, j - 1 - x = ee_distance_rescaled(nw,i,j) + x = ee_distance_rescaled(i,j,nw) power_ser = 0.0d0 spin_fact = 1.0d0 ipar = 1 do p = 2, bord_num - x = x * ee_distance_rescaled(nw,i,j) + x = x * ee_distance_rescaled(i,j,nw) power_ser = power_ser + bord_vector(p + 1) * x end do @@ -1647,9 +1688,9 @@ integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, endif factor_ee(nw) = factor_ee(nw) + spin_fact * bord_vector(1) * & - ee_distance_rescaled(nw,i,j) / & + ee_distance_rescaled(i,j,nw) / & (1.0d0 + bord_vector(2) * & - ee_distance_rescaled(nw,i,j)) & + ee_distance_rescaled(i,j,nw)) & -asymp_jasb(ipar) + power_ser end do @@ -1763,7 +1804,8 @@ print("factor_ee :",factor_ee) assert(qmckl_jastrow_provided(context)); double factor_ee[walk_num]; -rc = qmckl_get_jastrow_factor_ee(context, factor_ee); +size_max=0; +rc = qmckl_get_jastrow_factor_ee(context, factor_ee, &size_max); // calculate factor_ee assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12); @@ -1782,11 +1824,11 @@ assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e); +qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e) +qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -1802,6 +1844,7 @@ qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, doubl int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, sze * sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -1905,8 +1948,8 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num double precision , intent(in) :: bord_vector(bord_num + 1) - double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num) - double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num) + double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num,walk_num) + double precision , intent(in) :: ee_distance_rescaled_deriv_e(4,elec_num, elec_num,walk_num) double precision , intent(in) :: asymp_jasb(2) double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num) @@ -1945,7 +1988,7 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, do nw =1, walk_num do j = 1, elec_num do i = 1, elec_num - x = ee_distance_rescaled(nw, i, j) + x = ee_distance_rescaled(i,j,nw) if(abs(x) < 1.0d-18) cycle pow_ser_g = 0.0d0 spin_fact = 1.0d0 @@ -1956,9 +1999,10 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, xinv = 1.0d0 / (x + 1.0d-18) ipar = 1 - do ii = 1, 4 - dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, i, j) - end do + dx(1) = ee_distance_rescaled_deriv_e(1, i, j, nw) + dx(2) = ee_distance_rescaled_deriv_e(2, i, j, nw) + dx(3) = ee_distance_rescaled_deriv_e(3, i, j, nw) + dx(4) = ee_distance_rescaled_deriv_e(4, i, j, nw) if((i .LE. up_num .AND. j .LE. up_num ) .OR. & (i .GT. up_num .AND. j .GT. up_num)) then @@ -1969,14 +2013,14 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 - x = ee_distance_rescaled(nw, i, j) + x = ee_distance_rescaled(i, j, nw) if(abs(x) < 1.0d-18) cycle do p = 2, bord_num y = p * bord_vector(p + 1) * x pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y - x = x * ee_distance_rescaled(nw, i, j) + x = x * ee_distance_rescaled(i, j, nw) end do lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii) @@ -2173,7 +2217,8 @@ assert(qmckl_jastrow_provided(context)); // calculate factor_ee_deriv_e double factor_ee_deriv_e[walk_num][4][elec_num]; -rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0])); +size_max=0; +rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0]),&size_max); // check factor_ee_deriv_e assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12); @@ -2195,11 +2240,11 @@ f_{en} = \sum_{i,jjastrow.factor_en, ctx->electron.walk_num*sizeof(double)); + int64_t sze=ctx->electron.walk_num; + memcpy(factor_en, ctx->jastrow.factor_en, sze*sizeof(double)); + (*size_max)=sze; return QMCKL_SUCCESS; } @@ -2314,7 +2361,7 @@ integer function qmckl_compute_factor_en_f(context, walk_num, elec_num, nucl_num integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) - double precision , intent(in) :: en_distance_rescaled(walk_num, nucl_num, elec_num) + double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num) double precision , intent(out) :: factor_en(walk_num) integer*8 :: i, a, p, ipar, nw @@ -2352,18 +2399,18 @@ integer function qmckl_compute_factor_en_f(context, walk_num, elec_num, nucl_num do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num - x = en_distance_rescaled(nw, a, i) + x = en_distance_rescaled(i, a, nw) power_ser = 0.0d0 do p = 2, aord_num - x = x * en_distance_rescaled(nw, a, i) + x = x * en_distance_rescaled(i, a, nw) power_ser = power_ser + aord_vector(p + 1, type_nucl_vector(a)) * x end do factor_en(nw) = factor_en(nw) + aord_vector(1, type_nucl_vector(a)) * & - en_distance_rescaled(nw, a, i) / & + en_distance_rescaled(i, a, nw) / & (1.0d0 + aord_vector(2, type_nucl_vector(a)) * & - en_distance_rescaled(nw, a, i)) & + en_distance_rescaled(i, a, nw)) & + power_ser end do @@ -2419,7 +2466,7 @@ end function qmckl_compute_factor_en_f integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) integer (c_int64_t) , intent(in) , value :: aord_num real (c_double ) , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) - real (c_double ) , intent(in) :: en_distance_rescaled(walk_num, nucl_num, elec_num) + real (c_double ) , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num) real (c_double ) , intent(out) :: factor_en(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_en_f @@ -2470,7 +2517,8 @@ print("factor_en :",factor_en) assert(qmckl_jastrow_provided(context)); double factor_en[walk_num]; -rc = qmckl_get_jastrow_factor_en(context, factor_en); +size_max=0; +rc = qmckl_get_jastrow_factor_en(context, factor_en,&size_max); // calculate factor_en assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12); @@ -2486,11 +2534,11 @@ assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e); +qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e) +qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -2506,6 +2554,7 @@ qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, doubl int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num; memcpy(factor_en_deriv_e, ctx->jastrow.factor_en_deriv_e, sze*sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -2612,8 +2661,8 @@ integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num) - double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num) - double precision , intent(in) :: en_distance_rescaled_deriv_e(walk_num, 4, elec_num, nucl_num) + double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num) + double precision , intent(in) :: en_distance_rescaled_deriv_e(4, elec_num, nucl_num, walk_num) double precision , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num) integer*8 :: i, a, p, ipar, nw, ii @@ -2655,7 +2704,7 @@ integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, do nw =1, walk_num do a = 1, nucl_num do i = 1, elec_num - x = en_distance_rescaled(nw, i, a) + x = en_distance_rescaled(i,a,nw) if(abs(x) < 1.0d-18) continue power_ser_g = 0.0d0 den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x @@ -2665,20 +2714,20 @@ integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, xinv = 1.0d0 / x do ii = 1, 4 - dx(ii) = en_distance_rescaled_deriv_e(nw, ii, i, a) + dx(ii) = en_distance_rescaled_deriv_e(ii,i,a,nw) end do lap1 = 0.0d0 lap2 = 0.0d0 lap3 = 0.0d0 do ii = 1, 3 - x = en_distance_rescaled(nw, i, a) + x = en_distance_rescaled(i, a, nw) do p = 2, aord_num y = p * aord_vector(p + 1, type_nucl_vector(a)) * x power_ser_g(ii) = power_ser_g(ii) + y * dx(ii) lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii) lap2 = lap2 + y - x = x * en_distance_rescaled(nw, i, a) + x = x * en_distance_rescaled(i, a, nw) end do lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii) @@ -2872,7 +2921,8 @@ assert(qmckl_jastrow_provided(context)); // calculate factor_en_deriv_e double factor_en_deriv_e[walk_num][4][elec_num]; -rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0])); +size_max=0; +rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0]),&size_max); // check factor_en_deriv_e assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12); @@ -2896,11 +2946,11 @@ assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled); +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled) +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -2916,6 +2966,7 @@ qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* size_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e, sze * sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -2997,7 +3048,7 @@ qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context) | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | - | ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | out | Electron-electron rescaled distances | + | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & @@ -3011,7 +3062,7 @@ integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cor integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) - double precision , intent(out) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) + double precision , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) double precision,dimension(:,:),allocatable :: een_rescaled_e_ij double precision :: x integer*8 :: i, j, k, l, nw @@ -3062,22 +3113,22 @@ integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cor end do ! prepare the actual een table - een_rescaled_e(0, :, :, nw) = 1.0d0 + een_rescaled_e(:, :, 0, nw) = 1.0d0 do l = 1, cord_num k = 0 do j = 1, elec_num do i = 1, j - 1 k = k + 1 x = een_rescaled_e_ij(k, l + 1) - een_rescaled_e(l, i, j, nw) = x - een_rescaled_e(l, j, i, nw) = x + een_rescaled_e(i, j, l, nw) = x + een_rescaled_e(j, i, l, nw) = x end do end do end do do l = 0, cord_num do j = 1, elec_num - een_rescaled_e(l, j, j, nw) = 0.0d0 + een_rescaled_e(j, j, l, nw) = 0.0d0 end do end do @@ -3117,7 +3168,7 @@ end function qmckl_compute_een_rescaled_e_f integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) - real (c_double ) , intent(out) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) + real (c_double ) , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_een_rescaled_e_f info = qmckl_compute_een_rescaled_e_f & @@ -3127,7 +3178,7 @@ end function qmckl_compute_een_rescaled_e_f #+end_src *** Test - + #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -3190,16 +3241,17 @@ print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) assert(qmckl_electron_provided(context)); -double een_rescaled_e[walk_num][elec_num][elec_num][(cord_num + 1)]; -rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0])); +double een_rescaled_e[walk_num][(cord_num + 1)][elec_num][elec_num]; +size_max=0; +rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0]),&size_max); // value of (0,2,1) -assert(fabs(een_rescaled_e[0][0][2][1]-0.08084493981483197) < 1.e-12); -assert(fabs(een_rescaled_e[0][0][3][1]-0.1066745707571846) < 1.e-12); -assert(fabs(een_rescaled_e[0][0][4][1]-0.01754273169464735) < 1.e-12); -assert(fabs(een_rescaled_e[0][1][3][2]-0.02214680362033448) < 1.e-12); -assert(fabs(een_rescaled_e[0][1][4][2]-0.0005700154999202759) < 1.e-12); -assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12); +assert(fabs(een_rescaled_e[0][1][0][2]-0.08084493981483197) < 1.e-12); +assert(fabs(een_rescaled_e[0][1][0][3]-0.1066745707571846) < 1.e-12); +assert(fabs(een_rescaled_e[0][1][0][4]-0.01754273169464735) < 1.e-12); +assert(fabs(een_rescaled_e[0][2][1][3]-0.02214680362033448) < 1.e-12); +assert(fabs(een_rescaled_e[0][2][1][4]-0.0005700154999202759) < 1.e-12); +assert(fabs(een_rescaled_e[0][2][1][5]-0.3424402276009091) < 1.e-12); #+end_src @@ -3216,11 +3268,11 @@ assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled); +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled) +qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -3236,6 +3288,7 @@ qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, size_t sze = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e_deriv_e, sze * sizeof(double)); + (*size_max) = sze; return QMCKL_SUCCESS; } @@ -3320,8 +3373,8 @@ qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context) | ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances | | ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances | - | ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-electron distances | - | ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | out | Electron-electron rescaled distances | + | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron distances | + | ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | out | Electron-electron rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, & @@ -3336,8 +3389,8 @@ integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num double precision , intent(in) :: rescale_factor_kappa_ee double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num) - double precision , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) - double precision , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) + double precision , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) + double precision , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e double precision :: x, rij_inv, kappa_l integer*8 :: i, j, k, l, nw, ii @@ -3385,19 +3438,24 @@ integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num kappa_l = - dble(l) * rescale_factor_kappa_ee do j = 1, elec_num do i = 1, elec_num - do ii = 1, 4 - een_rescaled_e_deriv_e(l, i, ii, j, nw) = kappa_l * elec_dist_deriv_e(ii, i, j) - end do + een_rescaled_e_deriv_e(i, 1, j, l, nw) = kappa_l * elec_dist_deriv_e(1, i, j) + een_rescaled_e_deriv_e(i, 2, j, l, nw) = kappa_l * elec_dist_deriv_e(2, i, j) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = kappa_l * elec_dist_deriv_e(3, i, j) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = kappa_l * elec_dist_deriv_e(4, i, j) - een_rescaled_e_deriv_e(l, i, 4, j, nw) = een_rescaled_e_deriv_e(l, i, 4, j, nw) & - + een_rescaled_e_deriv_e(l, i, 1, j, nw) * een_rescaled_e_deriv_e(l, i, 1, j, nw) & - + een_rescaled_e_deriv_e(l, i, 2, j, nw) * een_rescaled_e_deriv_e(l, i, 2, j, nw) & - + een_rescaled_e_deriv_e(l, i, 3, j, nw) * een_rescaled_e_deriv_e(l, i, 3, j, nw) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) & + + een_rescaled_e_deriv_e(i, 1, j, l, nw) * een_rescaled_e_deriv_e(i, 1, j, l, nw) & + + een_rescaled_e_deriv_e(i, 2, j, l, nw) * een_rescaled_e_deriv_e(i, 2, j, l, nw) & + + een_rescaled_e_deriv_e(i, 3, j, l, nw) * een_rescaled_e_deriv_e(i, 3, j, l, nw) - do ii = 1, 4 - een_rescaled_e_deriv_e(l, i, ii, j, nw) = een_rescaled_e_deriv_e(l, i, ii, j, nw) * & - een_rescaled_e(l, i, j, nw) - end do + een_rescaled_e_deriv_e(i, 1, j, l, nw) = een_rescaled_e_deriv_e(i, 1, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 2, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 3, j, l, nw) * & + een_rescaled_e(i, j, l, nw) + een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) * & + een_rescaled_e(i, j, l, nw) end do end do end do @@ -3449,8 +3507,8 @@ end function qmckl_compute_factor_een_rescaled_e_deriv_e_f real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num) real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num) - real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) - real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) + real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_e_deriv_e_f info = qmckl_compute_factor_een_rescaled_e_deriv_e_f & @@ -3550,16 +3608,17 @@ for l in range(0,cord_num+1): #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); -double een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][(cord_num + 1)]; -rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0])); +double een_rescaled_e_deriv_e[walk_num][(cord_num + 1)][elec_num][4][elec_num]; +size_max=0; +rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0]),&size_max); // value of (0,0,0,2,1) -assert(fabs(een_rescaled_e_deriv_e[0][0][0][2][1] + 0.05991352796887283 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][0][0][3][1] + 0.011714035071545248 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][0][0][4][1] + 0.00441398875758468 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][3][2] + 0.013553180060167595 ) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][4][2] + 0.00041342909359870457) < 1.e-12); -assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][2] + 0.05991352796887283 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][3] + 0.011714035071545248 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][4] + 0.00441398875758468 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][3] + 0.013553180060167595 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][4] + 0.00041342909359870457) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][5] + 0.5880599146214673 ) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order @@ -3576,11 +3635,11 @@ assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1. *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled); +qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled) +qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -3596,6 +3655,7 @@ qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* size_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n, sze * sizeof(double)); + (*size_max)=sze; return QMCKL_SUCCESS; } @@ -3679,7 +3739,7 @@ qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context) | ~cord_num~ | ~int64_t~ | in | Order of polynomials | | ~rescale_factor_kappa_en~ | ~double~ | in | Factor to rescale ee distances | | ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | out | Electron-nucleus rescaled distances | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_een_rescaled_n_f(context, walk_num, elec_num, nucl_num, cord_num, rescale_factor_kappa_en, & @@ -3694,7 +3754,7 @@ integer function qmckl_compute_een_rescaled_n_f(context, walk_num, elec_num, nuc integer*8 , intent(in) :: cord_num double precision , intent(in) :: rescale_factor_kappa_en double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) - double precision , intent(out) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) + double precision , intent(out) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) double precision :: x integer*8 :: i, a, k, l, nw @@ -3730,18 +3790,18 @@ integer function qmckl_compute_een_rescaled_n_f(context, walk_num, elec_num, nuc do nw = 1, walk_num ! prepare the actual een table - een_rescaled_n(0, :, :, nw) = 1.0d0 + een_rescaled_n(:, :, 0, nw) = 1.0d0 do a = 1, nucl_num do i = 1, elec_num - een_rescaled_n(1, a, i, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw)) + een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw)) end do end do do l = 2, cord_num do a = 1, nucl_num do i = 1, elec_num - een_rescaled_n(l, a, i, nw) = een_rescaled_n(l - 1, a, i, nw) * een_rescaled_n(1, a, i, nw) + een_rescaled_n(i, a, l, nw) = een_rescaled_n(i, a, l - 1, nw) * een_rescaled_n(i, a, 1, nw) end do end do end do @@ -3790,7 +3850,7 @@ end function qmckl_compute_een_rescaled_n_f integer (c_int64_t) , intent(in) , value :: cord_num real (c_double ) , intent(in) , value :: rescale_factor_kappa_en real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) - real (c_double ) , intent(out) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) + real (c_double ) , intent(out) :: een_rescaled_n(nucl_num,elec_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_een_rescaled_n_f info = qmckl_compute_een_rescaled_n_f & @@ -3853,16 +3913,17 @@ print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); -double een_rescaled_n[walk_num][elec_num][nucl_num][(cord_num + 1)]; -rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0])); +double een_rescaled_n[walk_num][(cord_num + 1)][nucl_num][elec_num]; +size_max=0; +rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]),&size_max); // value of (0,2,1) -assert(fabs(een_rescaled_n[0][2][0][1]-0.10612983920006765) < 1.e-12); -assert(fabs(een_rescaled_n[0][3][0][1]-0.135652809635553) < 1.e-12); -assert(fabs(een_rescaled_n[0][4][0][1]-0.023391817607642338) < 1.e-12); -assert(fabs(een_rescaled_n[0][3][1][2]-0.880957224822116) < 1.e-12); -assert(fabs(een_rescaled_n[0][4][1][2]-0.027185942659395074) < 1.e-12); -assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12); +assert(fabs(een_rescaled_n[0][1][0][2]-0.10612983920006765) < 1.e-12); +assert(fabs(een_rescaled_n[0][1][0][3]-0.135652809635553) < 1.e-12); +assert(fabs(een_rescaled_n[0][1][0][4]-0.023391817607642338) < 1.e-12); +assert(fabs(een_rescaled_n[0][2][1][3]-0.880957224822116) < 1.e-12); +assert(fabs(een_rescaled_n[0][2][1][4]-0.027185942659395074) < 1.e-12); +assert(fabs(een_rescaled_n[0][2][1][5]-0.01343938025140174) < 1.e-12); #+end_src @@ -3875,11 +3936,11 @@ assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled); +qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled) +qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -3895,6 +3956,7 @@ qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, size_t sze = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1); memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n_deriv_e, sze * sizeof(double)); + (*size_max)=sze; return QMCKL_SUCCESS; } @@ -3987,8 +4049,8 @@ qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context) | ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates | | ~coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates | | ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus distances | - | ~een_rescaled_n_deriv_e~ | ~double[walk_num][elec_num][4][nucl_num][0:cord_num]~ | out | Electron-nucleus rescaled distances | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus distances | + | ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | out | Electron-nucleus rescaled distances | #+begin_src f90 :comments org :tangle (eval f) :noweb yes integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f(context, walk_num, elec_num, nucl_num, & @@ -4006,8 +4068,8 @@ integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f(context, walk_num double precision , intent(in) :: coord_new(elec_num,3,walk_num) double precision , intent(in) :: coord(nucl_num,3) double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num) - double precision , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) - double precision , intent(out) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) + double precision , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) + double precision , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) double precision,dimension(:,:,:),allocatable :: elnuc_dist_deriv_e double precision :: x, ria_inv, kappa_l integer*8 :: i, a, k, l, nw, ii @@ -4060,19 +4122,24 @@ integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f(context, walk_num kappa_l = - dble(l) * rescale_factor_kappa_en do a = 1, nucl_num do i = 1, elec_num - do ii = 1, 4 - een_rescaled_n_deriv_e(l, a, ii, i, nw) = kappa_l * elnuc_dist_deriv_e(ii, i, a) - end do + een_rescaled_n_deriv_e(i, 1, a, l, nw) = kappa_l * elnuc_dist_deriv_e(1, i, a) + een_rescaled_n_deriv_e(i, 2, a, l, nw) = kappa_l * elnuc_dist_deriv_e(2, i, a) + een_rescaled_n_deriv_e(i, 3, a, l, nw) = kappa_l * elnuc_dist_deriv_e(3, i, a) + een_rescaled_n_deriv_e(i, 4, a, l, nw) = kappa_l * elnuc_dist_deriv_e(4, i, a) - een_rescaled_n_deriv_e(l, a, 4, i, nw) = een_rescaled_n_deriv_e(l, a, 4, i, nw) & - + een_rescaled_n_deriv_e(l, a, 1, i, nw) * een_rescaled_n_deriv_e(l, a, 1, i, nw) & - + een_rescaled_n_deriv_e(l, a, 2, i, nw) * een_rescaled_n_deriv_e(l, a, 2, i, nw) & - + een_rescaled_n_deriv_e(l, a, 3, i, nw) * een_rescaled_n_deriv_e(l, a, 3, i, nw) + een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) & + + een_rescaled_n_deriv_e(i, 1, a, l, nw) * een_rescaled_n_deriv_e(i, 1, a, l, nw) & + + een_rescaled_n_deriv_e(i, 2, a, l, nw) * een_rescaled_n_deriv_e(i, 2, a, l, nw) & + + een_rescaled_n_deriv_e(i, 3, a, l, nw) * een_rescaled_n_deriv_e(i, 3, a, l, nw) - do ii = 1, 4 - een_rescaled_n_deriv_e(l, a, ii, i, nw) = een_rescaled_n_deriv_e(l, a, ii, i, nw) * & - een_rescaled_n(l, a, i, nw) - end do + een_rescaled_n_deriv_e(i, 1, a, l, nw) = een_rescaled_n_deriv_e(i, 1, a, l, nw) * & + een_rescaled_n(i, a, l, nw) + een_rescaled_n_deriv_e(i, 2, a, l, nw) = een_rescaled_n_deriv_e(i, 2, a, l, nw) * & + een_rescaled_n(i, a, l, nw) + een_rescaled_n_deriv_e(i, 3, a, l, nw) = een_rescaled_n_deriv_e(i, 3, a, l, nw) * & + een_rescaled_n(i, a, l, nw) + een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) * & + een_rescaled_n(i, a, l, nw) end do end do end do @@ -4130,7 +4197,7 @@ end function qmckl_compute_factor_een_rescaled_n_deriv_e_f real (c_double ) , intent(in) :: coord(nucl_num,3) real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num) real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) - real (c_double ) , intent(out) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) + real (c_double ) , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_n_deriv_e_f info = qmckl_compute_factor_een_rescaled_n_deriv_e_f & @@ -4148,9 +4215,9 @@ end function qmckl_compute_factor_een_rescaled_n_deriv_e_f end function qmckl_compute_factor_een_rescaled_n_deriv_e #+end_src - + *** Test - + #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -4219,16 +4286,17 @@ print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2 #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); -double een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][(cord_num + 1)]; -rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0])); +double een_rescaled_n_deriv_e[walk_num][(cord_num + 1)][nucl_num][4][elec_num]; +size_max=0; +rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0]),&size_max); // value of (0,2,1) -assert(fabs(een_rescaled_n_deriv_e[0][2][0][0][1]+0.07633444246999128 ) < 1.e-12); -assert(fabs(een_rescaled_n_deriv_e[0][3][0][0][1]-0.00033282346259738276) < 1.e-12); -assert(fabs(een_rescaled_n_deriv_e[0][4][0][0][1]+0.004775370547333061 ) < 1.e-12); -assert(fabs(een_rescaled_n_deriv_e[0][3][0][1][2]-0.1362654644223866 ) < 1.e-12); -assert(fabs(een_rescaled_n_deriv_e[0][4][0][1][2]+0.0231253431662794 ) < 1.e-12); -assert(fabs(een_rescaled_n_deriv_e[0][5][0][1][2]-0.001593334817691633 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][2]+0.07633444246999128 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][3]-0.00033282346259738276) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][4]+0.004775370547333061 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][3]-0.1362654644223866 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][4]+0.0231253431662794 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][5]-0.001593334817691633 ) < 1.e-12); #+end_src @@ -4926,8 +4994,8 @@ end function qmckl_compute_lkpm_combined_index_f | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~walk_num~ | ~int64_t~ | in | Number of walkers | - | ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-electron rescaled factor | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | + | ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron rescaled factor | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes @@ -4941,12 +5009,10 @@ integer function qmckl_compute_tmp_c_f(context, cord_num, elec_num, nucl_num, & integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num - double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num) - double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num) + double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision :: x - double precision,dimension(:,:,:,:),allocatable :: een_rescaled_e_T - double precision,dimension(:,:,:,:),allocatable :: een_rescaled_n_T integer*8 :: i, j, a, l, kk, p, lmax, nw character :: TransA, TransB double precision :: alpha, beta @@ -4957,27 +5023,6 @@ integer function qmckl_compute_tmp_c_f(context, cord_num, elec_num, nucl_num, & alpha = 1.0d0 beta = 0.0d0 - allocate(een_rescaled_e_T(elec_num,elec_num,0:cord_num,walk_num)) - allocate(een_rescaled_n_T(elec_num,nucl_num,0:cord_num,walk_num)) - do nw = 1,walk_num - do i = 1, elec_num - do j = 1, elec_num - do l = 0,cord_num - een_rescaled_e_T(i,j,l,nw) = een_rescaled_e(l,j,i,nw) - end do - end do - end do - end do - do nw = 1,walk_num - do i = 1, elec_num - do j = 1, nucl_num - do l = 0,cord_num - een_rescaled_n_T(i,j,l,nw) = een_rescaled_n(l,j,i,nw) - end do - end do - end do - end do - info = QMCKL_SUCCESS if (context == QMCKL_NULL_CONTEXT) then @@ -5003,29 +5048,20 @@ integer function qmckl_compute_tmp_c_f(context, cord_num, elec_num, nucl_num, & M = elec_num N = nucl_num*(cord_num + 1) K = elec_num - LDA = size(een_rescaled_e_T,1) - LDB = size(een_rescaled_n_T,1) + LDA = size(een_rescaled_e,1) + LDB = size(een_rescaled_n,1) LDC = size(tmp_c,1) do nw=1, walk_num do i=0, cord_num-1 info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & - een_rescaled_e_T(1,1,i,nw),LDA*1_8, & - een_rescaled_n_T(1,1,0,nw),LDB*1_8, & + een_rescaled_e(1,1,i,nw),LDA*1_8, & + een_rescaled_n(1,1,0,nw),LDB*1_8, & beta, & tmp_c(1,1,0,i,nw),LDC) end do end do - !do kk=0, cord_num-1 - !do i=1,nucl_num - ! do j=1,elec_num - ! print *,tmp_c(j,i,:,kk,1) - ! end do - !end do - !end do - deallocate(een_rescaled_e_T) - deallocate(een_rescaled_n_T) end function qmckl_compute_tmp_c_f #+end_src @@ -5061,8 +5097,8 @@ end function qmckl_compute_tmp_c_f integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num - real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) - real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) integer(c_int32_t), external :: qmckl_compute_tmp_c_f @@ -5087,8 +5123,8 @@ end function qmckl_compute_tmp_c_f | ~elec_num~ | ~int64_t~ | in | Number of electrons | | ~nucl_num~ | ~int64_t~ | in | Number of nucleii | | ~walk_num~ | ~int64_t~ | in | Number of walkers | - | ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | in | Electron-electron rescaled factor derivatives | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | + | ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | in | Electron-electron rescaled factor derivatives | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes @@ -5102,16 +5138,14 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & integer*8 , intent(in) :: elec_num integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: walk_num - double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num) - double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_e_deriv_e(elec_num, 4, elec_num, 0:cord_num, walk_num) + double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision :: x integer*8 :: i, j, a, l, kk, p, lmax, nw, ii character :: TransA, TransB double precision :: alpha, beta integer*8 :: M, N, K, LDA, LDB, LDC - double precision,dimension(:,:,:,:,:),allocatable :: een_rescaled_e_deriv_e_T - double precision,dimension(:,:,:,:),allocatable :: een_rescaled_n_T TransA = 'N' TransB = 'N' @@ -5120,27 +5154,6 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & info = QMCKL_SUCCESS - allocate(een_rescaled_e_deriv_e_T(elec_num,4,elec_num,0:cord_num,walk_num)) - allocate(een_rescaled_n_T(elec_num,nucl_num,0:cord_num,walk_num)) - do nw = 1,walk_num - do i = 1, elec_num - do ii = 1, 4 - do j = 1, elec_num - do l = 0,cord_num - een_rescaled_e_deriv_e_T(i,ii,j,l,nw) = een_rescaled_e_deriv_e(l,j,ii,i,nw) - end do - end do - end do - end do - do i = 1, elec_num - do j = 1, nucl_num - do l = 0,cord_num - een_rescaled_n_T(i,j,l,nw) = een_rescaled_n(l,j,i,nw) - end do - end do - end do - end do - if (context == QMCKL_NULL_CONTEXT) then info = QMCKL_INVALID_CONTEXT return @@ -5164,22 +5177,20 @@ integer function qmckl_compute_dtmp_c_f(context, cord_num, elec_num, nucl_num, & M = 4*elec_num N = nucl_num*(cord_num + 1) K = elec_num - LDA = 4*size(een_rescaled_e_deriv_e_T,1) - LDB = size(een_rescaled_n_T,1) + LDA = 4*size(een_rescaled_e_deriv_e,1) + LDB = size(een_rescaled_n,1) LDC = 4*size(dtmp_c,1) do nw=1, walk_num do i=0, cord_num-1 info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, & - een_rescaled_e_deriv_e_T(1,1,1,i,nw),LDA*1_8, & - een_rescaled_n_T(1,1,0,nw),LDB*1_8, & + een_rescaled_e_deriv_e(1,1,1,i,nw),LDA*1_8, & + een_rescaled_n(1,1,0,nw),LDB*1_8, & beta, & dtmp_c(1,1,1,0,i,nw),LDC) end do end do - deallocate(een_rescaled_e_deriv_e_T) - deallocate(een_rescaled_n_T) end function qmckl_compute_dtmp_c_f #+end_src @@ -5215,8 +5226,8 @@ end function qmckl_compute_dtmp_c_f integer (c_int64_t) , intent(in) , value :: elec_num integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: walk_num - real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num) - real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) integer(c_int32_t), external :: qmckl_compute_dtmp_c_f @@ -5307,7 +5318,7 @@ rc = qmckl_get_jastrow_dtmp_c(context, &(dtmp_c[0][0][0][0][0][0])); assert(fabs(tmp_c[0][0][1][0][0] - 2.7083473948352403) < 1e-12); -assert(fabs(dtmp_c[0][1][0][0][0][0] + 0.237440520852232) < 1e-12); +assert(fabs(dtmp_c[0][1][0][0][0][0] - 0.237440520852232) < 1e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) @@ -5319,11 +5330,11 @@ assert(fabs(dtmp_c[0][1][0][0][0][0] + 0.237440520852232) < 1e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een); +qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een) +qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -5339,6 +5350,7 @@ qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* cons int64_t sze = ctx->electron.walk_num * ctx->electron.num; memcpy(factor_een, ctx->jastrow.factor_een, sze*sizeof(double)); + (*size_max)=sze; return QMCKL_SUCCESS; } @@ -5610,7 +5622,7 @@ end function qmckl_compute_factor_een_naive_f | ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector | | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | vector of non-zero coefficients | | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | | ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow | #+begin_src f90 :comments org :tangle (eval f) :noweb yes @@ -5625,7 +5637,7 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) - double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: factor_een(walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw @@ -5673,7 +5685,7 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu accu = 0.0d0 do j = 1, elec_num - accu = accu + een_rescaled_n(m,a,j,nw) * tmp_c(j,a,m+l,k,nw) + accu = accu + een_rescaled_n(j,a,m,nw) * tmp_c(j,a,m+l,k,nw) end do factor_een(nw) = factor_een(nw) + accu * cn end do @@ -5731,7 +5743,7 @@ end function qmckl_compute_factor_een_f real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect) integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num) - real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: factor_een(walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_f @@ -5792,7 +5804,8 @@ print("factor_een:",factor_een) assert(qmckl_jastrow_provided(context)); double factor_een[walk_num]; -rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0])); +size_max=0; +rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]),&size_max); assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12); #+end_src @@ -5806,11 +5819,11 @@ assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12); *** Get #+begin_src c :comments org :tangle (eval h_func) :noweb yes -qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e); +qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e, int64_t* size_max); #+end_src #+begin_src c :comments org :tangle (eval c) :noweb yes :exports none -qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e) +qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e, int64_t* size_max) { if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) { return QMCKL_NULL_CONTEXT; @@ -5826,6 +5839,7 @@ qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, doub int64_t sze = ctx->electron.walk_num * ctx->electron.num; memcpy(factor_een_deriv_e, ctx->jastrow.factor_een_deriv_e, sze*sizeof(double)); + (*size_max)=sze; return QMCKL_SUCCESS; } @@ -6143,8 +6157,8 @@ end function qmckl_compute_factor_een_deriv_e_naive_f | ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices | | ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | in | Temporary intermediate tensor | | ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num]~ | in | vector of non-zero coefficients | - | ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor | - | ~een_rescaled_n_deriv_e~ | ~double[walk_num][elec_num][4][nucl_num][0:cord_num]~ | in | Derivative of Electron-nucleus rescaled factor | + | ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor | + | ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | in | Derivative of Electron-nucleus rescaled factor | | ~factor_een_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Derivative of Electron-nucleus jastrow | @@ -6161,8 +6175,8 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num) double precision , intent(in) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num) - double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) - double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num) + double precision , intent(in) :: een_rescaled_n_deriv_e(elec_num, 4, nucl_num, 0:cord_num, walk_num) double precision , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw, ii @@ -6211,10 +6225,10 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, do ii = 1, 4 do j = 1, elec_num factor_een_deriv_e(j,ii,nw) = factor_een_deriv_e(j,ii,nw) + (& - tmp_c(j,a,m,k,nw) * een_rescaled_n_deriv_e(m+l,a,ii,j,nw) + & - (-1.0d0*dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(m+l,a,j,nw) + & - (-1.0d0*dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(m,a,j,nw) + & - tmp_c(j,a,m+l,k,nw) * een_rescaled_n_deriv_e(m,a,ii,j,nw) & + tmp_c(j,a,m,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m+l,nw) + & + (dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(j,a,m+l,nw) + & + (dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(j,a,m ,nw) + & + tmp_c(j,a,m+l,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m,nw) & ) * cn end do end do @@ -6222,12 +6236,12 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, cn = cn + cn do j = 1, elec_num factor_een_deriv_e(j,4,nw) = factor_een_deriv_e(j,4,nw) + (& - (-1.0d0*dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,1,j,nw) + & - (-1.0d0*dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,2,j,nw) + & - (-1.0d0*dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(m+l,a,3,j,nw) + & - (-1.0d0*dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,1,j,nw) + & - (-1.0d0*dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,2,j,nw) + & - (-1.0d0*dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(m ,a,3,j,nw) & + (dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m+l,nw) + & + (dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m+l,nw) + & + (dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m+l,nw) + & + (dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m ,nw) + & + (dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m ,nw) + & + (dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m ,nw) & ) * cn end do end do @@ -6291,8 +6305,8 @@ end function qmckl_compute_factor_een_deriv_e_f integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4) real (c_double ) , intent(in) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num) real (c_double ) , intent(in) :: dtmp_c(elec_num,4,nucl_num,0:cord_num,0:cord_num-1,walk_num) - real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num) - real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num) + real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num) real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num) integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_f @@ -6313,7 +6327,7 @@ end function qmckl_compute_factor_een_deriv_e_f end function qmckl_compute_factor_een_deriv_e #+end_src - + *** Test #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -6371,7 +6385,8 @@ print("factor_een:",factor_een) assert(qmckl_jastrow_provided(context)); double factor_een_deriv_e[walk_num][elec_num]; -rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0])); +size_max=0; +rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0]),&size_max); assert(fabs(factor_een_deriv_e[0][0] + 0.0005481671107226865) < 1e-12); #+end_src