1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-12-31 16:46:03 +01:00

Merge pull request #2 from TREX-CoE/main

Main
This commit is contained in:
vijay 2021-01-08 20:40:21 +01:00 committed by GitHub
commit 275e852e8b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 2629 additions and 160 deletions

34
.github/workflows/gh-pages.yml vendored Normal file
View File

@ -0,0 +1,34 @@
name: github pages
on:
push:
branches:
- master
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: install extra repository
run: sudo add-apt-repository ppa:kelleyk/emacs
- name: refresh apt
run: sudo apt-get update
- name: install dependencies
run: sudo apt-get install emacs26
- name: install htmlize
run: git clone https://github.com/hniksic/emacs-htmlize && cp emacs-htmlize/htmlize.el docs/
- name: make
run: make -C src/ doc
- name: Deploy
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs

View File

@ -2,9 +2,9 @@ name: test-build
on:
push:
branches: [ main ]
branches: [ master ]
pull_request:
branches: [ main ]
branches: [ master ]
jobs:
build:
@ -13,7 +13,28 @@ jobs:
steps:
- uses: actions/checkout@v2
- name: install dependencies
run: sudo apt-get install emacs
- name: make
run: make -C src/
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: install dependencies
run: sudo apt-get install emacs
- name: Checkout submodules using a PAT
run: |
git config --file .gitmodules --get-regexp url | while read url; do
git config --file=.gitmodules $(echo "$url" | sed -E "s/git@github.com:|https:\/\/github.com\//https:\/\/${{ secrets.CI_PAT }}:${{ secrets.CI_PAT }}@github.com\//")
done
git submodule sync
git submodule update --init --recursive
- name: make
run: make -C src/ test

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "munit"]
path = munit
url = https://github.com/nemequ/munit/

View File

@ -1,7 +1,28 @@
# qmckl
# QMCkl: Quantum Monte Carlo Kernel Library
![Build Status](https://github.com/TREX-CoE/qmckl/workflows/test-build/badge.svg?branch=main)
Quantum Monte Carlo Kernel Library.
The domain of quantum chemistry needs a library in which the main
kernels of Quantum Monte Carlo (QMC) methods are implemented. In the
library proposed in this project, we expose the main algorithms in a
simple language and provide a standard API and tests to enable the
development of high-performance QMCkl implementations taking
advantage of modern hardware.
See the [source code](https://github.com/TREX-CoE/qmckl/tree/main/src)
to read the documentation.
To clone the repository, use:
```
git clone --recursive https://github.com/TREX-CoE/qmckl.git
```
to dowload also the [munit](https://github.com/nemequ/munit) unit testing
framework.
------------------------------
![European flag](https://trex-coe.eu/sites/default/files/inline-images/euflag.jpg)
[TREX: Targeting Real Chemical Accuracy at the Exascale](https://trex-coe.eu) project has received funding from the European Unions Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.
See the [Wiki](https://github.com/TREX-CoE/qmckl/wiki) for more information.

View File

@ -10,3 +10,9 @@ qmckl_malloc, where the domain id is something obtained from the
context.
* TRANSA, TRANSB
* Performance info
* Benchmark interpolation of basis functions
* Complex numbers
* Adjustable number for derivatives (1,2,3)

0
docs/.gitignore vendored Normal file
View File

71
docs/config.el Executable file
View File

@ -0,0 +1,71 @@
;; Thanks to Tobias's answer on Emacs Stack Exchange:
;; https://emacs.stackexchange.com/questions/38437/org-mode-batch-export-missing-syntax-highlighting
(package-initialize)
(require 'htmlize)
(require 'font-lock)
(require 'subr-x) ;; for `when-let'
(unless (boundp 'maximal-integer)
(defconst maximal-integer (lsh -1 -1)
"Maximal integer value representable natively in emacs lisp."))
(defun face-spec-default (spec)
"Get list containing at most the default entry of face SPEC.
Return nil if SPEC has no default entry."
(let* ((first (car-safe spec))
(display (car-safe first)))
(when (eq display 'default)
(list (car-safe spec)))))
(defun face-spec-min-color (display-atts)
"Get min-color entry of DISPLAY-ATTS pair from face spec."
(let* ((display (car-safe display-atts)))
(or (car-safe (cdr (assoc 'min-colors display)))
maximal-integer)))
(defun face-spec-highest-color (spec)
"Search face SPEC for highest color.
That means the DISPLAY entry of SPEC
with class 'color and highest min-color value."
(let ((color-list (cl-remove-if-not
(lambda (display-atts)
(when-let ((display (car-safe display-atts))
(class (and (listp display)
(assoc 'class display)))
(background (assoc 'background display)))
(and (member 'light (cdr background))
(member 'color (cdr class)))))
spec)))
(cl-reduce (lambda (display-atts1 display-atts2)
(if (> (face-spec-min-color display-atts1)
(face-spec-min-color display-atts2))
display-atts1
display-atts2))
(cdr color-list)
:initial-value (car color-list))))
(defun face-spec-t (spec)
"Search face SPEC for fall back."
(cl-find-if (lambda (display-atts)
(eq (car-safe display-atts) t))
spec))
(defun my-face-attribute (face attribute &optional frame inherit)
"Get FACE ATTRIBUTE from `face-user-default-spec' and not from `face-attribute'."
(let* ((face-spec (face-user-default-spec face))
(display-attr (or (face-spec-highest-color face-spec)
(face-spec-t face-spec)))
(attr (cdr display-attr))
(val (or (plist-get attr attribute) (car-safe (cdr (assoc attribute attr))))))
;; (message "attribute: %S" attribute) ;; for debugging
(when (and (null (eq attribute :inherit))
(null val))
(let ((inherited-face (my-face-attribute face :inherit)))
(when (and inherited-face
(null (eq inherited-face 'unspecified)))
(setq val (my-face-attribute inherited-face attribute)))))
;; (message "face: %S attribute: %S display-attr: %S, val: %S" face attribute display-attr val) ;; for debugging
(or val 'unspecified)))
(advice-add 'face-attribute :override #'my-face-attribute)

1
munit Submodule

@ -0,0 +1 @@
Subproject commit fbbdf1467eb0d04a6ee465def2e529e4c87f2118

8
src/.gitignore vendored
View File

@ -1,3 +1,11 @@
*.o
*.c
*.f90
*.h
*.fh
*.html
*~
*.so
Makefile.generated
test_qmckl
merged_qmckl.org

View File

@ -1,30 +1,66 @@
CC=gcc
CFLAGS=-fexceptions -Wall -Werror -Wpedantic -Wextra
COMPILER=GNU
#COMPILER=INTEL
#COMPILER=LLVM
FC=gfortran
FFLAGS=-fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant -Wuninitialized -fbacktrace -ffpe-trap=zero,overflow,underflow -finit-real=nan
ifeq ($(COMPILER),GNU)
CC=gcc -g
CFLAGS=-fPIC -fexceptions -Wall -Werror -Wpedantic -Wextra
FC=gfortran -g
FFLAGS=-fPIC -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant -Wuninitialized -fbacktrace -ffpe-trap=zero,overflow,underflow -finit-real=nan
LIBS=-lgfortran -lm
endif
ifeq ($(COMPILER),INTEL)
CC=icc -xHost
CFLAGS=-fPIC -g -O2
FC=ifort -xHost
FFLAGS=-fPIC -g -O2
LIBS=-lm -lifcore -lirc
endif
#TODO
ifeq ($(COMPILER),LLVM)
CC=clang
CFLAGS=-fPIC -g -O2
FC=flang
FFLAGS=fPIC -g -O2
LIBS=-lm
endif
ORG_SOURCE_FILES=qmckl_context.org
OBJECT_FILES=$(patsubst %.org,%.o,$(ORG_SOURCE_FILES))
export CC CFLAGS FC FFLAGS LIBS
MERGED_ORG=merged_qmckl.org
ORG_SOURCE_FILES=$(wildcard *.org)
OBJECT_FILES=$(filter-out $(EXCLUDED_OBJECTS), $(patsubst %.org,%.o,$(ORG_SOURCE_FILES)))
.PHONY: clean
.SECONDARY: # Needed to keep the produced C and Fortran files
all: $(OBJECT_FILES)
libqmckl.so: Makefile.generated
$(MAKE) -f Makefile.generated
%.c %.h: %.org
emacs --quick --no-init-file --batch --eval "(require 'org)" --eval '(org-babel-tangle-file "$^")'
test: Makefile.generated
$(MAKE) -f Makefile.generated test
%.c %.h %_f.f90: %.org
emacs --quick --no-init-file --batch --eval "(require 'org)" --eval '(org-babel-tangle-file "$^")'
%.o: %.c
$(CC) $(CFLAGS) -c $*.c -o $*.o
doc: $(ORG_SOURCE_FILES)
./merge_org.sh
./create_doc.sh $(MERGED_ORG)
rm $(MERGED_ORG)
%.o: %.f90
$(FC) $(FFLAGS) -c $*.f90 -o $*.o
clean:
rm -f qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h
rm -f qmckl.h test_qmckl_* test_qmckl.c test_qmckl qmckl_*.f90 qmckl_*.c qmckl_*.o qmckl_*.h Makefile.generated libqmckl.so *.html *.fh *.mod
Makefile.generated: Makefile create_makefile.sh $(ORG_SOURCE_FILES)
./merge_org.sh
./create_makefile.sh $(MERGED_ORG)
rm $(MERGED_ORG)

View File

@ -1,26 +1,51 @@
* QMCkl source code
#+TITLE: QMCkl source code documentation
#+EXPORT_FILE_NAME: index.html
** Introduction
#+SETUPFILE: https://fniessen.github.io/org-html-themes/setup/theme-readtheorg.setup
The main objective of present library is documentation. Therefore,
literate programming is particularly adapted in this context.
Source files are written in org-mode format, to provide useful
* Introduction
The ultimate goal of QMCkl is to provide a high-performance
implementation of the main kernels of QMC. In this particular
repository, we focus on the definition of the API and the tests, and
on a /pedagogical/ presentation of the algorithms. We expect the
HPC experts to use this repository as a reference for re-writing
optimized libraries.
Literate programming is particularly adapted in this context.
Source files are written in [[https://karl-voit.at/2017/09/23/orgmode-as-markup-only/][org-mode]] format, to provide useful
comments and LaTex formulas close to the code. There exists multiple
possibilities to convert org-mode files into different formats such as
HTML or pdf.
For a tutorial on literate programming with org-mode, follow
[[http://www.howardism.org/Technical/Emacs/literate-programming-tutorial.html][this link]].
possibilities to convert org-mode files into different formats such
as HTML or pdf. For a tutorial on literate programming with
org-mode, follow [[http://www.howardism.org/Technical/Emacs/literate-programming-tutorial.html][this link]].
The code is extracted from the org files using Emacs as a command-line
tool in the =Makefile=, and then the produced files are compiled.
The code is extracted from the org files using Emacs as a
command-line tool in the =Makefile=, and then the produced files are
compiled.
*** Source code editing
** Language used
Fortran is one of the most common languages used by the community,
and is simple enough to make the algorithms readable. Hence we
propose in this pedagogical implementation of QMCkl to use Fortran
to express the algorithms. For specific internal functions where
the C language is more natural, C is used.
As Fortran modules generate compiler-dependent files, the use of
modules is restricted to the internal use of the library, otherwise
the compliance with C is violated.
The external dependencies should be kept as small as possible, so
external libraries should be used /only/ if their used is strongly
justified.
** Source code editing
Any text editor can be used to edit org-mode files. For a better
user experience Emacs is recommended.
For users hating Emacs, it is good to know that Emacs can behave
like Vim when switched into ``Evil'' mode. There also exists
[[https://www.spacemacs.org][Spacemacs]] which is particularly well adapted to Vim users.
user experience Emacs is recommended. For users hating Emacs, it
is good to know that Emacs can behave like Vim when switched into
``Evil'' mode. There also exists [[https://www.spacemacs.org][Spacemacs]] which helps the
transition for Vim users.
For users with a preference for Jupyter notebooks, the following
script can convert jupyter notebooks to org-mode files:
@ -40,14 +65,143 @@ rm ${nb}.md
And pandoc can convert multiple markdown formats into org-mode.
*** Writing in Fortran
** Writing in Fortran
The Fortran source files should provide a C interface using
iso-c-binding. The name of the Fortran source files should end
with =_f.f90= to be properly handled by the Makefile.
=iso_c_binding=. The name of the Fortran source files should end
with =_f.f90= to be properly handled by the Makefile. The names of
the functions defined in fortran should be the same as those
exposed in the API suffixed by =_f=. Fortran interface files
should also be written in the =qmckl_f.f90= file.
** Documentation
For more guidelines on using Fortran to generate a C interface, see
[[http://fortranwiki.org/fortran/show/Generating+C+Interfaces][this link]].
- [[qmckl_context.org][Context]]
** Coding style
# TODO: decide on a coding style
To improve readability, we maintain a consistent coding style in
the library.
- For C source files, we will use __(decide on a coding style)__
- For Fortran source files, we will use __(decide on a coding
style)__
Coding style can be automatically checked with [[https://clang.llvm.org/docs/ClangFormat.html][clang-format]].
** Design of the library
The proposed API should allow the library to:
- deal with memory transfers between CPU and accelerators
- use different levels of floating-point precision
We chose a multi-layered design with low-level and high-level
functions (see below).
*** Naming conventions
Use =qmckl_= as a prefix for all exported functions and variables.
All exported header files should have a filename with the prefix
=qmckl_=.
If the name of the org-mode file is =xxx.org=, the name of the
produced C files should be =xxx.c= and =xxx.h= and the name of the
produced Fortran files should be =xxx.f90=
Arrays are in uppercase and scalars are in lowercase.
In the names of the variables and functions, only the singular
form is allowed.
*** Application programming interface
The application programming interface (API) is designed to be
compatible with the C programming language (not C++), to ensure
that the library will be easily usable in /any/ language. This
implies that only the following data types are allowed in the API:
- 32-bit and 64-bit floats and arrays (=real= and =double=)
- 32-bit and 64-bit integers and arrays (=int32_t= and =int64_t=)
- Pointers should be represented as 64-bit integers (even on
32-bit architectures)
- ASCII strings are represented as a pointers to a character
arrays and terminated by a zero character (C convention).
Complex numbers can be represented by an array of 2 floats.
# TODO : Link to repositories for bindings
To facilitate the use in other languages than C, we provide some
bindings in other languages in other repositories.
*** Global state
Global variables should be avoided in the library, because it is
possible that one single program needs to use multiple instances
of the library. To solve this problem we propose to use a pointer
to a =context= variable, built by the library with the
=qmckl_context_create= function. The =context= contains the global
state of the library, and is used as the first argument of many
QMCkl functions.
The internal structure of the context is not specified, to give a
maximum of freedom to the different implementations. Modifying
the state is done by setters and getters, prefixed by
=qmckl_context_set_= an =qmckl_context_get_=. When a context
variable is modified by a setter, a copy of the old data structure
is made and updated, and the pointer to the new data structure is
returned, such that the old contexts can still be accessed. It is
also possible to modify the state in an impure fashion, using the
=qmckl_context_update_= functions. The context and its old
versions can be destroyed with =qmckl_context_destroy=.
*** Low-level functions
Low-level functions are very simple functions which are leaves of
the function call tree (they don't call any other QMCkl function).
These functions are /pure/, and unaware of the QMCkl
=context=. They are not allowed to allocate/deallocate memory, and
if they need temporary memory it should be provided in input.
*** High-level functions
High-level functions are at the top of the function call tree.
They are able to choose which lower-level function to call
depending on the required precision, and do the corresponding type
conversions. These functions are also responsible for allocating
temporary storage, to simplify the use of accelerators.
The high-level functions should be pure, unless the introduction
of non-purity is justified. All the side effects should be made in
the =context= variable.
# TODO : We need an identifier for impure functions
*** Numerical precision
The number of bits of precision required for a function should be
given as an input of low-level computational functions. This input
will be used to define the values of the different thresholds that
might be used to avoid computing unnecessary noise. High-level
functions will use the precision specified in the =context=
variable.
** Algorithms
Reducing the scaling of an algorithm usually implies also reducing
its arithmetic complexity (number of flops per byte). Therefore,
for small sizes \(\mathcal{O}(N^3)\) and \(\mathcal{O}(N^2)\)
algorithms are better adapted than linear scaling algorithms. As
QMCkl is a general purpose library, multiple algorithms should be
implemented adapted to different problem sizes.
** Rules for the API
- =stdint= should be used for integers (=int32_t=, =int64_t=)
- integers used for counting should always be =int64_t=
- floats should be by default =double=, unless explicitly mentioned
- pointers are converted to =int64_t= to increase portability
* Documentation

13
src/create_doc.sh Executable file
View File

@ -0,0 +1,13 @@
#!/bin/bash
INPUT=$1
if [[ -f ../docs/htmlize.el ]]
then
emacs --batch --load ../docs/htmlize.el --load ../docs/config.el $INPUT -f org-html-export-to-html
else
emacs --batch --load ../docs/config.el $INPUT -f org-html-export-to-html
fi
mv index.html ../docs

95
src/create_makefile.sh Executable file
View File

@ -0,0 +1,95 @@
#!/bin/bash
INPUT=$1
OUTPUT=Makefile.generated
# Tangle org files
emacs \
$INPUT \
--batch \
-f org-babel-tangle \
--kill
# Create the list of *.o files to be created
OBJECTS=""
for i in $(ls qmckl_*.c) ; do
FILE=${i%.c}
OBJECTS="${OBJECTS} ${FILE}.o"
done >> $OUTPUT
for i in $(ls qmckl_*.f90) ; do
FILE=${i%.f90}
OBJECTS="${OBJECTS} ${FILE}.o"
done >> $OUTPUT
TESTS=""
for i in $(ls test_qmckl_*.c) ; do
FILE=${i%.c}.o
TESTS="${TESTS} ${FILE}"
done >> $OUTPUT
TESTS_F=""
for i in $(ls test_qmckl_*.f90) ; do
FILE=${i%.f90}.o
TESTS_F="${TESTS_F} ${FILE}"
done >> $OUTPUT
# Write the Makefile
cat << EOF > $OUTPUT
CC=$CC
CFLAGS=$CFLAGS -I../munit/
FC=$FC
FFLAGS=$FFLAGS
OBJECT_FILES=$OBJECTS
TESTS=$TESTS
TESTS_F=$TESTS_F
LIBS=$LIBS
libqmckl.so: \$(OBJECT_FILES)
\$(CC) -shared \$(OBJECT_FILES) -o libqmckl.so
%.o: %.c
\$(CC) \$(CFLAGS) -c \$*.c -o \$*.o
%.o: %.f90 qmckl_f.o
\$(FC) \$(FFLAGS) -c \$*.f90 -o \$*.o
test_qmckl: test_qmckl.c libqmckl.so \$(TESTS) \$(TESTS_F)
\$(CC) \$(CFLAGS) -Wl,-rpath,$PWD -L. \
../munit/munit.c \$(TESTS) \$(TESTS_F) -lqmckl \$(LIBS) test_qmckl.c -o test_qmckl
test: test_qmckl
./test_qmckl
.PHONY: test
EOF
for i in $(ls qmckl_*.c) ; do
FILE=${i%.c}
echo "${FILE}.o: ${FILE}.c " *.h
done >> $OUTPUT
for i in $(ls qmckl_*.f90) ; do
FILE=${i%.f90}
echo "${FILE}.o: ${FILE}.f90"
done >> $OUTPUT
for i in $(ls test_qmckl_*.c) ; do
FILE=${i%.c}
echo "${FILE}.o: ${FILE}.c qmckl.h"
done >> $OUTPUT
for i in $(ls test_qmckl*.f90) ; do
FILE=${i%.f90}
echo "${FILE}.o: ${FILE}.f90"
done >> $OUTPUT

13
src/merge_org.sh Executable file
View File

@ -0,0 +1,13 @@
#!/bin/bash
for i in README.org \
qmckl.org \
qmckl_memory.org \
qmckl_context.org \
qmckl_distance.org \
qmckl_ao.org \
qmckl_footer.org \
test_qmckl.org
do
cat $i >> merged_qmckl.org
done

64
src/qmckl.org Normal file
View File

@ -0,0 +1,64 @@
** =qmckl.h= header file
This file produces the =qmckl.h= header file, which is to be included
when qmckl functions are used.
We also create here the =qmckl_f.f90= which is the Fortran interface file.
*** Top of header files :noexport:
#+BEGIN_SRC C :tangle qmckl.h
#ifndef QMCKL_H
#define QMCKL_H
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
module qmckl
use, intrinsic :: iso_c_binding
#+END_SRC
The bottoms of the files are located in the [[qmckl_footer.org]] file.
*** Constants
**** Success/failure
These are the codes returned by the functions to indicate success
or failure. All such functions should have as a return type =qmckl_exit_code=.
#+BEGIN_SRC C :comments org :tangle qmckl.h
#define QMCKL_SUCCESS 0
#define QMCKL_FAILURE 1
typedef int32_t qmckl_exit_code;
typedef int64_t qmckl_context ;
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle qmckl_f.f90
integer, parameter :: QMCKL_SUCCESS = 0
integer, parameter :: QMCKL_FAILURE = 0
#+END_SRC
**** Precision-related constants
Controlling numerical precision enables optimizations. Here, the
default parameters determining the target numerical precision and
range are defined.
#+BEGIN_SRC C :comments org :tangle qmckl.h
#define QMCKL_DEFAULT_PRECISION 53
#define QMCKL_DEFAULT_RANGE 11
#+END_SRC
#+BEGIN_SRC f90 :comments org :tangle qmckl_f.f90
integer, parameter :: QMCKL_DEFAULT_PRECISION = 53
integer, parameter :: QMCKL_DEFAULT_RANGE = 11
#+END_SRC
# -*- mode: org -*-
# vim: syntax=c

742
src/qmckl_ao.org Normal file
View File

@ -0,0 +1,742 @@
** Atomic Orbitals
This files contains all the routines for the computation of the
values, gradients and Laplacian of the atomic basis functions.
3 files are produced:
- a source file : =qmckl_ao.f90=
- a C test file : =test_qmckl_ao.c=
- a Fortran test file : =test_qmckl_ao_f.f90=
*** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_ao.c
#include "qmckl.h"
#include "munit.h"
MunitResult test_qmckl_ao() {
qmckl_context context;
context = qmckl_context_create();
#+END_SRC
*** Polynomials
\[
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
\]
\begin{eqnarray*}
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
\end{eqnarray*}
\begin{eqnarray*}
\left( \frac{\partial }{\partial x^2} +
\frac{\partial }{\partial y^2} +
\frac{\partial }{\partial z^2} \right) P_l
\left(\mathbf{r},\mathbf{R}_i \right) & = &
a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\
&& b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}
\end{eqnarray*}
**** =qmckl_ao_power=
Computes all the powers of the =n= input data up to the given
maximum value given in input for each of the $n$ points:
\[ P_{ij} = X_j^i \]
***** Arguments
| =context= | input | Global state |
| =n= | input | Number of values |
| =X(n)= | input | Array containing the input values |
| =LMAX(n)= | input | Array containing the maximum power for each value |
| =P(LDP,n)= | output | Array containing all the powers of =X= |
| =LDP= | input | Leading dimension of array =P= |
***** Requirements
- =context= is not 0
- =n= > 0
- =X= is allocated with at least $n \times 8$ bytes
- =LMAX= is allocated with at least $n \times 4$ bytes
- =P= is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytes
- =LDP= >= $\max_i$ =LMAX[i]=
***** Header
#+BEGIN_SRC C :tangle qmckl.h
qmckl_exit_code qmckl_ao_power(const qmckl_context context,
const int64_t n,
const double *X, const int32_t *LMAX,
const double *P, const int64_t LDP);
#+END_SRC
***** Source
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info)
implicit none
integer*8 , intent(in) :: context
integer*8 , intent(in) :: n
real*8 , intent(in) :: X(n)
integer , intent(in) :: LMAX(n)
real*8 , intent(out) :: P(ldp,n)
integer*8 , intent(in) :: ldp
integer*8 :: i,j
info = 0
if (context == 0_8) then
info = -1
return
endif
if (LDP < MAXVAL(LMAX)) then
info = -2
return
endif
do j=1,n
P(1,j) = X(j)
do i=2,LMAX(j)
P(i,j) = P(i-1,j) * X(j)
end do
end do
end function qmckl_ao_power_f
#+END_SRC
***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer(c_int32_t) function qmckl_ao_power(context, n, X, LMAX, P, ldp) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double) , intent(out) :: P(ldp,n)
integer (c_int64_t) , intent(in) , value :: ldp
integer, external :: qmckl_ao_power_f
info = qmckl_ao_power_f(context, n, X, LMAX, P, ldp)
end function qmckl_ao_power
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer(c_int32_t) function qmckl_ao_power(context, n, X, LMAX, P, ldp) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
integer (c_int64_t) , intent(in) , value :: ldp
real (c_double) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double) , intent(out) :: P(ldp,n)
end function qmckl_ao_power
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_power(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
integer*8 :: n, LDP
integer, allocatable :: LMAX(:)
double precision, allocatable :: X(:), P(:,:)
integer*8 :: i,j
double precision :: epsilon
epsilon = qmckl_context_get_epsilon(context)
n = 100;
LDP = 10;
allocate(X(n), P(LDP,n), LMAX(n))
do j=1,n
X(j) = -5.d0 + 0.1d0 * dble(j)
LMAX(j) = 1 + int(mod(j, 5),4)
end do
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
if (test_qmckl_ao_power /= 0) return
test_qmckl_ao_power = -1
do j=1,n
do i=1,LMAX(j)
if ( X(j)**i == 0.d0 ) then
if ( P(i,j) /= 0.d0) return
else
if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return
end if
end do
end do
test_qmckl_ao_power = 0
deallocate(X,P,LMAX)
end function test_qmckl_ao_power
#+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_ao.c
int test_qmckl_ao_power(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_power(context));
#+END_SRC
**** =qmckl_ao_polynomial_vgl=
Computes the values, gradients and Laplacians at a given point of
all polynomials with an angular momentum up to =lmax=.
***** Arguments
| =context= | input | Global state |
| =X(3)= | input | Array containing the coordinates of the points |
| =R(3)= | input | Array containing the x,y,z coordinates of the center |
| =lmax= | input | Maximum angular momentum |
| =n= | output | Number of computed polynomials |
| =L(ldl,n)= | output | Contains a,b,c for all =n= results |
| =ldl= | input | Leading dimension of =L= |
| =VGL(ldv,n)= | output | Value, gradients and Laplacian of the polynomials |
| =ldv= | input | Leading dimension of array =VGL= |
***** Requirements
- =context= is not 0
- =n= > 0
- =lmax= >= 0
- =ldl= >= 3
- =ldv= >= 5
- =X= is allocated with at least $3 \times 8$ bytes
- =R= is allocated with at least $3 \times 8$ bytes
- =n= >= =(lmax+1)(lmax+2)(lmax+3)/6=
- =L= is allocated with at least $3 \times n \times 4$ bytes
- =VGL= is allocated with at least $5 \times n \times 8$ bytes
- On output, =n= should be equal to =(lmax+1)(lmax+2)(lmax+3)/6=
- On output, the powers are given in the following order (l=a+b+c):
- Increase values of =l=
- Within a given value of =l=, alphabetical order of the
string made by a*"x" + b*"y" + c*"z" (in Python notation).
For example, with a=0, b=2 and c=1 the string is "yyz"
***** Error codes
| -1 | Null context |
| -2 | Inconsistent =ldl= |
| -3 | Inconsistent =ldv= |
| -4 | Inconsistent =lmax= |
***** Header
#+BEGIN_SRC C :tangle qmckl.h
qmckl_exit_code qmckl_ao_polynomial_vgl(const qmckl_context context,
const double *X, const double *R,
const int32_t lmax, const int64_t *n,
const int32_t *L, const int64_t ldl,
const double *VGL, const int64_t ldv);
#+END_SRC
***** Source
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer , intent(in) :: lmax
integer*8 , intent(out) :: n
integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldl
real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
integer :: a,b,c,d
real*8 :: Y(3)
integer :: lmax_array(3)
real*8 :: pows(-2:lmax,3)
integer, external :: qmckl_ao_power_f
double precision :: xy, yz, xz
double precision :: da, db, dc, dd
info = 0
if (context == 0_8) then
info = -1
return
endif
if (ldl < 3) then
info = -2
return
endif
if (ldv < 5) then
info = -3
return
endif
if (lmax <= 0) then
info = -4
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
lmax_array(1:3) = lmax
if (lmax == 0) then
VGL(1,1) = 1.d0
vgL(2:5,1) = 0.d0
l(1:3,1) = 0
n=1
else if (lmax > 0) then
pows(-2:0,1:3) = 1.d0
do i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
end do
VGL(1:5,1:4) = 0.d0
l(1:3,1:4) = 0
VGL(1,1) = 1.d0
vgl(1:5,2:4) = 0.d0
l(1,2) = 1
vgl(1,2) = pows(1,1)
vgL(2,2) = 1.d0
l(2,3) = 1
vgl(1,3) = pows(1,2)
vgL(3,3) = 1.d0
l(3,4) = 1
vgl(1,4) = pows(1,3)
vgL(4,4) = 1.d0
n=4
endif
! l>=2
dd = 2.d0
do d=2,lmax
da = dd
do a=d,0,-1
db = dd-da
do b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
vgl(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
vgl(2,n) = pows(a-1,1) * yz
vgl(3,n) = pows(b-1,2) * xz
vgl(4,n) = pows(c-1,3) * xy
vgl(5,n) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
end do
da = da - 1.d0
end do
dd = dd + 1.d0
end do
info = 0
end function qmckl_ao_polynomial_vgl_f
#+END_SRC
***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer(c_int32_t) function qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(out) :: n
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer (c_int64_t) , intent(in) , value :: ldl
real (c_double) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer (c_int64_t) , intent(in) , value :: ldv
integer, external :: qmckl_ao_polynomial_vgl_f
info = qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv)
end function qmckl_ao_polynomial_vgl
#+END_SRC
***** Fortran interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer(c_int32_t) function qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int64_t) , intent(out) :: n
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
real (c_double) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
end function qmckl_ao_polynomial_vgl
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
integer :: lmax, d, i
integer, allocatable :: L(:,:)
integer*8 :: n, ldl, ldv, j
double precision :: X(3), R(3), Y(3)
double precision, allocatable :: VGL(:,:)
double precision :: w
double precision :: epsilon
epsilon = qmckl_context_get_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
lmax = 4;
n = 0;
ldl = 3;
ldv = 100;
d = (lmax+1)*(lmax+2)*(lmax+3)/6
allocate (L(ldl,d), VGL(ldv,d))
test_qmckl_ao_polynomial_vgl = &
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
if (test_qmckl_ao_polynomial_vgl /= 0) return
test_qmckl_ao_polynomial_vgl = -1
if (n /= d) return
do j=1,n
test_qmckl_ao_polynomial_vgl = -11
do i=1,3
if (L(i,j) < 0) return
end do
test_qmckl_ao_polynomial_vgl = -12
if (dabs(1.d0 - VGL(1,j) / (&
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
test_qmckl_ao_polynomial_vgl = -13
if (L(1,j) < 1) then
if (VGL(2,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(2,j) / (&
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = -14
if (L(2,j) < 1) then
if (VGL(3,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(3,j) / (&
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = -15
if (L(3,j) < 1) then
if (VGL(4,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(4,j) / (&
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = -16
w = 0.d0
if (L(1,j) > 1) then
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
end if
if (L(2,j) > 1) then
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
end if
if (L(3,j) > 1) then
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
end if
if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return
end do
test_qmckl_ao_polynomial_vgl = 0
deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
#+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_ao.c
int test_qmckl_ao_polynomial_vgl(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
#+END_SRC
#+END_SRC
*** Gaussian basis functions
**** =qmckl_ao_gaussian_vgl=
Computes the values, gradients and Laplacians at a given point of
=n= Gaussian functions centered at the same point:
\[ v_i = exp(-a_i |X-R|^2) \]
\[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \]
\[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \]
\[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \]
\[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
***** Arguments
| =context= | input | Global state |
| =X(3)= | input | Array containing the coordinates of the points |
| =R(3)= | input | Array containing the x,y,z coordinates of the center |
| =n= | input | Number of computed gaussians |
| =A(n)= | input | Exponents of the Gaussians |
| =VGL(ldv,5)= | output | Value, gradients and Laplacian of the Gaussians |
| =ldv= | input | Leading dimension of array =VGL= |
***** Requirements
- =context= is not 0
- =n= > 0
- =ldv= >= 5
- =A(i)= > 0 for all =i=
- =X= is allocated with at least $3 \times 8$ bytes
- =R= is allocated with at least $3 \times 8$ bytes
- =A= is allocated with at least $n \times 8$ bytes
- =VGL= is allocated with at least $n \times 5 \times 8$ bytes
***** Header
#+BEGIN_SRC C :tangle qmckl.h
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context,
const double *X, const double *R,
const int64_t *n, const int64_t *A,
const double *VGL, const int64_t ldv);
#+END_SRC
***** Source
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info)
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer*8 , intent(in) :: n
real*8 , intent(in) :: A(n)
real*8 , intent(out) :: VGL(ldv,5)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
real*8 :: Y(3), r2, t, u, v
info = 0
if (context == 0_8) then
info = -1
return
endif
if (n <= 0) then
info = -2
return
endif
if (ldv < n) then
info = -3
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
do i=1,n
VGL(i,1) = dexp(-A(i) * r2)
end do
do i=1,n
VGL(i,5) = A(i) * VGL(i,1)
end do
t = -2.d0 * ( X(1) - R(1) )
u = -2.d0 * ( X(2) - R(2) )
v = -2.d0 * ( X(3) - R(3) )
do i=1,n
VGL(i,2) = t * VGL(i,5)
VGL(i,3) = u * VGL(i,5)
VGL(i,4) = v * VGL(i,5)
end do
t = 4.d0 * r2
do i=1,n
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
end do
end function qmckl_ao_gaussian_vgl_f
#+END_SRC
***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_ao.f90
integer(c_int32_t) function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: A(n)
real (c_double) , intent(out) :: VGL(ldv,5)
integer (c_int64_t) , intent(in) , value :: ldv
integer, external :: qmckl_ao_gaussian_vgl_f
info = qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv)
end function qmckl_ao_gaussian_vgl
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer(c_int32_t) function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) &
bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: X(3), R(3), A(n)
real (c_double) , intent(out) :: VGL(ldv,5)
end function qmckl_ao_gaussian_vgl
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_ao_f.f90
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
integer*8 :: n, ldv, j, i
double precision :: X(3), R(3), Y(3), r2
double precision, allocatable :: VGL(:,:), A(:)
double precision :: epsilon
epsilon = qmckl_context_get_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
n = 10;
ldv = 100;
allocate (A(n), VGL(ldv,5))
do i=1,n
A(i) = 0.0013 * dble(ishft(1,i))
end do
test_qmckl_ao_gaussian_vgl = &
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
if (test_qmckl_ao_gaussian_vgl /= 0) return
test_qmckl_ao_gaussian_vgl = -1
do i=1,n
test_qmckl_ao_gaussian_vgl = -11
if (dabs(1.d0 - VGL(i,1) / (&
dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -12
if (dabs(1.d0 - VGL(i,2) / (&
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -13
if (dabs(1.d0 - VGL(i,3) / (&
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -14
if (dabs(1.d0 - VGL(i,4) / (&
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -15
if (dabs(1.d0 - VGL(i,5) / (&
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) &
)) > epsilon ) return
end do
test_qmckl_ao_gaussian_vgl = 0
deallocate(VGL)
end function test_qmckl_ao_gaussian_vgl
#+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_ao.c
int test_qmckl_ao_gaussian_vgl(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_ao_gaussian_vgl(context));
#+END_SRC
*** TODO Slater basis functions
*** End of files :noexport:
***** Test
#+BEGIN_SRC C :tangle test_qmckl_ao.c
if (qmckl_context_destroy(context) != QMCKL_SUCCESS)
return QMCKL_FAILURE;
return MUNIT_OK;
}
#+END_SRC
# -*- mode: org -*-
# vim: syntax=c

View File

@ -1,193 +1,820 @@
# -*- mode: org -*-
** Context
#+TITLE: Context
This file is written in C because it is more natural to express the
context in C than in Fortran.
This file is written in C because it is more natural to express the context in
C than in Fortran.
2 files are produced:
- a source file : =qmckl_context.c=
- a test file : =test_qmckl_context.c=
*** Headers :noexport:
#+BEGIN_SRC C :tangle qmckl_context.c
#include "qmckl.h"
#+END_SRC
#+BEGIN_SRC C :tangle qmckl_context.c
#include <stdlib.h> /* malloc */
#include "qmckl_context.h"
#+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_context.c
#include "qmckl.h"
#include "munit.h"
MunitResult test_qmckl_context() {
#+END_SRC
* Context
*** Context
The context variable is a handle for the state of the library, and
is stored in the following data structure, which can't be seen
outside of the library.
outside of the library. To simplify compatibility with other
languages, the pointer to the internal data structure is converted
into a 64-bit signed integer, defined in the =qmckl_context= type.
A value of 0 for the context is equivalent to a =NULL= pointer.
# The following code block should be kept to insert comments into
# the qmckl.h file
#+BEGIN_SRC C :tangle qmckl_context.h
#define QMCKL_DEFAULT_PRECISION 53
#define QMCKL_DEFAULT_RANGE 2
/* 64-bit integer */
typedef long long int qmckl_context ;
#+BEGIN_SRC C :comments org :tangle qmckl.h :export none
#+END_SRC
**** Basis set data structure
Data structure for the info related to the atomic orbitals
basis set.
#+BEGIN_SRC C :comments org :tangle qmckl_context.c
typedef struct qmckl_ao_basis_struct {
int64_t shell_num;
int64_t prim_num;
int64_t * shell_center;
int32_t * shell_ang_mom;
double * shell_factor;
double * exponent ;
double * coefficient ;
int64_t * shell_prim_num;
char type;
} qmckl_ao_basis_struct;
#+END_SRC
**** Source
The tag is used internally to check if the memory domain pointed
by a pointer is a valid context.
#+BEGIN_SRC C :comments org :tangle qmckl_context.c
typedef struct qmckl_context_struct {
struct qmckl_context_struct * prev;
/* Molecular system */
// struct qmckl_nucleus_struct * nucleus;
// struct qmckl_electron_struct * electron;
struct qmckl_ao_basis_struct * ao_basis;
// struct qmckl_mo_struct * mo;
// struct qmckl_determinant_struct * det;
/* Numerical precision */
uint32_t tag;
int32_t precision;
int32_t range;
#+BEGIN_SRC C :tangle qmckl_context.c
typedef struct qmckl_context_struct_ {
struct qmckl_context_struct_ * prev;
int precision;
int range;
} qmckl_context_struct;
#define VALID_TAG 0xBEEFFACE
#define INVALID_TAG 0xDEADBEEF
#+END_SRC
** =qmckl_context_create=
**** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_context.c
qmckl_context context;
qmckl_context new_context;
#+END_SRC
To create a new context, use =qmckl_context_create()=. If the creation
failed, the function returns =0=. On success, a pointer to a context
is returned as a 64-bit integer.
#+BEGIN_SRC C :tangle qmckl_context.h
**** =qmckl_context_check=
Checks if the domain pointed by the pointer is a valid context.
Returns the input =qmckl_context= if the context is valid, 0
otherwise.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_check(const qmckl_context context) ;
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_check(const qmckl_context context) {
if (context == (qmckl_context) 0) return (qmckl_context) 0;
const qmckl_context_struct * ctx = (qmckl_context_struct*) context;
if (ctx->tag != VALID_TAG) return (qmckl_context) 0;
return context;
}
#+END_SRC
**** =qmckl_context_create=
To create a new context, use =qmckl_context_create()=.
- On success, returns a pointer to a context using the =qmckl_context= type
- Returns 0 upon failure to allocate the internal data structure
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_create();
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_create() {
qmckl_context_struct* context;
context = (qmckl_context_struct*) malloc (sizeof(qmckl_context_struct));
qmckl_context_struct* context =
(qmckl_context_struct*) qmckl_malloc ((qmckl_context) 0, sizeof(qmckl_context_struct));
if (context == NULL) {
return (qmckl_context) 0;
}
context->prev = NULL;
context->ao_basis = NULL;
context->precision = QMCKL_DEFAULT_PRECISION;
context->range = QMCKL_DEFAULT_RANGE;
context->tag = VALID_TAG;
return (qmckl_context) context;
}
#+END_SRC
** =qmckl_context_copy=
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_create() bind(C)
use, intrinsic :: iso_c_binding
end function qmckl_context_create
end interface
#+END_SRC
#+BEGIN_SRC C :tangle qmckl_context.h
***** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_context.c
context = qmckl_context_create();
munit_assert_int64( context, !=, (qmckl_context) 0);
munit_assert_int64( qmckl_context_check(context), ==, context);
#+END_SRC
**** =qmckl_context_copy=
This function makes a shallow copy of the current context.
- Copying the 0-valued context returns 0
- On success, returns a pointer to the new context using the =qmckl_context= type
- Returns 0 upon failure to allocate the internal data structure
for the new context
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_copy(const qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_copy(const qmckl_context context) {
qmckl_context_struct* old_context;
qmckl_context_struct* new_context;
const qmckl_context checked_context = qmckl_context_check(context);
new_context = (qmckl_context_struct*) malloc (sizeof(qmckl_context_struct));
if (checked_context == (qmckl_context) 0) {
return (qmckl_context) 0;
}
qmckl_context_struct* old_context = (qmckl_context_struct*) checked_context;
qmckl_context_struct* new_context =
(qmckl_context_struct*) qmckl_malloc (context, sizeof(qmckl_context_struct));
if (new_context == NULL) {
return (qmckl_context) 0;
}
old_context = (qmckl_context_struct*) context;
new_context->prev = old_context;
new_context->ao_basis = old_context->ao_basis;
new_context->precision = old_context->precision;
new_context->range = old_context->range;
new_context->tag = VALID_TAG;
return (qmckl_context) new_context;
}
#+END_SRC
** =qmckl_context_destroy=
To delete a new context, use =qmckl_context_destroy()=. If the deletion
failed, the function returns =0=. On success, the function returns =1=
implying that the context has been freed.
#+BEGIN_SRC C :tangle qmckl_context.h
int qmckl_context_destroy(qmckl_context context);
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_copy(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_copy
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_context.c
new_context = qmckl_context_copy(context);
munit_assert_int64(new_context, !=, (qmckl_context) 0);
munit_assert_int64(new_context, !=, context);
munit_assert_int64(qmckl_context_check(new_context), ==, new_context);
#+END_SRC
**** =qmckl_context_previous=
Returns the previous context
- On success, returns the ancestor of the current context
- Returns 0 for the initial context
- Returns 0 for the 0-valued context
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_previous(const qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
int qmckl_context_destroy(qmckl_context context) {
qmckl_context qmckl_context_previous(const qmckl_context context) {
qmckl_context_struct* ctx;
ctx = (qmckl_context_struct*) context;
if (ctx == NULL) {
return 0;
const qmckl_context checked_context = qmckl_context_check(context);
if (checked_context == (qmckl_context) 0) {
return (qmckl_context) 0;
}
free(ctx);
return 1;
const qmckl_context_struct* ctx = (qmckl_context_struct*) checked_context;
return qmckl_context_check((qmckl_context) ctx->prev);
}
#+END_SRC
* Precision
The following functions set and get the expected required precision
and range. =precision= should be an integer between 2 and 53, and
=range= should be an integer between 2 and 11.
The setter functions functions return a new context as a 64-bit integer.
The getter functions return the value, as a 32-bit integer.
** =qmckl_context_set_precision=
#+BEGIN_SRC C :tangle qmckl_context.h
qmckl_context qmckl_context_set_precision(const qmckl_context context, int precision);
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_previous(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_previous
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_context.c
munit_assert_int64(qmckl_context_previous(new_context), !=, (qmckl_context) 0);
munit_assert_int64(qmckl_context_previous(new_context), ==, context);
munit_assert_int64(qmckl_context_previous(context), ==, (qmckl_context) 0);
munit_assert_int64(qmckl_context_previous((qmckl_context) 0), ==, (qmckl_context) 0);
#+END_SRC
**** =qmckl_context_destroy=
Destroys the current context, leaving the ancestors untouched.
- Succeeds if the current context is properly destroyed
- Fails otherwise
- Fails if the 0-valued context is given in argument
- Fails if the the pointer is not a valid context
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code qmckl_context_destroy(qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_set_precision(const qmckl_context context, int precision) {
qmckl_context_struct* ctx;
qmckl_exit_code qmckl_context_destroy(const qmckl_context context) {
if (precision < 2) return (qmckl_context) 0;
if (precision > 53) return (qmckl_context) 0;
const qmckl_context checked_context = qmckl_context_check(context);
if (checked_context == (qmckl_context) 0) return QMCKL_FAILURE;
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
if (ctx == NULL) return QMCKL_FAILURE;
ctx->tag = INVALID_TAG;
qmckl_free(ctx);
return QMCKL_SUCCESS;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_destroy(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_destroy
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_context.c
munit_assert_int64(qmckl_context_check(new_context), ==, new_context);
munit_assert_int64(new_context, !=, (qmckl_context) 0);
munit_assert_int32(qmckl_context_destroy(new_context), ==, QMCKL_SUCCESS);
munit_assert_int64(qmckl_context_check(new_context), !=, new_context);
munit_assert_int64(qmckl_context_check(new_context), ==, (qmckl_context) 0);
munit_assert_int64(qmckl_context_destroy((qmckl_context) 0), ==, QMCKL_FAILURE);
#+END_SRC
*** Basis set
For H_2 with the following basis set,
#+BEGIN_EXAMPLE
HYDROGEN
S 5
1 3.387000E+01 6.068000E-03
2 5.095000E+00 4.530800E-02
3 1.159000E+00 2.028220E-01
4 3.258000E-01 5.039030E-01
5 1.027000E-01 3.834210E-01
S 1
1 3.258000E-01 1.000000E+00
S 1
1 1.027000E-01 1.000000E+00
P 1
1 1.407000E+00 1.000000E+00
P 1
1 3.880000E-01 1.000000E+00
D 1
1 1.057000E+00 1.0000000
#+END_EXAMPLE
we have:
#+BEGIN_EXAMPLE
type = 'G'
shell_num = 12
prim_num = 20
SHELL_CENTER = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]
SHELL_ANG_MOM = ['S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D']
SHELL_PRIM_NUM = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1]
prim_index = [1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20]
EXPONENT = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027,
1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027,
0.3258, 0.1027, 1.407, 0.388, 1.057]
COEFFICIENT = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421,
1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822,
0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0]
#+END_EXAMPLE
**** =qmckl_context_update_ao_basis=
Updates the data describing the AO basis set into the context.
| =type= | Gaussian or Slater |
| =shell_num= | Number of shells |
| =prim_num= | Total number of primitives |
| =SHELL_CENTER(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_ANG_MOM(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_FACTOR(shell_num)= | Normalization factor for the shell |
| =SHELL_PRIM_NUM(shell_num)= | Number of primitives in the shell |
| =SHELL_PRIM_INDEX(shell_num)= | Address of the first primitive of the shelll in the =EXPONENT= array |
| =EXPONENT(prim_num)= | Array of exponents |
| =COEFFICIENT(prim_num)= | Array of coefficients |
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code
qmckl_context_update_ao_basis(qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_exit_code
qmckl_context_update_ao_basis(qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT)
{
int64_t i;
/* Check input */
if (type != 'G' && type != 'S') return QMCKL_FAILURE;
if (shell_num <= 0) return QMCKL_FAILURE;
if (prim_num <= 0) return QMCKL_FAILURE;
if (prim_num < shell_num) return QMCKL_FAILURE;
for (i=0 ; i<shell_num ; i++) {
if (SHELL_CENTER[i] <= 0) return QMCKL_FAILURE;
if (SHELL_PRIM_NUM[i] <= 0) return QMCKL_FAILURE;
if (SHELL_ANG_MOM[i] < 0) return QMCKL_FAILURE;
if (SHELL_PRIM_INDEX[i] < 0) return QMCKL_FAILURE;
}
for (i=0 ; i<prim_num ; i++) {
if (EXPONENT[i] <= 0) return QMCKL_FAILURE;
}
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
if (ctx == NULL) return QMCKL_FAILURE;
qmckl_ao_basis_struct* basis = (qmckl_ao_basis_struct*) malloc (sizeof(qmckl_ao_basis_struct));
if (basis == NULL) return QMCKL_FAILURE;
/* Memory allocations */
basis->shell_center = (int64_t*) malloc (shell_num * sizeof(int64_t));
if (basis->shell_center == NULL) {
free(basis);
return QMCKL_FAILURE;
}
basis->shell_ang_mom = (int32_t*) malloc (shell_num * sizeof(int32_t));
if (basis->shell_ang_mom == NULL) {
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->shell_prim_num= (int64_t*) malloc (shell_num * sizeof(int64_t));
if (basis->shell_prim_num == NULL) {
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->shell_factor = (double *) malloc (shell_num * sizeof(double ));
if (basis->shell_factor == NULL) {
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->exponent = (double *) malloc (prim_num * sizeof(double ));
if (basis->exponent == NULL) {
free(basis->shell_factor);
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
basis->coefficient = (double *) malloc (prim_num * sizeof(double ));
if (basis->coefficient == NULL) {
free(basis->exponent);
free(basis->shell_factor);
free(basis->shell_prim_num);
free(basis->shell_ang_mom);
free(basis->shell_center);
free(basis);
return QMCKL_FAILURE;
}
/* Assign data */
basis->type = type;
basis->shell_num = shell_num;
basis->prim_num = prim_num;
for (i=0 ; i<shell_num ; i++) {
basis->shell_center [i] = SHELL_CENTER [i];
basis->shell_ang_mom [i] = SHELL_ANG_MOM [i];
basis->shell_prim_num[i] = SHELL_PRIM_NUM[i];
basis->shell_factor [i] = SHELL_FACTOR [i];
}
for (i=0 ; i<prim_num ; i++) {
basis->exponent [i] = EXPONENT[i];
basis->coefficient[i] = COEFFICIENT[i];
}
ctx->ao_basis = basis;
return QMCKL_SUCCESS;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_update_ao_basis(context, &
typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, &
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
character(c_char) , intent(in), value :: typ
integer (c_int64_t), intent(in), value :: shell_num
integer (c_int64_t), intent(in), value :: prim_num
integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num)
integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num)
double precision , intent(in) :: SHELL_FACTOR(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num)
double precision , intent(in) :: EXPONENT(prim_num)
double precision , intent(in) :: COEFFICIENT(prim_num)
end function qmckl_context_update_ao_basis
end interface
#+END_SRC
***** TODO Test
**** =qmckl_context_set_ao_basis=
Sets the data describing the AO basis set into the context.
| =type= | Gaussian or Slater |
| =shell_num= | Number of shells |
| =prim_num= | Total number of primitives |
| =SHELL_CENTER(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_ANG_MOM(shell_num)= | Id of the nucleus on which the shell is centered |
| =SHELL_FACTOR(shell_num)= | Normalization factor for the shell |
| =SHELL_PRIM_NUM(shell_num)= | Number of primitives in the shell |
| =SHELL_PRIM_INDEX(shell_num)= | Address of the first primitive of the shelll in the =EXPONENT= array |
| =EXPONENT(prim_num)= | Array of exponents |
| =COEFFICIENT(prim_num)= | Array of coefficients |
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context
qmckl_context_set_ao_basis(const qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context
qmckl_context_set_ao_basis(const qmckl_context context , const char type,
const int64_t shell_num , const int64_t prim_num,
const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM,
const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM,
const int64_t * SHELL_PRIM_INDEX,
const double * EXPONENT , const double * COEFFICIENT)
{
qmckl_context new_context = qmckl_context_copy(context);
if (new_context == 0) return 0;
if (qmckl_context_update_ao_basis(context, type, shell_num, prim_num,
SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR,
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT,
COEFFICIENT
) == QMCKL_FAILURE)
return 0;
return new_context;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_set_ao_basis(context, &
typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, &
SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
character(c_char) , intent(in), value :: typ
integer (c_int64_t), intent(in), value :: shell_num
integer (c_int64_t), intent(in), value :: prim_num
integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num)
integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num)
double precision , intent(in) :: SHELL_FACTOR(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num)
integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num)
double precision , intent(in) :: EXPONENT(prim_num)
double precision , intent(in) :: COEFFICIENT(prim_num)
end function qmckl_context_set_ao_basis
end interface
#+END_SRC
***** TODO Test
*** Precision
The following functions set and get the expected required
precision and range. =precision= should be an integer between 2
and 53, and =range= should be an integer between 2 and 11.
The setter functions functions return a new context as a 64-bit
integer. The getter functions return the value, as a 32-bit
integer. The update functions return =QMCKL_SUCCESS= or
=QMCKL_FAILURE=.
**** =qmckl_context_update_precision=
Modifies the parameter for the numerical precision in a given context.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision) {
if (precision < 2) return QMCKL_FAILURE;
if (precision > 53) return QMCKL_FAILURE;
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
if (ctx == NULL) return QMCKL_FAILURE;
ctx = (qmckl_context_struct*) qmckl_context_copy(context);
ctx->precision = precision;
return (qmckl_context) ctx;
return QMCKL_SUCCESS;
}
#+END_SRC
** =qmckl_context_set_range=
#+BEGIN_SRC C :tangle qmckl_context.h
qmckl_context qmckl_context_set_range(const qmckl_context context, int range);
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_update_precision(context, precision) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: precision
end function qmckl_context_update_precision
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_update_range=
Modifies the parameter for the numerical range in a given context.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_set_range(const qmckl_context context, int range) {
qmckl_context_struct* ctx;
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range) {
if (range < 2) return (qmckl_context) 0;
if (range > 11) return (qmckl_context) 0;
if (range < 2) return QMCKL_FAILURE;
if (range > 11) return QMCKL_FAILURE;
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
if (ctx == NULL) return QMCKL_FAILURE;
ctx = (qmckl_context_struct*) qmckl_context_copy(context);
ctx->range = range;
return (qmckl_context) ctx;
return QMCKL_SUCCESS;
}
#+END_SRC
** =qmckl_context_get_precision=
#+BEGIN_SRC C :tangle qmckl_context.h
int qmckl_context_get_precision(const qmckl_context context);
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_update_range(context, range) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: range
end function qmckl_context_update_range
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_set_precision=
Returns a copy of the context with a different precision parameter.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision) {
qmckl_context new_context = qmckl_context_copy(context);
if (new_context == 0) return 0;
if (qmckl_context_update_precision(context, precision) == QMCKL_FAILURE) return 0;
return new_context;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_set_precision(context, precision) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: precision
end function qmckl_context_set_precision
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_set_range=
Returns a copy of the context with a different precision parameter.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range) {
qmckl_context new_context = qmckl_context_copy(context);
if (new_context == 0) return 0;
if (qmckl_context_update_range(context, range) == QMCKL_FAILURE) return 0;
return new_context;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int64_t) function qmckl_context_set_range(context, range) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
integer (c_int32_t), intent(in), value :: range
end function qmckl_context_set_range
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_get_precision=
Returns the value of the numerical precision in the context
#+BEGIN_SRC C :comments org :tangle qmckl.h
int32_t qmckl_context_get_precision(const qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
int qmckl_context_get_precision(const qmckl_context context) {
qmckl_context_struct* ctx;
ctx = (qmckl_context_struct*) context;
const qmckl_context_struct* ctx = (qmckl_context_struct*) context;
return ctx->precision;
}
#+END_SRC
** =qmckl_context_get_range=
#+BEGIN_SRC C :tangle qmckl_context.h
int qmckl_context_get_range(const qmckl_context context);
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_get_precision(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_get_precision
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_get_range=
Returns the value of the numerical range in the context
#+BEGIN_SRC C :comments org :tangle qmckl.h
int32_t qmckl_context_get_range(const qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
int qmckl_context_get_range(const qmckl_context context) {
qmckl_context_struct* ctx;
ctx = (qmckl_context_struct*) context;
const qmckl_context_struct* ctx = (qmckl_context_struct*) context;
return ctx->range;
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer (c_int32_t) function qmckl_context_get_range(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_get_range
end interface
#+END_SRC
***** TODO Tests :noexport:
**** =qmckl_context_get_epsilon=
Returns $\epsilon = 2^{1-n}$ where =n= is the precision
#+BEGIN_SRC C :comments org :tangle qmckl.h
double qmckl_context_get_epsilon(const qmckl_context context);
#+END_SRC
***** Source
#+BEGIN_SRC C :tangle qmckl_context.c
double qmckl_context_get_epsilon(const qmckl_context context) {
const qmckl_context_struct* ctx = (qmckl_context_struct*) context;
return pow(2.0,(double) 1-ctx->precision);
}
#+END_SRC
***** Fortran interface
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
real (c_double) function qmckl_context_get_epsilon(context) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
end function qmckl_context_get_epsilon
end interface
#+END_SRC
***** TODO Tests :noexport:
*** End of files :noexport:
***** Test
#+BEGIN_SRC C :comments link :tangle test_qmckl_context.c
return MUNIT_OK;
}
#+END_SRC
# -*- mode: org -*-
# vim: syntax=c

356
src/qmckl_distance.org Normal file
View File

@ -0,0 +1,356 @@
** Computation of distances
Function for the computation of distances between particles.
3 files are produced:
- a source file : =qmckl_distance.f90=
- a C test file : =test_qmckl_distance.c=
- a Fortran test file : =test_qmckl_distance_f.f90=
**** Headers :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_distance.c
#include "qmckl.h"
#include "munit.h"
MunitResult test_qmckl_distance() {
qmckl_context context;
context = qmckl_context_create();
#+END_SRC
*** Squared distance
**** =qmckl_distance_sq=
Computes the matrix of the squared distances between all pairs of
points in two sets, one point within each set:
\[
C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2
\]
***** Arguments
| =context= | input | Global state |
| =transa= | input | Array =A= is =N=: Normal, =T=: Transposed |
| =transb= | input | Array =B= is =N=: Normal, =T=: Transposed |
| =m= | input | Number of points in the first set |
| =n= | input | Number of points in the second set |
| =A(lda,3)= | input | Array containing the $m \times 3$ matrix $A$ |
| =lda= | input | Leading dimension of array =A= |
| =B(ldb,3)= | input | Array containing the $n \times 3$ matrix $B$ |
| =ldb= | input | Leading dimension of array =B= |
| =C(ldc,n)= | output | Array containing the $m \times n$ matrix $C$ |
| =ldc= | input | Leading dimension of array =C= |
***** Requirements
- =context= is not 0
- =m= > 0
- =n= > 0
- =lda= >= 3 if =transa= is =N=
- =lda= >= m if =transa= is =T=
- =ldb= >= 3 if =transb= is =N=
- =ldb= >= n if =transb= is =T=
- =ldc= >= m if =transa= is =
- =A= is allocated with at least $3 \times m \times 8$ bytes
- =B= is allocated with at least $3 \times n \times 8$ bytes
- =C= is allocated with at least $m \times n \times 8$ bytes
***** Performance
This function might be more efficient when =A= and =B= are
transposed.
#+BEGIN_SRC C :comments org :tangle qmckl.h
qmckl_exit_code qmckl_distance_sq(const qmckl_context context,
const char transa, const char transb,
const int64_t m, const int64_t n,
const double *A, const int64_t lda,
const double *B, const int64_t ldb,
const double *C, const int64_t ldc);
#+END_SRC
***** Source
#+BEGIN_SRC f90 :tangle qmckl_distance.f90
integer function qmckl_distance_sq_f(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) result(info)
implicit none
integer*8 , intent(in) :: context
character , intent(in) :: transa, transb
integer*8 , intent(in) :: m, n
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(lda,*)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(ldb,*)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(ldc,*)
integer*8 :: i,j
real*8 :: x, y, z
integer :: transab
info = 0
if (context == 0_8) then
info = -1
return
endif
if (m <= 0_8) then
info = -2
return
endif
if (n <= 0_8) then
info = -3
return
endif
if (transa == 'N' .or. transa == 'n') then
transab = 0
else if (transa == 'T' .or. transa == 't') then
transab = 1
else
transab = -100
endif
if (transb == 'N' .or. transb == 'n') then
continue
else if (transa == 'T' .or. transa == 't') then
transab = transab + 2
else
transab = -100
endif
if (transab < 0) then
info = -4
return
endif
if (iand(transab,1) == 0 .and. LDA < 3) then
info = -5
return
endif
if (iand(transab,1) == 1 .and. LDA < m) then
info = -6
return
endif
if (iand(transab,2) == 0 .and. LDA < 3) then
info = -6
return
endif
if (iand(transab,2) == 2 .and. LDA < m) then
info = -7
return
endif
select case (transab)
case(0)
do j=1,n
do i=1,m
x = A(1,i) - B(1,j)
y = A(2,i) - B(2,j)
z = A(3,i) - B(3,j)
C(i,j) = x*x + y*y + z*z
end do
end do
case(1)
do j=1,n
do i=1,m
x = A(i,1) - B(1,j)
y = A(i,2) - B(2,j)
z = A(i,3) - B(3,j)
C(i,j) = x*x + y*y + z*z
end do
end do
case(2)
do j=1,n
do i=1,m
x = A(1,i) - B(j,1)
y = A(2,i) - B(j,2)
z = A(3,i) - B(j,3)
C(i,j) = x*x + y*y + z*z
end do
end do
case(3)
do j=1,n
do i=1,m
x = A(i,1) - B(j,1)
y = A(i,2) - B(j,2)
z = A(i,3) - B(j,3)
C(i,j) = x*x + y*y + z*z
end do
end do
end select
end function qmckl_distance_sq_f
#+END_SRC
***** C interface :noexport:
#+BEGIN_SRC f90 :tangle qmckl_distance.f90
integer(c_int32_t) function qmckl_distance_sq(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
character (c_char) , intent(in) , value :: transa, transb
integer (c_int64_t) , intent(in) , value :: m, n
integer (c_int64_t) , intent(in) , value :: lda
real (c_double) , intent(in) :: A(lda,3)
integer (c_int64_t) , intent(in) , value :: ldb
real (c_double) , intent(in) :: B(ldb,3)
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double) , intent(out) :: C(ldc,n)
integer, external :: qmckl_distance_sq_f
info = qmckl_distance_sq_f(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC)
end function qmckl_distance_sq
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
integer(c_int32_t) function qmckl_distance_sq(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) &
bind(C)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
character (c_char) , intent(in) , value :: transa, transb
integer (c_int64_t) , intent(in) , value :: m, n
integer (c_int64_t) , intent(in) , value :: lda
integer (c_int64_t) , intent(in) , value :: ldb
integer (c_int64_t) , intent(in) , value :: ldc
real (c_double) , intent(in) :: A(lda,3)
real (c_double) , intent(in) :: B(ldb,3)
real (c_double) , intent(out) :: C(ldc,n)
end function qmckl_distance_sq
end interface
#+END_SRC
***** Test :noexport:
#+BEGIN_SRC f90 :tangle test_qmckl_distance_f.f90
integer(c_int32_t) function test_qmckl_distance_sq(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
double precision, allocatable :: A(:,:), B(:,:), C(:,:)
integer*8 :: m, n, LDA, LDB, LDC
double precision :: x
integer*8 :: i,j
m = 5
n = 6
LDA = m
LDB = n
LDC = 5
allocate( A(LDA,m), B(LDB,n), C(LDC,n) )
do j=1,m
do i=1,m
A(i,j) = -10.d0 + dble(i+j)
end do
end do
do j=1,n
do i=1,n
B(i,j) = -1.d0 + dble(i*j)
end do
end do
test_qmckl_distance_sq = qmckl_distance_sq(context, 'X', 't', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq == 0) return
test_qmckl_distance_sq = qmckl_distance_sq(context, 't', 'X', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq == 0) return
test_qmckl_distance_sq = qmckl_distance_sq(context, 'T', 't', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq /= 0) return
test_qmckl_distance_sq = -1
do j=1,n
do i=1,m
x = (A(i,1)-B(j,1))**2 + &
(A(i,2)-B(j,2))**2 + &
(A(i,3)-B(j,3))**2
if ( dabs(1.d0 - C(i,j)/x) > 1.d-14 ) return
end do
end do
test_qmckl_distance_sq = qmckl_distance_sq(context, 'n', 'T', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq /= 0) return
test_qmckl_distance_sq = -1
do j=1,n
do i=1,m
x = (A(1,i)-B(j,1))**2 + &
(A(2,i)-B(j,2))**2 + &
(A(3,i)-B(j,3))**2
if ( dabs(1.d0 - C(i,j)/x) > 1.d-14 ) return
end do
end do
test_qmckl_distance_sq = qmckl_distance_sq(context, 'T', 'n', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq /= 0) return
test_qmckl_distance_sq = -1
do j=1,n
do i=1,m
x = (A(i,1)-B(1,j))**2 + &
(A(i,2)-B(2,j))**2 + &
(A(i,3)-B(3,j))**2
if ( dabs(1.d0 - C(i,j)/x) > 1.d-14 ) return
end do
end do
test_qmckl_distance_sq = qmckl_distance_sq(context, 'n', 'N', m, n, A, LDA, B, LDB, C, LDC)
if (test_qmckl_distance_sq /= 0) return
test_qmckl_distance_sq = -1
do j=1,n
do i=1,m
x = (A(1,i)-B(1,j))**2 + &
(A(2,i)-B(2,j))**2 + &
(A(3,i)-B(3,j))**2
if ( dabs(1.d0 - C(i,j)/x) > 1.d-14 ) return
end do
end do
test_qmckl_distance_sq = 0
deallocate(A,B,C)
end function test_qmckl_distance_sq
#+END_SRC
#+BEGIN_SRC C :comments link :tangle test_qmckl_distance.c
int test_qmckl_distance_sq(qmckl_context context);
munit_assert_int(0, ==, test_qmckl_distance_sq(context));
#+END_SRC
*** End of files :noexport:
#+BEGIN_SRC C :comments link :tangle test_qmckl_distance.c
if (qmckl_context_destroy(context) != QMCKL_SUCCESS)
return QMCKL_FAILURE;
return MUNIT_OK;
}
#+END_SRC
# -*- mode: org -*-
# vim: syntax=c

18
src/qmckl_footer.org Normal file
View File

@ -0,0 +1,18 @@
* Acknowledgments
[[https://trex-coe.eu/sites/default/files/inline-images/euflag.jpg]]
[[https://trex-coe.eu][TREX: Targeting Real Chemical Accuracy at the Exascale]] project has received funding from the European Unions Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.
* End of header files :noexport:
#+BEGIN_SRC C :tangle qmckl.h
#endif
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
end module qmckl
#+END_SRC
# -*- mode: org -*-

101
src/qmckl_memory.org Normal file
View File

@ -0,0 +1,101 @@
** Memory management
We override the allocation functions to enable the possibility of
optimized libraries to fine-tune the memory allocation.
2 files are produced:
- a source file : =qmckl_memory.c=
- a test file : =test_qmckl_memory.c=
*** Headers :noexport:
#+BEGIN_SRC C :tangle qmckl_memory.c
#include "qmckl.h"
#+END_SRC
#+BEGIN_SRC C :tangle test_qmckl_memory.c
#include "qmckl.h"
#include "munit.h"
MunitResult test_qmckl_memory() {
#+END_SRC
*** =qmckl_malloc=
Memory allocation function, letting the library choose how the
memory will be allocated, and a pointer is returned to the user.
#+BEGIN_SRC C :tangle qmckl.h
void* qmckl_malloc(const qmckl_context ctx, const size_t size);
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
type (c_ptr) function qmckl_malloc (context, size) bind(C)
use, intrinsic :: iso_c_binding
integer (c_int64_t), intent(in), value :: context
integer (c_int64_t), intent(in), value :: size
end function qmckl_malloc
end interface
#+END_SRC
**** Source
#+BEGIN_SRC C :tangle qmckl_memory.c
void* qmckl_malloc(const qmckl_context ctx, const size_t size) {
if (ctx == (qmckl_context) 0) {
/* Avoids unused parameter error */
return malloc( (size_t) size );
}
return malloc( (size_t) size );
}
#+END_SRC
**** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_memory.c
int *a;
a = (int*) qmckl_malloc( (qmckl_context) 1, 3*sizeof(int));
a[0] = 1;
a[1] = 2;
a[2] = 3;
munit_assert_int(a[0], ==, 1);
munit_assert_int(a[1], ==, 2);
munit_assert_int(a[2], ==, 3);
#+END_SRC
*** =qmckl_free=
#+BEGIN_SRC C :tangle qmckl.h
void qmckl_free(void *ptr);
#+END_SRC
#+BEGIN_SRC f90 :tangle qmckl_f.f90
interface
subroutine qmckl_free (ptr) bind(C)
use, intrinsic :: iso_c_binding
type (c_ptr), intent(in), value :: ptr
end subroutine qmckl_free
end interface
#+END_SRC
**** Source
#+BEGIN_SRC C :tangle qmckl_memory.c
void qmckl_free(void *ptr) {
free(ptr);
}
#+END_SRC
**** Test :noexport:
#+BEGIN_SRC C :tangle test_qmckl_memory.c
qmckl_free(a);
#+END_SRC
*** End of files :noexport:
**** Test
#+BEGIN_SRC C :comments org :tangle test_qmckl_memory.c
return MUNIT_OK;
}
#+END_SRC
# -*- mode: org -*-
# vim: syntax=c

85
src/test_qmckl.org Normal file
View File

@ -0,0 +1,85 @@
* QMCkl test :noexport:
This file is the main program of the unit tests. The tests rely on the
$\mu$unit framework, which is provided as a git submodule.
First, we use a script to find the list of all the produced test files:
#+NAME: test-files
#+BEGIN_SRC sh :exports none :results value
grep BEGIN_SRC *.org | \
grep test_qmckl_ | \
rev | \
cut -d ' ' -f 1 | \
rev | \
sort | \
uniq
#+END_SRC
#+RESULTS: test-files
| test_qmckl_ao.c |
| test_qmckl_context.c |
| test_qmckl_distance.c |
| test_qmckl_memory.c |
We generate the function headers
#+BEGIN_SRC sh :var files=test-files :exports output :results raw
echo "#+NAME: headers"
echo "#+BEGIN_SRC C :tangle no"
for file in $files
do
routine=${file%.c}
echo "MunitResult ${routine}();"
done
echo "#+END_SRC"
#+END_SRC
#+RESULTS:
#+NAME: headers
#+BEGIN_SRC C :tangle no
MunitResult test_qmckl_ao();
MunitResult test_qmckl_context();
MunitResult test_qmckl_distance();
MunitResult test_qmckl_memory();
#+END_SRC
and the required function calls:
#+BEGIN_SRC sh :var files=test-files :exports output :results raw
echo "#+NAME: calls"
echo "#+BEGIN_SRC C :tangle no"
for file in $files
do
routine=${file%.c}
echo " { (char*) \"${routine}\", ${routine}, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},"
done
echo "#+END_SRC"
#+END_SRC
#+RESULTS:
#+NAME: calls
#+BEGIN_SRC C :tangle no
{ (char*) "test_qmckl_ao", test_qmckl_ao, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_context", test_qmckl_context, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_distance", test_qmckl_distance, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
{ (char*) "test_qmckl_memory", test_qmckl_memory, NULL,NULL,MUNIT_TEST_OPTION_NONE,NULL},
#+END_SRC
#+BEGIN_SRC C :comments link :noweb yes :tangle test_qmckl.c
#include "qmckl.h"
#include "munit.h"
<<headers>>
int main(int argc, char* argv[MUNIT_ARRAY_PARAM(argc + 1)]) {
static MunitTest test_suite_tests[] =
{
<<calls>>
{ NULL, NULL, NULL, NULL, MUNIT_TEST_OPTION_NONE, NULL }
};
static const MunitSuite test_suite =
{
(char*) "", test_suite_tests, NULL, 1, MUNIT_SUITE_OPTION_NONE
};
return munit_suite_main(&test_suite, (void*) "µnit", argc, argv);
}
#+END_SRC

0
to_be_processed/.gitignore vendored Normal file
View File