mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2024-12-22 12:23:56 +01:00
Added examples.org
This commit is contained in:
parent
5e35df226a
commit
26fe759209
190
org/examples.org
Normal file
190
org/examples.org
Normal file
@ -0,0 +1,190 @@
|
||||
#+TITLE: Code examples
|
||||
#+SETUPFILE: ../tools/theme.setup
|
||||
#+INCLUDE: ../tools/lib.org
|
||||
|
||||
In this section, we present examples of usage of QMCkl.
|
||||
For simplicity, we assume that the wave function parameters are stores
|
||||
in a [[https://github.com/TREX-CoE/trexio][TREXIO]] file.
|
||||
|
||||
* Checking errors
|
||||
|
||||
All QMCkl functions return an error code. A convenient way to handle
|
||||
errors is to write an error-checking function that displays the
|
||||
error in text format and exits the program.
|
||||
|
||||
#+NAME: qmckl_check_error
|
||||
#+begin_src f90
|
||||
subroutine qmckl_check_error(rc, message)
|
||||
use qmckl
|
||||
implicit none
|
||||
integer(qmckl_exit_code), intent(in) :: rc
|
||||
character(len=*) , intent(in) :: message
|
||||
character(len=128) :: str_buffer
|
||||
if (rc /= QMCKL_SUCCESS) then
|
||||
print *, message
|
||||
call qmckl_string_of_error(rc, str_buffer)
|
||||
print *, str_buffer
|
||||
call exit(rc)
|
||||
end if
|
||||
end subroutine qmckl_check_error
|
||||
#+end_src
|
||||
|
||||
* Computing an atomic orbital on a grid
|
||||
:PROPERTIES:
|
||||
:header-args: :tangle ao_grid.f90
|
||||
:END:
|
||||
|
||||
The following program, in Fortran, computes the values of an atomic
|
||||
orbital on a regular 3-dimensional grid. The 100^3 grid points are
|
||||
automatically defined, such that the molecule fits in a box with 5
|
||||
atomic units in the borders.
|
||||
|
||||
This program uses the ~qmckl_check_error~ function defined above.
|
||||
|
||||
To use this program, run
|
||||
|
||||
#+begin_src bash :tangle no
|
||||
$ ao_grid <trexio_file> <AO_id> <point_num>
|
||||
#+end_src
|
||||
|
||||
|
||||
#+begin_src f90 :noweb yes
|
||||
<<qmckl_check_error>>
|
||||
|
||||
program ao_grid
|
||||
use qmckl
|
||||
implicit none
|
||||
|
||||
integer(qmckl_context) :: qmckl_ctx ! QMCkl context
|
||||
integer(qmckl_exit_code) :: rc ! Exit code of QMCkl functions
|
||||
|
||||
character(len=128) :: trexio_filename
|
||||
character(len=128) :: str_buffer
|
||||
integer :: ao_id
|
||||
integer :: point_num_x
|
||||
|
||||
integer(c_int64_t) :: nucl_num
|
||||
double precision, allocatable :: nucl_coord(:,:)
|
||||
|
||||
integer(c_int64_t) :: point_num
|
||||
integer(c_int64_t) :: ao_num
|
||||
integer(c_int64_t) :: ipoint, i, j, k
|
||||
double precision :: x, y, z, dr(3)
|
||||
double precision :: rmin(3), rmax(3)
|
||||
double precision, allocatable :: points(:,:)
|
||||
double precision, allocatable :: ao_vgl(:,:,:)
|
||||
#+end_src
|
||||
|
||||
Start by fetching the command-line arguments:
|
||||
|
||||
#+begin_src f90
|
||||
if (iargc() /= 3) then
|
||||
print *, 'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'
|
||||
call exit(-1)
|
||||
end if
|
||||
call getarg(1, trexio_filename)
|
||||
call getarg(2, str_buffer)
|
||||
read(str_buffer, *) ao_id
|
||||
call getarg(3, str_buffer)
|
||||
read(str_buffer, *) point_num_x
|
||||
|
||||
if (point_num_x < 0 .or. point_num_x > 300) then
|
||||
print *, 'Error: 0 < point_num < 300'
|
||||
call exit(-1)
|
||||
end if
|
||||
#+end_src
|
||||
|
||||
Create the QMCkl context and initialize it with the wave function
|
||||
present in the TREXIO file:
|
||||
|
||||
#+begin_src f90
|
||||
qmckl_ctx = qmckl_context_create()
|
||||
rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename)))
|
||||
call qmckl_check_error(rc, 'Read TREXIO')
|
||||
#+end_src
|
||||
|
||||
Now we will compute the limits of the box in which the molecule fits.
|
||||
For that, we first need to ask QMCkl the coordinates of nuclei.
|
||||
|
||||
#+begin_src f90
|
||||
rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
|
||||
call qmckl_check_error(rc, 'Get nucleus num')
|
||||
|
||||
allocate( nucl_coord(3, nucl_num) )
|
||||
rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num)
|
||||
call qmckl_check_error(rc, 'Get nucleus coord')
|
||||
#+end_src
|
||||
|
||||
We now compute the coordinates of opposite points of the box, and
|
||||
the distance between points along the 3 directions:
|
||||
|
||||
#+begin_src f90
|
||||
rmin(1) = minval( nucl_coord(1,:) ) - 5.d0
|
||||
rmin(2) = minval( nucl_coord(2,:) ) - 5.d0
|
||||
rmin(3) = minval( nucl_coord(3,:) ) - 5.d0
|
||||
|
||||
rmax(1) = maxval( nucl_coord(1,:) ) + 5.d0
|
||||
rmax(2) = maxval( nucl_coord(2,:) ) + 5.d0
|
||||
rmax(3) = maxval( nucl_coord(3,:) ) + 5.d0
|
||||
|
||||
dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1)
|
||||
#+end_src
|
||||
|
||||
We now produce the list of point coordinates where the AO will be
|
||||
evaluated:
|
||||
|
||||
#+begin_src f90
|
||||
point_num = point_num_x**3
|
||||
allocate( points(point_num, 3) )
|
||||
ipoint=0
|
||||
z = rmin(3)
|
||||
do k=1,point_num_x
|
||||
y = rmin(2)
|
||||
do j=1,point_num_x
|
||||
x = rmin(1)
|
||||
do i=1,point_num_x
|
||||
ipoint = ipoint+1
|
||||
points(ipoint,1) = x
|
||||
points(ipoint,2) = y
|
||||
points(ipoint,3) = z
|
||||
x = x + dr(1)
|
||||
end do
|
||||
y = y + dr(2)
|
||||
end do
|
||||
z = z + dr(3)
|
||||
end do
|
||||
#+end_src
|
||||
|
||||
We give the points to QMCkl:
|
||||
|
||||
#+begin_src f90
|
||||
rc = qmckl_set_point(qmckl_ctx, 'T', points, point_num)
|
||||
call qmckl_check_error(rc, 'Setting points')
|
||||
#+end_src
|
||||
|
||||
We allocate the space required to retrieve the values, gradients and
|
||||
Laplacian of all AOs, and ask to retrieve the values of the
|
||||
AOs computed at the point positions. For that, we first need to know
|
||||
the number of AOs:
|
||||
|
||||
#+begin_src f90
|
||||
rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
|
||||
call qmckl_check_error(rc, 'Getting ao_num')
|
||||
|
||||
allocate( ao_vgl(ao_num, 5, point_num) )
|
||||
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
|
||||
call qmckl_check_error(rc, 'Setting points')
|
||||
#+end_src
|
||||
|
||||
We finally print the value of the AO:
|
||||
|
||||
#+begin_src f90
|
||||
do ipoint=1, point_num
|
||||
print '(3(F16.10,X),E20.10)', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint)
|
||||
end do
|
||||
#+end_src
|
||||
|
||||
#+begin_src f90
|
||||
deallocate( nucl_coord, points, ao_vgl )
|
||||
end program ao_grid
|
||||
#+end_src
|
Loading…
Reference in New Issue
Block a user