mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2025-04-19 07:00:10 +02:00
Done with factor_een_deriv_e. Needs testing. #22
This commit is contained in:
parent
9b697278d7
commit
1b74243155
@ -4831,7 +4831,7 @@ qmckl_exit_code qmckl_provide_factor_een(qmckl_context context)
|
||||
return rc;
|
||||
}
|
||||
|
||||
ctx->jastrow.factor_en_deriv_e_date = ctx->date;
|
||||
ctx->jastrow.factor_een_date = ctx->date;
|
||||
}
|
||||
|
||||
return QMCKL_SUCCESS;
|
||||
@ -5103,6 +5103,433 @@ assert(qmckl_jastrow_provided(context));
|
||||
double factor_een[walk_num];
|
||||
rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
|
||||
|
||||
//// check factor_en_deriv_e
|
||||
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
|
||||
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
|
||||
//assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
|
||||
//assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
|
||||
|
||||
#+end_src
|
||||
|
||||
** Electron-electron-nucleus Jastrow \(f_{een}\) derivative
|
||||
|
||||
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een_deriv_e~
|
||||
using the above prepared tables.
|
||||
|
||||
TODO: write equations.
|
||||
|
||||
*** Get
|
||||
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
|
||||
qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e);
|
||||
#+end_src
|
||||
|
||||
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
|
||||
qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e)
|
||||
{
|
||||
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
|
||||
return QMCKL_NULL_CONTEXT;
|
||||
}
|
||||
|
||||
qmckl_exit_code rc;
|
||||
|
||||
rc = qmckl_provide_factor_een_deriv_e(context);
|
||||
if (rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
|
||||
assert (ctx != NULL);
|
||||
|
||||
int64_t sze = ctx->electron.walk_num * ctx->electron.num;
|
||||
memcpy(factor_een_deriv_e, ctx->jastrow.factor_een_deriv_e, sze*sizeof(double));
|
||||
|
||||
return QMCKL_SUCCESS;
|
||||
}
|
||||
#+end_src
|
||||
|
||||
*** Provide :noexport:
|
||||
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
|
||||
qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context);
|
||||
#+end_src
|
||||
|
||||
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
|
||||
qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context)
|
||||
{
|
||||
|
||||
qmckl_exit_code rc;
|
||||
|
||||
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
|
||||
return QMCKL_NULL_CONTEXT;
|
||||
}
|
||||
|
||||
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
|
||||
assert (ctx != NULL);
|
||||
|
||||
/* Check if en rescaled distance is provided */
|
||||
rc = qmckl_provide_een_rescaled_e(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Check if en rescaled distance derivatives is provided */
|
||||
rc = qmckl_provide_een_rescaled_n(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Check if en rescaled distance is provided */
|
||||
rc = qmckl_provide_een_rescaled_e_deriv_e(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Check if en rescaled distance derivatives is provided */
|
||||
rc = qmckl_provide_een_rescaled_n_deriv_e(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Check if en rescaled distance derivatives is provided */
|
||||
rc = qmckl_provide_cord_vect_full(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Check if en rescaled distance derivatives is provided */
|
||||
rc = qmckl_provide_lkpm_combined_index(context);
|
||||
if(rc != QMCKL_SUCCESS) return rc;
|
||||
|
||||
/* Compute if necessary */
|
||||
if (ctx->date > ctx->jastrow.factor_een_deriv_e_date) {
|
||||
|
||||
/* Allocate array */
|
||||
if (ctx->jastrow.factor_een_deriv_e == NULL) {
|
||||
|
||||
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
|
||||
mem_info.size = 4 * ctx->electron.num * ctx->electron.walk_num * sizeof(double);
|
||||
double* factor_een_deriv_e = (double*) qmckl_malloc(context, mem_info);
|
||||
|
||||
if (factor_een_deriv_e == NULL) {
|
||||
return qmckl_failwith( context,
|
||||
QMCKL_ALLOCATION_FAILED,
|
||||
"qmckl_provide_factor_een_deriv_e",
|
||||
NULL);
|
||||
}
|
||||
ctx->jastrow.factor_een_deriv_e = factor_een_deriv_e;
|
||||
}
|
||||
|
||||
qmckl_exit_code rc =
|
||||
qmckl_compute_factor_een_deriv_e(context,
|
||||
ctx->electron.walk_num,
|
||||
ctx->electron.num,
|
||||
ctx->nucleus.num,
|
||||
ctx->jastrow.cord_num,
|
||||
ctx->jastrow.dim_cord_vect,
|
||||
ctx->jastrow.cord_vect_full,
|
||||
ctx->jastrow.lkpm_combined_index,
|
||||
ctx->jastrow.een_rescaled_e,
|
||||
ctx->jastrow.een_rescaled_n,
|
||||
ctx->jastrow.een_rescaled_e_deriv_e,
|
||||
ctx->jastrow.een_rescaled_n_deriv_e,
|
||||
ctx->jastrow.factor_een_deriv_e);
|
||||
if (rc != QMCKL_SUCCESS) {
|
||||
return rc;
|
||||
}
|
||||
|
||||
ctx->jastrow.factor_een_deriv_e_date = ctx->date;
|
||||
}
|
||||
|
||||
return QMCKL_SUCCESS;
|
||||
}
|
||||
#+end_src
|
||||
|
||||
*** Compute
|
||||
:PROPERTIES:
|
||||
:Name: qmckl_compute_factor_een_deriv_e
|
||||
:CRetType: qmckl_exit_code
|
||||
:FRetType: qmckl_exit_code
|
||||
:END:
|
||||
|
||||
#+NAME: qmckl_factor_een_deriv_e_args
|
||||
| qmckl_context | context | in | Global state |
|
||||
| int64_t | walk_num | in | Number of walkers |
|
||||
| int64_t | elec_num | in | Number of electrons |
|
||||
| int64_t | nucl_num | in | Number of nucleii |
|
||||
| int64_t | cord_num | in | order of polynomials |
|
||||
| int64_t | dim_cord_vect | in | dimension of full coefficient vector |
|
||||
| double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector |
|
||||
| int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices |
|
||||
| double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
|
||||
| double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
|
||||
| double | een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
|
||||
| double | een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
|
||||
| double | factor_een_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow |
|
||||
|
||||
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
|
||||
integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, &
|
||||
cord_vect_full, lkpm_combined_index, &
|
||||
een_rescaled_e, een_rescaled_n, &
|
||||
een_rescaled_e_deriv_e, een_rescaled_n_deriv_e, factor_een_deriv_e) &
|
||||
result(info)
|
||||
use qmckl
|
||||
implicit none
|
||||
integer(qmckl_context), intent(in) :: context
|
||||
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
|
||||
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
|
||||
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
|
||||
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num)
|
||||
double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num)
|
||||
double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num)
|
||||
|
||||
integer*8 :: i, a, j, l, k, p, m, n, nw
|
||||
double precision :: accu, accu2, cn
|
||||
double precision :: daccu(1:4), daccu2(1:4)
|
||||
|
||||
info = QMCKL_SUCCESS
|
||||
|
||||
if (context == QMCKL_NULL_CONTEXT) then
|
||||
info = QMCKL_INVALID_CONTEXT
|
||||
return
|
||||
endif
|
||||
|
||||
if (walk_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_2
|
||||
return
|
||||
endif
|
||||
|
||||
if (elec_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_3
|
||||
return
|
||||
endif
|
||||
|
||||
if (nucl_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_4
|
||||
return
|
||||
endif
|
||||
|
||||
if (cord_num <= 0) then
|
||||
info = QMCKL_INVALID_ARG_5
|
||||
return
|
||||
endif
|
||||
|
||||
factor_een_deriv_e = 0.0d0
|
||||
|
||||
do nw =1, walk_num
|
||||
do n = 1, dim_cord_vect
|
||||
l = lkpm_combined_index(1, n)
|
||||
k = lkpm_combined_index(2, n)
|
||||
p = lkpm_combined_index(3, n)
|
||||
m = lkpm_combined_index(4, n)
|
||||
|
||||
do a = 1, nucl_num
|
||||
cn = cord_vect_full(n, a)
|
||||
do j = 1, elec_num
|
||||
accu = 0.0d0
|
||||
accu2 = 0.0d0
|
||||
daccu = 0.0d0
|
||||
daccu2 = 0.0d0
|
||||
do i = 1, elec_num
|
||||
accu = accu + een_rescaled_e(nw, i, j, k) * &
|
||||
een_rescaled_n(nw, i, a, m)
|
||||
accu2 = accu2 + een_rescaled_e(nw, i, j, k) * &
|
||||
een_rescaled_n(nw, i, a, m + l)
|
||||
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
|
||||
een_rescaled_n(nw, i, a, m)
|
||||
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
|
||||
een_rescaled_n(nw, i, a, m + l)
|
||||
end do
|
||||
factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + &
|
||||
(accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) &
|
||||
+ daccu(1:4) * een_rescaled_n(nw, j, a, m + l) &
|
||||
+ daccu2(1:4) * een_rescaled_n(nw, j, a, m) &
|
||||
+ accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn
|
||||
|
||||
factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( &
|
||||
daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + &
|
||||
daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + &
|
||||
daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + &
|
||||
daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + &
|
||||
daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + &
|
||||
daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end function qmckl_compute_factor_een_deriv_e_f
|
||||
#+end_src
|
||||
|
||||
#+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_src c :tangle (eval h_func) :comments org
|
||||
qmckl_exit_code qmckl_compute_factor_een_deriv_e (
|
||||
const qmckl_context context,
|
||||
const int64_t walk_num,
|
||||
const int64_t elec_num,
|
||||
const int64_t nucl_num,
|
||||
const int64_t cord_num,
|
||||
const int64_t dim_cord_vect,
|
||||
const double* cord_vect_full,
|
||||
const int64_t* lkpm_combined_index,
|
||||
const double* een_rescaled_e,
|
||||
const double* een_rescaled_n,
|
||||
const double* een_rescaled_e_deriv_e,
|
||||
const double* een_rescaled_n_deriv_e,
|
||||
double* const factor_een_deriv_e );
|
||||
#+end_src
|
||||
|
||||
|
||||
#+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_src f90 :tangle (eval f) :comments org :exports none
|
||||
integer(c_int32_t) function qmckl_compute_factor_een_deriv_e &
|
||||
(context, &
|
||||
walk_num, &
|
||||
elec_num, &
|
||||
nucl_num, &
|
||||
cord_num, &
|
||||
dim_cord_vect, &
|
||||
cord_vect_full, &
|
||||
lkpm_combined_index, &
|
||||
een_rescaled_e, &
|
||||
een_rescaled_n, &
|
||||
een_rescaled_e_deriv_e, &
|
||||
een_rescaled_n_deriv_e, &
|
||||
factor_een_deriv_e) &
|
||||
bind(C) result(info)
|
||||
|
||||
use, intrinsic :: iso_c_binding
|
||||
implicit none
|
||||
|
||||
integer (c_int64_t) , intent(in) , value :: context
|
||||
integer (c_int64_t) , intent(in) , value :: walk_num
|
||||
integer (c_int64_t) , intent(in) , value :: elec_num
|
||||
integer (c_int64_t) , intent(in) , value :: nucl_num
|
||||
integer (c_int64_t) , intent(in) , value :: cord_num
|
||||
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
|
||||
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
|
||||
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
|
||||
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
|
||||
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
|
||||
real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num)
|
||||
real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num)
|
||||
real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num)
|
||||
|
||||
integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_f
|
||||
info = qmckl_compute_factor_een_deriv_e_f &
|
||||
(context, &
|
||||
walk_num, &
|
||||
elec_num, &
|
||||
nucl_num, &
|
||||
cord_num, &
|
||||
dim_cord_vect, &
|
||||
cord_vect_full, &
|
||||
lkpm_combined_index, &
|
||||
een_rescaled_e, &
|
||||
een_rescaled_n, &
|
||||
een_rescaled_e_deriv_e, &
|
||||
een_rescaled_n_deriv_e, &
|
||||
factor_een_deriv_e)
|
||||
|
||||
end function qmckl_compute_factor_een_deriv_e
|
||||
#+end_src
|
||||
|
||||
*** Test
|
||||
#+begin_src python :results output :exports none :noweb yes
|
||||
import numpy as np
|
||||
|
||||
<<jastrow_data>>
|
||||
|
||||
kappa = 1.0
|
||||
|
||||
elec_coord = np.array(elec_coord)[0]
|
||||
nucl_coord = np.array(nucl_coord)
|
||||
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
|
||||
for i in range(elec_num):
|
||||
for j in range(nucl_num):
|
||||
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
|
||||
|
||||
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
rij_inv = 1.0 / elnuc_dist[i, a]
|
||||
for ii in range(3):
|
||||
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
|
||||
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
|
||||
|
||||
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
f = 1.0 - kappa * en_distance_rescaled[i][a]
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
|
||||
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
|
||||
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
|
||||
for ii in range(4):
|
||||
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
|
||||
|
||||
third = 1.0 / 3.0
|
||||
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
|
||||
dx = np.zeros(shape=(4),dtype=float)
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
for a in range(nucl_num):
|
||||
for i in range(elec_num):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if abs(x) < 1e-18:
|
||||
continue
|
||||
pow_ser_g = np.zeros(shape=(3),dtype=float)
|
||||
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
|
||||
invden = 1.0 / den
|
||||
invden2 = invden * invden
|
||||
invden3 = invden2 * invden
|
||||
xinv = 1.0 / (x + 1.0E-18)
|
||||
|
||||
for ii in range(4):
|
||||
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
|
||||
|
||||
lap1 = 0.0
|
||||
lap2 = 0.0
|
||||
lap3 = 0.0
|
||||
for ii in range(3):
|
||||
x = en_distance_rescaled[i][a]
|
||||
if x < 1e-18:
|
||||
continue
|
||||
for p in range(2,aord_num+1):
|
||||
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
|
||||
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
|
||||
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
|
||||
lap2 = lap2 + y
|
||||
x = x * en_distance_rescaled[i][a]
|
||||
|
||||
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
|
||||
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
|
||||
dx[ii] * invden2 + pow_ser_g[ii]
|
||||
|
||||
ii = 3
|
||||
lap2 = lap2 * dx[ii] * third
|
||||
lap3 = lap3 + den * dx[ii]
|
||||
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
|
||||
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
|
||||
|
||||
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
|
||||
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
|
||||
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
|
||||
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
|
||||
|
||||
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: factor_en_deriv_e[0][0]: 0.11609919541763383
|
||||
: factor_en_deriv_e[1][0]: -0.23301394780804574
|
||||
: factor_en_deriv_e[2][0]: 0.17548337641865783
|
||||
: factor_en_deriv_e[3][0]: -0.9667363412285741
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
/* Check if Jastrow is properly initialized */
|
||||
//assert(qmckl_jastrow_provided(context));
|
||||
//
|
||||
//// calculate factor_en_deriv_e
|
||||
//double factor_een[walk_num];
|
||||
//rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
|
||||
|
||||
//// check factor_en_deriv_e
|
||||
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
|
||||
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
|
||||
|
Loading…
x
Reference in New Issue
Block a user