1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-06-30 00:44:52 +02:00

Verified Local energy with QMC=Chem for Be2. #41

This commit is contained in:
v1j4y 2021-10-26 19:13:20 +02:00
parent a49e9151e5
commit 1869756ea4
5 changed files with 357 additions and 79 deletions

View File

@ -22,7 +22,7 @@ int main() {
* Matrix operations
** ~qmckl_dgemm~
Matrix multiply: $C_{ij} = \beta C_{ij} + \alpha \sum_{k} A_{ik} \cdot B_{kj}$ using Fortran ~matmul~ function.
TODO: Add description about the external library dependence.
@ -90,21 +90,22 @@ integer function qmckl_dgemm_f(context, TransA, TransB, m, n, k, alpha, A, LDA,
integer*8 , intent(in) :: m, n, k
real*8 , intent(in) :: alpha, beta
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(m,k)
real*8 , intent(in) :: A(lda,*)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(k,n)
real*8 , intent(in) :: B(ldb,*)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(m,n)
real*8 , intent(out) :: C(ldc,*)
real*8, allocatable :: AT(:,:), BT(:,:), CT(:,:)
integer*4 :: qmckl_dgemm_N_N_f
integer*8 :: i,j,l, LDA_2, LDB_2
info = QMCKL_SUCCESS
if (TransA) then
allocate(AT(k,m))
do i = 1, m
do j = 1, k
allocate(AT(m,k))
do i = 1, k
do j = 1, m
AT(j,i) = A(i,j)
end do
end do
@ -114,9 +115,9 @@ integer function qmckl_dgemm_f(context, TransA, TransB, m, n, k, alpha, A, LDA,
endif
if (TransB) then
allocate(BT(n,k))
do i = 1, k
do j = 1, n
allocate(BT(k,n))
do i = 1, n
do j = 1, k
BT(j,i) = B(i,j)
end do
end do
@ -161,26 +162,75 @@ integer function qmckl_dgemm_f(context, TransA, TransB, m, n, k, alpha, A, LDA,
endif
if (TransA) then
if (alpha == 1.0d0 .and. beta == 0.0d0) then
C = matmul(AT,B)
else
C = beta*C + alpha*matmul(AT,B)
endif
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, AT, LDA_2, B, LDB_2, beta, c, LDC)
else if (TransB) then
if (alpha == 1.0d0 .and. beta == 0.0d0) then
C = matmul(A,BT)
else
C = beta*C + alpha*matmul(A,BT)
endif
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA_2, BT, LDB_2, beta, c, LDC)
else if (TransA .and. TransB) then
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, AT, LDA_2, BT, LDB_2, beta, c, LDC)
else
if (alpha == 1.0d0 .and. beta == 0.0d0) then
C = matmul(A,B)
else
C = beta*C + alpha*matmul(A,B)
endif
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA_2, B, LDB_2, beta, c, LDC)
endif
end function qmckl_dgemm_f
integer function qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA, B, LDB, beta, C, LDC) &
result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in) :: m, n, k
real*8 , intent(in) :: alpha, beta
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(lda,k)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(ldb,n)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(ldc,n)
integer*8 :: i,j,l, LDA_2, LDB_2
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (m <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (n <= 0_8) then
info = QMCKL_INVALID_ARG_5
return
endif
if (k <= 0_8) then
info = QMCKL_INVALID_ARG_6
return
endif
if (LDA /= m) then
info = QMCKL_INVALID_ARG_9
return
endif
if (LDB /= k) then
info = QMCKL_INVALID_ARG_10
return
endif
if (LDC /= m) then
info = QMCKL_INVALID_ARG_13
return
endif
if (alpha == 1.0d0 .and. beta == 0.0d0) then
C = matmul(A,B)
else
C = beta*C + alpha*matmul(A,B)
endif
end function qmckl_dgemm_N_N_f
#+end_src
*** C interface :noexport:
@ -393,6 +443,7 @@ integer function qmckl_invert_f(context, ma, na, LDA, A, det_l) &
case (4)
!DIR$ forceinline
call invert4(a,LDA,na,det_l)
case (3)
!DIR$ forceinline
call invert3(a,LDA,na,det_l)
@ -414,11 +465,184 @@ subroutine invert1(a,LDA,na,det_l)
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
call cofactor1(a,LDA,na,det_l)
end
subroutine invert2(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(2,2)
call cofactor2(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
a(1,1) = b(1,1)
a(1,2) = b(1,2)
a(2,1) = b(2,1)
a(2,2) = b(2,2)
end
subroutine invert3(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(3,3)
call cofactor3(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
end
subroutine invert4(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(4,4)
call cofactor4(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(1,4) = a(4,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(2,4) = a(4,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
b(3,4) = a(4,3)
b(4,1) = a(1,4)
b(4,2) = a(2,4)
b(4,3) = a(3,4)
b(4,4) = a(4,4)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(4,1) = b(4,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(4,2) = b(4,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
a(4,3) = b(4,3)
a(1,4) = b(1,4)
a(2,4) = b(2,4)
a(3,4) = b(3,4)
a(4,4) = b(4,4)
end
subroutine invert5(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(5,5)
call cofactor5(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(1,4) = a(4,1)
b(1,5) = a(5,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(2,4) = a(4,2)
b(2,5) = a(5,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
b(3,4) = a(4,3)
b(3,5) = a(5,3)
b(4,1) = a(1,4)
b(4,2) = a(2,4)
b(4,3) = a(3,4)
b(4,4) = a(4,4)
b(4,5) = a(5,4)
b(5,1) = a(1,5)
b(5,2) = a(2,5)
b(5,3) = a(3,5)
b(5,4) = a(4,5)
b(5,5) = a(5,5)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(4,1) = b(4,1)
a(5,1) = b(5,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(4,2) = b(4,2)
a(5,2) = b(5,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
a(4,3) = b(4,3)
a(5,3) = b(5,3)
a(1,4) = b(1,4)
a(2,4) = b(2,4)
a(3,4) = b(3,4)
a(4,4) = b(4,4)
a(5,4) = b(5,4)
a(1,5) = b(1,5)
a(2,5) = b(2,5)
a(3,5) = b(3,5)
a(4,5) = b(4,5)
a(5,5) = b(5,5)
end
subroutine cofactor1(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
det_l = a(1,1)
a(1,1) = 1.d0
end
subroutine invert2(a,LDA,na,det_l)
subroutine cofactor2(a,LDA,na,det_l)
implicit none
double precision :: a (LDA,na)
integer*8 :: LDA
@ -437,7 +661,7 @@ subroutine invert2(a,LDA,na,det_l)
a(2,2) = b(1,1)
end
subroutine invert3(a,LDA,na,det_l)
subroutine cofactor3(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
@ -468,7 +692,7 @@ subroutine invert3(a,LDA,na,det_l)
end
subroutine invert4(a,LDA,na,det_l)
subroutine cofactor4(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
@ -518,7 +742,7 @@ subroutine invert4(a,LDA,na,det_l)
end
subroutine invert5(a,LDA,na,det_l)
subroutine cofactor5(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA

View File

@ -1040,19 +1040,19 @@ integer function qmckl_compute_det_vgl_beta_f(context, &
do imo = 1, beta_num
mo_id = mo_index_beta(imo, iwalk, idet)
! Value
det_vgl_beta(imo, ielec, 1, iwalk, idet) = mo_vgl(mo_id, ielec, 1)
det_vgl_beta(imo, ielec, 1, iwalk, idet) = mo_vgl(mo_id, alpha_num + ielec, 1)
! Grad_x
det_vgl_beta(imo, ielec, 2, iwalk, idet) = mo_vgl(mo_id, ielec, 2)
det_vgl_beta(imo, ielec, 2, iwalk, idet) = mo_vgl(mo_id, alpha_num + ielec, 2)
! Grad_y
det_vgl_beta(imo, ielec, 3, iwalk, idet) = mo_vgl(mo_id, ielec, 3)
det_vgl_beta(imo, ielec, 3, iwalk, idet) = mo_vgl(mo_id, alpha_num + ielec, 3)
! Grad_z
det_vgl_beta(imo, ielec, 4, iwalk, idet) = mo_vgl(mo_id, ielec, 4)
det_vgl_beta(imo, ielec, 4, iwalk, idet) = mo_vgl(mo_id, alpha_num + ielec, 4)
! Lap
det_vgl_beta(imo, ielec, 5, iwalk, idet) = mo_vgl(mo_id, ielec, 5)
det_vgl_beta(imo, ielec, 5, iwalk, idet) = mo_vgl(mo_id, alpha_num + ielec, 5)
end do
end do
end do
@ -1726,7 +1726,7 @@ integer function qmckl_compute_det_inv_matrix_alpha_f(context, &
double precision, intent(inout) :: det_inv_matrix_alpha(alpha_num, alpha_num, walk_num, det_num_alpha)
double precision,dimension(:,:),allocatable :: matA
double precision :: det_l
integer*8 :: idet, iwalk, ielec, mo_id, imo, LDA, res
integer*8 :: idet, iwalk, ielec, mo_id, imo, LDA, res, i, j
allocate(matA(alpha_num, alpha_num))
@ -1756,7 +1756,7 @@ integer function qmckl_compute_det_inv_matrix_alpha_f(context, &
do idet = 1, det_num_alpha
do iwalk = 1, walk_num
! Value
matA = det_vgl_alpha(1:alpha_num, 1:alpha_num, 1, iwalk, idet)
matA(1:alpha_num,1:alpha_num) = det_vgl_alpha(1:alpha_num, 1:alpha_num, 1, iwalk, idet)
res = qmckl_invert(context, alpha_num, alpha_num, LDA, matA, det_l)
det_adj_matrix_alpha(1:alpha_num, 1:alpha_num, iwalk, idet) = matA
det_inv_matrix_alpha(1:alpha_num, 1:alpha_num, iwalk, idet) = matA/det_l
@ -1887,7 +1887,7 @@ integer function qmckl_compute_det_inv_matrix_beta_f(context, &
do idet = 1, det_num_beta
do iwalk = 1, walk_num
! Value
matA = det_vgl_beta(1:beta_num, 1:beta_num, 1, iwalk, idet)
matA(1:beta_num,1:beta_num) = det_vgl_beta(1:beta_num, 1:beta_num, 1, iwalk, idet)
res = qmckl_invert(context, beta_num, beta_num, LDA, matA, det_l)
det_adj_matrix_beta(1:beta_num, 1:beta_num, iwalk, idet) = matA
det_inv_matrix_beta(1:beta_num, 1:beta_num, iwalk, idet) = matA/det_l

View File

@ -1727,7 +1727,7 @@ integer function qmckl_compute_ee_potential_f(context, elec_num, walk_num, &
ee_pot = 0.0d0
do nw=1,walk_num
do j=1,elec_num
do j=2,elec_num
do i=1,j-1
ee_pot(nw) = ee_pot(nw) + 1.0d0/(ee_distance(i,j,nw))
end do

View File

@ -245,6 +245,7 @@ qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context);
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context) {
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
@ -286,6 +287,21 @@ qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context) {
"qmckl_mo_basis",
NULL);
}
rc = qmckl_provide_det_inv_matrix_alpha(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_det_inv_matrix_alpha",
NULL);
}
rc = qmckl_provide_det_inv_matrix_beta(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_det_inv_matrix_beta",
NULL);
}
/* Compute if necessary */
if (ctx->electron.coord_new_date > ctx->local_energy.e_kin_date) {
@ -306,7 +322,6 @@ qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context) {
ctx->local_energy.e_kin = e_kin;
}
qmckl_exit_code rc;
if (ctx->det.type == 'G') {
rc = qmckl_compute_kinetic_energy(context,
ctx->det.walk_num,
@ -319,8 +334,10 @@ qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context) {
ctx->det.mo_index_beta,
ctx->mo_basis.mo_num,
ctx->mo_basis.mo_vgl,
ctx->det.det_adj_matrix_alpha,
ctx->det.det_adj_matrix_beta,
ctx->det.det_value_alpha,
ctx->det.det_value_beta,
ctx->det.det_inv_matrix_alpha,
ctx->det.det_inv_matrix_beta,
ctx->local_energy.e_kin);
} else {
return qmckl_failwith( context,
@ -358,14 +375,16 @@ qmckl_exit_code qmckl_provide_kinetic_energy(qmckl_context context) {
| ~int64_t~ | ~mo_index_beta[det_num_beta][walk_num][beta_num]~ | in | MO indices for electrons |
| ~int64_t~ | ~mo_num~ | in | Number of MOs |
| ~double~ | ~mo_vgl[5][elec_num][mo_num]~ | in | Value, gradients and Laplacian of the MOs |
| ~double~ | ~det_adj_matrix_alpha[det_num_alpha][walk_num][alpha_num][alpha_num]~ | in | Value, gradients and Laplacian of the Det |
| ~double~ | ~det_adj_matrix_beta[det_num_beta][walk_num][beta_num][beta_num]~ | in | Value, gradients and Laplacian of the Det |
| ~double~ | ~det_value_alpha[det_num_alpha][walk_num]~ | in | Det of wavefunction |
| ~double~ | ~det_value_beta[det_num_beta][walk_num]~ | in | Det of wavefunction |
| ~double~ | ~det_inv_matrix_alpha[det_num_alpha][walk_num][alpha_num][alpha_num]~ | in | Value, gradients and Laplacian of the Det |
| ~double~ | ~det_inv_matrix_beta[det_num_beta][walk_num][beta_num][beta_num]~ | in | Value, gradients and Laplacian of the Det |
| ~double~ | ~e_kin[walk_num]~ | out | Kinetic energy |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_kinetic_energy_f(context, walk_num, &
det_num_alpha, det_num_beta, alpha_num, beta_num, elec_num, mo_index_alpha, mo_index_beta, &
mo_num, mo_vgl, det_adj_matrix_alpha, det_adj_matrix_beta, e_kin) &
mo_num, mo_vgl, det_value_alpha, det_value_beta, det_inv_matrix_alpha, det_inv_matrix_beta, e_kin) &
result(info)
use qmckl
implicit none
@ -380,9 +399,12 @@ integer function qmckl_compute_kinetic_energy_f(context, walk_num, &
integer*8, intent(in) :: mo_index_alpha(alpha_num, walk_num, det_num_alpha)
integer*8, intent(in) :: mo_index_beta(beta_num, walk_num, det_num_beta)
double precision, intent(in) :: mo_vgl(mo_num, elec_num, 5)
double precision, intent(in) :: det_adj_matrix_alpha(alpha_num, alpha_num, walk_num, det_num_alpha)
double precision, intent(in) :: det_adj_matrix_beta(beta_num, beta_num, walk_num, det_num_beta)
double precision, intent(in) :: det_value_alpha(walk_num, det_num_alpha)
double precision, intent(in) :: det_value_beta(walk_num, det_num_beta)
double precision, intent(in) :: det_inv_matrix_alpha(alpha_num, alpha_num, walk_num, det_num_alpha)
double precision, intent(in) :: det_inv_matrix_beta(beta_num, beta_num, walk_num, det_num_beta)
double precision, intent(inout) :: e_kin(walk_num)
double precision :: tmp_e
integer*8 :: idet, iwalk, ielec, mo_id, imo
info = QMCKL_SUCCESS
@ -416,20 +438,34 @@ integer function qmckl_compute_kinetic_energy_f(context, walk_num, &
do idet = 1, det_num_alpha
do iwalk = 1, walk_num
! Alpha part
tmp_e = 0.0d0
do imo = 1, alpha_num
do ielec = 1, alpha_num
mo_id = mo_index_alpha(ielec, iwalk, idet)
e_kin(iwalk) = e_kin(iwalk) - 0.5d0 * det_adj_matrix_alpha(imo, ielec, iwalk, idet) * &
mo_id = mo_index_alpha(imo, iwalk, idet)
e_kin(iwalk) = e_kin(iwalk) - 0.5d0 * det_inv_matrix_alpha(imo, ielec, iwalk, idet) * &
mo_vgl(mo_id, ielec, 5)
!print *,"det alpha = ",det_inv_matrix_alpha(imo,ielec,iwalk,idet)
!print *,mo_vgl(mo_id,ielec,5)
!!print *," det val = ",det_value_alpha(iwalk,idet)
!tmp_e = tmp_e - 0.5d0 * det_inv_matrix_alpha(imo, ielec, iwalk, idet) * &
! mo_vgl(mo_id, ielec, 5)
end do
!print *,"e_kin = ",tmp_e
end do
! Beta part
tmp_e = 0.0d0
do imo = 1, beta_num
do ielec = 1, beta_num
mo_id = mo_index_beta(ielec, iwalk, idet)
e_kin(iwalk) = e_kin(iwalk) - 0.5d0 * det_adj_matrix_beta(imo, ielec, iwalk, idet) * &
mo_vgl(mo_id, ielec, 5)
mo_id = mo_index_beta(imo, iwalk, idet)
e_kin(iwalk) = e_kin(iwalk) - 0.5d0 * det_inv_matrix_beta(imo, ielec, iwalk, idet) * &
mo_vgl(mo_id, alpha_num + ielec, 5)
!print *,"det beta = ",det_inv_matrix_beta(imo,ielec,iwalk,idet)
!print *,mo_vgl(mo_id,alpha_num+ielec,5)
!!print *," det val = ",det_value_alpha(iwalk,idet)
!tmp_e = tmp_e - 0.5d0 * det_inv_matrix_beta(imo, ielec, iwalk, idet) * &
! mo_vgl(mo_id, alpha_num + ielec, 5)
end do
!print *,"e_kin = ",tmp_e
end do
end do
end do
@ -453,8 +489,10 @@ end function qmckl_compute_kinetic_energy_f
const int64_t* mo_index_beta,
const int64_t mo_num,
const double* mo_vgl,
const double* det_adj_matrix_alpha,
const double* det_adj_matrix_beta,
const double* det_value_alpha,
const double* det_value_beta,
const double* det_inv_matrix_alpha,
const double* det_inv_matrix_beta,
double* const e_kin );
#+end_src
@ -474,8 +512,10 @@ end function qmckl_compute_kinetic_energy_f
mo_index_beta, &
mo_num, &
mo_vgl, &
det_adj_matrix_alpha, &
det_adj_matrix_beta, &
det_value_alpha, &
det_value_beta, &
det_inv_matrix_alpha, &
det_inv_matrix_beta, &
e_kin) &
bind(C) result(info)
@ -493,8 +533,10 @@ end function qmckl_compute_kinetic_energy_f
integer (c_int64_t) , intent(in) :: mo_index_beta(beta_num,walk_num,det_num_beta)
integer (c_int64_t) , intent(in) , value :: mo_num
real (c_double ) , intent(in) :: mo_vgl(mo_num,elec_num,5)
real (c_double ) , intent(in) :: det_adj_matrix_alpha(alpha_num,alpha_num,walk_num,det_num_alpha)
real (c_double ) , intent(in) :: det_adj_matrix_beta(beta_num,beta_num,walk_num,det_num_beta)
real (c_double ) , intent(in) :: det_value_alpha(walk_num,det_num_alpha)
real (c_double ) , intent(in) :: det_value_beta(walk_num,det_num_beta)
real (c_double ) , intent(in) :: det_inv_matrix_alpha(alpha_num,alpha_num,walk_num,det_num_alpha)
real (c_double ) , intent(in) :: det_inv_matrix_beta(beta_num,beta_num,walk_num,det_num_beta)
real (c_double ) , intent(out) :: e_kin(walk_num)
integer(c_int32_t), external :: qmckl_compute_kinetic_energy_f
@ -510,8 +552,10 @@ end function qmckl_compute_kinetic_energy_f
mo_index_beta, &
mo_num, &
mo_vgl, &
det_adj_matrix_alpha, &
det_adj_matrix_beta, &
det_value_alpha, &
det_value_beta, &
det_inv_matrix_alpha, &
det_inv_matrix_beta, &
e_kin)
end function qmckl_compute_kinetic_energy
@ -830,14 +874,6 @@ qmckl_exit_code qmckl_provide_potential_energy(qmckl_context context) {
NULL);
}
rc = qmckl_provide_ee_potential(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_ee_potential",
NULL);
}
rc = qmckl_provide_nucleus_repulsion(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context,
@ -958,6 +994,7 @@ integer function qmckl_compute_potential_energy_f(context, walk_num, &
endif
e_pot = 0.0d0 + repulsion
print *,repulsion
do iwalk = 1, walk_num
e_pot(iwalk) = e_pot(iwalk) + ee_pot(iwalk) + en_pot(iwalk)
end do

View File

@ -511,7 +511,7 @@ qmckl_exit_code qmckl_provide_mo_vgl(qmckl_context context)
| ~int64_t~ | ~ao_num~ | in | Number of AOs |
| ~int64_t~ | ~mo_num~ | in | Number of MOs |
| ~int64_t~ | ~elec_num~ | in | Number of electrons |
| ~double~ | ~coef_normalized[ao_num][mo_num]~ | in | AO to MO transformation matrix |
| ~double~ | ~coef_normalized[mo_num][ao_num]~ | in | AO to MO transformation matrix |
| ~double~ | ~ao_vgl[5][elec_num][ao_num]~ | in | Value, gradients and Laplacian of the AOs |
| ~double~ | ~mo_vgl[5][elec_num][mo_num]~ | out | Value, gradients and Laplacian of the MOs |
@ -527,22 +527,26 @@ integer function qmckl_compute_mo_basis_vgl_f(context, &
integer*8 , intent(in) :: ao_num, mo_num
integer*8 , intent(in) :: elec_num
double precision , intent(in) :: ao_vgl(ao_num,elec_num,5)
double precision , intent(in) :: coef_normalized(mo_num,ao_num)
double precision , intent(in) :: coef_normalized(ao_num,mo_num)
double precision , intent(out) :: mo_vgl(mo_num,elec_num,5)
logical*8 :: TransA, TransB
double precision,dimension(:,:),allocatable :: mo_vgl_big
double precision,dimension(:,:),allocatable :: ao_vgl_big
!double precision,dimension(:,:),allocatable :: coef_trans
!double precision,dimension(:),allocatable :: coef_all
double precision :: alpha, beta
integer :: info_qmckl_dgemm_value
integer*8 :: M, N, K, LDA, LDB, LDC, i,j
integer*8 :: M, N, K, LDA, LDB, LDC, i,j, idx
integer*8 :: inucl, iprim, iwalk, ielec, ishell
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
allocate(mo_vgl_big(mo_num,elec_num*5))
allocate(ao_vgl_big(ao_num,elec_num*5))
!allocate(coef_all(mo_num*ao_num))
!allocate(coef_trans(mo_num,ao_num))
TransA = .False.
TransA = .True.
TransB = .False.
alpha = 1.0d0
beta = 0.0d0
@ -556,15 +560,29 @@ integer function qmckl_compute_mo_basis_vgl_f(context, &
M = mo_num
N = elec_num*5
K = ao_num * 1_8
LDA = M
LDB = K
LDC = M
LDA = size(coef_normalized,1)
idx = 0
!do j = 1,ao_num
!do i = 1,mo_num
! idx = idx + 1
! coef_all(idx) = coef_normalized(i,j)
!end do
!end do
!idx = 0
!do j = 1,mo_num
!do i = 1,ao_num
! idx = idx + 1
! coef_trans(j,i) = coef_all(idx)
!end do
!end do
ao_vgl_big = reshape(ao_vgl(:, :, :),(/ao_num, elec_num*5_8/))
LDB = size(ao_vgl_big,1)
LDC = size(mo_vgl_big,1)
info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, &
coef_normalized,size(coef_normalized,1) * 1_8, &
ao_vgl_big, LDB, &
coef_normalized,size(coef_normalized,1)*1_8, &
ao_vgl_big, size(ao_vgl_big,1)*1_8, &
beta, &
mo_vgl_big,LDC)
mo_vgl = reshape(mo_vgl_big,(/mo_num,elec_num,5_8/))
@ -605,8 +623,7 @@ end function qmckl_compute_mo_basis_vgl_f
integer (c_int64_t) , intent(in) , value :: ao_num
integer (c_int64_t) , intent(in) , value :: mo_num
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) :: coef_normalized(mo_num,ao_num)
real (c_double ) , intent(in) :: coef_normalized(ao_num,mo_num)
real (c_double ) , intent(in) :: ao_vgl(ao_num,elec_num,5)
real (c_double ) , intent(out) :: mo_vgl(mo_num,elec_num,5)