mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2024-12-22 20:36:01 +01:00
Added Woobury 3x3, 2x2 and Sherman-Morrison-Splitting mixed kernels. Compiles fine but test still fail. #25
This commit is contained in:
parent
3f4ace0425
commit
159fb149a4
@ -908,16 +908,19 @@ qmckl_exit_code qmckl_sherman_morrison_splitting_c(const qmckl_context context,
|
||||
// std::cerr << "Called qmckl_sherman_morrison_splitting with " << N_updates << " updates" << std::endl;
|
||||
// #endif
|
||||
|
||||
qmckl_context local_context;
|
||||
local_context = qmckl_context_create();
|
||||
qmckl_exit_code rc;
|
||||
|
||||
double later_updates[Dim * N_updates];
|
||||
uint64_t later_index[N_updates];
|
||||
uint64_t later = 0;
|
||||
|
||||
qmckl_exit_code smss = qmckl_slagel_splitting_c(Dim, N_updates, Updates, Updates_index,
|
||||
rc = qmckl_slagel_splitting_c(Dim, N_updates, Updates, Updates_index,
|
||||
Slater_inv, later_updates, later_index, &later);
|
||||
|
||||
if (later > 0) {
|
||||
qmckl_context context = qmckl_context_create();
|
||||
qmckl_exit_code sms = qmckl_sherman_morrison_splitting_c(context, Dim, later,
|
||||
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later,
|
||||
later_updates, later_index, Slater_inv);
|
||||
}
|
||||
|
||||
@ -997,6 +1000,286 @@ rc = qmckl_sherman_morrison_splitting_c(context, splitting_Dim, splitting_N_upda
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
#+end_src
|
||||
|
||||
* Sherman-Morrison with Woodbury 2x2 and update splitting
|
||||
|
||||
This is like naïve Sherman-Morrising, but whenever a denominator is
|
||||
found that is too close to zero the update is split in half. Then one
|
||||
half is applied immediately and the other have is ket for later. When
|
||||
all the updates have been processed, the list of split updates that
|
||||
have been kept for later are processed. If again applying an update
|
||||
results in a denominator that is too close to zero, it is split in
|
||||
half again. One half is applied immediately and one half is kept for
|
||||
later. The algorithm is done when no more updates have been kept for
|
||||
later. This recursion will always end in a finite number of steps,
|
||||
unless the last original update causes a singular Slater-matrix.
|
||||
|
||||
** ~qmckl_sherman_morrison_smw2s~
|
||||
:PROPERTIES:
|
||||
:Name: qmckl_sherman_morrison_smw2s
|
||||
:CRetType: qmckl_exit_code
|
||||
:FRetType: qmckl_exit_code
|
||||
:END:
|
||||
|
||||
This is the simplest of the available Sherman-Morrison-Woodbury
|
||||
kernels in QMCkl. It applies rank-1 updates one by one in the order
|
||||
that is given. It only checks if the denominator in the
|
||||
Sherman-Morrison formula is not too close to zero (and exit with an
|
||||
error if it does) during the application of an update.
|
||||
|
||||
#+NAME: qmckl_sherman_morrison_smw2s_args
|
||||
| qmckl_context | context | in | Global state |
|
||||
| uint64_t | Dim | in | Leading dimension of Slater_inv |
|
||||
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
|
||||
| double | Updates[N_updates*Dim] | in | Array containing the updates |
|
||||
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
|
||||
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
|
||||
|
||||
*** Requirements
|
||||
|
||||
Add description of the input variables. (see for e.g. qmckl_distance.org)
|
||||
|
||||
*** C header
|
||||
|
||||
#+CALL: generate_c_header(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
|
||||
*** Source Fortran
|
||||
|
||||
|
||||
*** Source C
|
||||
|
||||
#+begin_src c :tangle (eval c) :comments org
|
||||
#include <stdbool.h>
|
||||
#include "qmckl.h"
|
||||
|
||||
qmckl_exit_code qmckl_sherman_morrison_smw2s_c(const qmckl_context context,
|
||||
const uint64_t Dim,
|
||||
const uint64_t N_updates,
|
||||
const double* Updates,
|
||||
const uint64_t* Updates_index,
|
||||
double * Slater_inv) {
|
||||
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
|
||||
// std::cerr << "Called qmckl_sherman_morrison_woodbury_2 with " << N_updates
|
||||
// << " updates" << std::endl;
|
||||
// #endif
|
||||
|
||||
qmckl_context local_context;
|
||||
local_context = qmckl_context_create();
|
||||
qmckl_exit_code rc;
|
||||
|
||||
uint64_t n_of_2blocks = N_updates / 2;
|
||||
uint64_t remainder = N_updates % 2;
|
||||
uint64_t length_2block = 2 * Dim;
|
||||
uint64_t length_1block = 1 * Dim;
|
||||
|
||||
// Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with
|
||||
// Woodbury 2x2 kernel
|
||||
double later_updates[Dim * N_updates];
|
||||
uint64_t later_index[N_updates];
|
||||
uint64_t later = 0;
|
||||
if (n_of_2blocks > 0) {
|
||||
for (uint64_t i = 0; i < n_of_2blocks; i++) {
|
||||
double *Updates_2block = &Updates[i * length_2block];
|
||||
uint64_t *Updates_index_2block = &Updates_index[i * 2];
|
||||
rc = qmckl_woodbury_2_c(local_context, Dim, Updates_2block, Updates_index_2block, Slater_inv);
|
||||
if (rc != 0) { // Send the entire block to slagel_splitting
|
||||
uint64_t l = 0;
|
||||
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
|
||||
Slater_inv, later_updates + (Dim * later), later_index + later, &l);
|
||||
later = later + l;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (remainder == 1) { // Apply last remaining update with slagel_splitting
|
||||
double *Updates_1block = &Updates[n_of_2blocks * length_2block];
|
||||
uint64_t *Updates_index_1block = &Updates_index[2 * n_of_2blocks];
|
||||
uint64_t l = 0;
|
||||
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
|
||||
Slater_inv, later_updates + (Dim * later), later_index + later, &l);
|
||||
later = later + l;
|
||||
}
|
||||
|
||||
if (later > 0) {
|
||||
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later, later_updates, later_index, Slater_inv);
|
||||
}
|
||||
}
|
||||
|
||||
#+end_src
|
||||
|
||||
*** Performance...
|
||||
|
||||
** C interface :noexport:
|
||||
|
||||
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
|
||||
|
||||
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_smw2s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
|
||||
|
||||
*** Test :noexport:
|
||||
|
||||
[TODO: FMJC] Write tests for the Sherman-Morrison part.
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
const uint64_t smw2s_Dim = 3;
|
||||
const uint64_t smw2s_N_updates = 3;
|
||||
const uint64_t smw2s_Updates_index[3] = {1, 1, 1};
|
||||
const double smw2s_Updates[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
double smw2s_Slater_inv[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
|
||||
// [TODO : FMJC ] add realistic tests
|
||||
|
||||
rc = qmckl_sherman_morrison_smw2s_c(context, smw2s_Dim, smw2s_N_updates,
|
||||
smw2s_Updates, smw2s_Updates_index, smw2s_Slater_inv);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
#+end_src
|
||||
|
||||
* Sherman-Morrison with Woodbury 3x3, 2x2 and update splitting
|
||||
|
||||
This is like naïve Sherman-Morrising, but whenever a denominator is
|
||||
found that is too close to zero the update is split in half. Then one
|
||||
half is applied immediately and the other have is ket for later. When
|
||||
all the updates have been processed, the list of split updates that
|
||||
have been kept for later are processed. If again applying an update
|
||||
results in a denominator that is too close to zero, it is split in
|
||||
half again. One half is applied immediately and one half is kept for
|
||||
later. The algorithm is done when no more updates have been kept for
|
||||
later. This recursion will always end in a finite number of steps,
|
||||
unless the last original update causes a singular Slater-matrix.
|
||||
|
||||
** ~qmckl_sherman_morrison_smw32s~
|
||||
:PROPERTIES:
|
||||
:Name: qmckl_sherman_morrison_smw32s
|
||||
:CRetType: qmckl_exit_code
|
||||
:FRetType: qmckl_exit_code
|
||||
:END:
|
||||
|
||||
This is the simplest of the available Sherman-Morrison-Woodbury
|
||||
kernels in QMCkl. It applies rank-1 updates one by one in the order
|
||||
that is given. It only checks if the denominator in the
|
||||
Sherman-Morrison formula is not too close to zero (and exit with an
|
||||
error if it does) during the application of an update.
|
||||
|
||||
#+NAME: qmckl_sherman_morrison_smw32s_args
|
||||
| qmckl_context | context | in | Global state |
|
||||
| uint64_t | Dim | in | Leading dimension of Slater_inv |
|
||||
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
|
||||
| double | Updates[N_updates*Dim] | in | Array containing the updates |
|
||||
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
|
||||
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
|
||||
|
||||
*** Requirements
|
||||
|
||||
Add description of the input variables. (see for e.g. qmckl_distance.org)
|
||||
|
||||
*** C header
|
||||
|
||||
#+CALL: generate_c_header(table=qmckl_sherman_morrison_smw32s_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
|
||||
|
||||
|
||||
*** Source Fortran
|
||||
|
||||
|
||||
*** Source C
|
||||
|
||||
#+begin_src c :tangle (eval c) :comments org
|
||||
#include <stdbool.h>
|
||||
#include "qmckl.h"
|
||||
|
||||
qmckl_exit_code qmckl_sherman_morrison_smw32s_c(const qmckl_context context,
|
||||
const uint64_t Dim,
|
||||
const uint64_t N_updates,
|
||||
const double* Updates,
|
||||
const uint64_t* Updates_index,
|
||||
double * Slater_inv) {
|
||||
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
|
||||
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
|
||||
// << " updates" << std::endl;
|
||||
// #endif
|
||||
|
||||
qmckl_context local_context;
|
||||
local_context = qmckl_context_create();
|
||||
qmckl_exit_code rc;
|
||||
|
||||
uint64_t n_of_3blocks = N_updates / 3;
|
||||
uint64_t remainder = N_updates % 3;
|
||||
uint64_t length_3block = 3 * Dim;
|
||||
uint64_t length_2block = 2 * Dim;
|
||||
uint64_t length_1block = 1 * Dim;
|
||||
|
||||
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
|
||||
// Woodbury 3x3 kernel
|
||||
double later_updates[Dim * N_updates];
|
||||
uint64_t later_index[N_updates];
|
||||
uint64_t later = 0;
|
||||
if (n_of_3blocks > 0) {
|
||||
for (uint64_t i = 0; i < n_of_3blocks; i++) {
|
||||
double *Updates_3block = &Updates[i * length_3block];
|
||||
uint64_t *Updates_index_3block = &Updates_index[i * 3];
|
||||
rc = qmckl_woodbury_3_c(local_context, Dim, Updates_3block, Updates_index_3block, Slater_inv);
|
||||
if (rc != 0) { // Send the entire block to slagel_splitting
|
||||
uint64_t l = 0;
|
||||
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
|
||||
Slater_inv, later_updates + (Dim * later), later_index + later, &l);
|
||||
later = later + l;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
|
||||
double *Updates_2block = &Updates[n_of_3blocks * length_3block];
|
||||
uint64_t *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
|
||||
rc = qmckl_woodbury_2_c(local_context, Dim, Updates_2block, Updates_index_2block, Slater_inv);
|
||||
if (rc != 0) { // Send the entire block to slagel_splitting
|
||||
uint64_t l = 0;
|
||||
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
|
||||
Slater_inv, later_updates + (Dim * later), later_index + later, &l);
|
||||
later = later + l;
|
||||
}
|
||||
}
|
||||
else if (remainder == 1) { // Apply last remaining update with slagel_splitting
|
||||
double *Updates_1block = &Updates[n_of_3blocks * length_3block];
|
||||
uint64_t *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
|
||||
uint64_t l = 0;
|
||||
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
|
||||
Slater_inv, later_updates + (Dim * later), later_index + later, &l);
|
||||
later = later + l;
|
||||
}
|
||||
|
||||
if (later > 0) {
|
||||
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later, later_updates, later_index, Slater_inv);
|
||||
}
|
||||
}
|
||||
|
||||
#+end_src
|
||||
|
||||
*** Performance...
|
||||
|
||||
** C interface :noexport:
|
||||
|
||||
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_smw32s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
|
||||
|
||||
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_smw32s_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
|
||||
|
||||
*** Test :noexport:
|
||||
|
||||
[TODO: FMJC] Write tests for the Sherman-Morrison part.
|
||||
|
||||
|
||||
#+begin_src c :tangle (eval c_test)
|
||||
const uint64_t smw32s_Dim = 3;
|
||||
const uint64_t smw32s_N_updates = 3;
|
||||
const uint64_t smw32s_Updates_index[3] = {1, 1, 1};
|
||||
const double smw32s_Updates[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
double smw32s_Slater_inv[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
|
||||
// [TODO : FMJC ] add realistic tests
|
||||
|
||||
rc = qmckl_sherman_morrison_smw32s_c(context, smw32s_Dim, smw32s_N_updates,
|
||||
smw32s_Updates, smw32s_Updates_index, smw32s_Slater_inv);
|
||||
assert(rc == QMCKL_SUCCESS);
|
||||
#+end_src
|
||||
|
||||
|
||||
|
||||
* End of files
|
||||
|
Loading…
Reference in New Issue
Block a user