1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-10 13:08:29 +01:00

Working on factor_en_deriv_e. #22

This commit is contained in:
vijay gopal chilkuri 2021-07-06 16:20:17 +05:30
parent 7c226d0a99
commit 0f761ae86c
2 changed files with 351 additions and 25 deletions

View File

@ -84,7 +84,7 @@ int main() {
| ~ee_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][num][num]~ | Electron-electron rescaled distances derivatives |
| ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][nucl_num][num]~ | Electron-electron rescaled distances derivatives |
| ~en_distance_rescaled_deriv_e_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
** Data structure
@ -2112,7 +2112,7 @@ assert(fabs(en_distance_rescaled[1][0][1] - 0.9584331688679852) < 1.e-12);
The rescaled distances which is given as $R = (1 - \exp{-\kappa r})/\kappa$
needs to be perturbed with respect to the nuclear coordinates.
This data is stored in the ~en_distance_rescaled_deriv_e~ tensor. The
The first three elements of this three index tensor ~[4][num][num]~ gives the
The first three elements of this three index tensor ~[4][nucl_num][elec_num]~ gives the
derivatives in the x, y, and z directions $dx, dy, dz$ and the last index
gives the Laplacian $\partial x^2 + \partial y^2 + \partial z^2$.

View File

@ -2129,7 +2129,6 @@ assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12);
#+end_src
** Electron-nucleus component \(f_{en}\)
Calculate the electron-electron jastrow component ~factor_en~ using the ~aord_vector~
@ -2422,6 +2421,333 @@ assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12);
#+end_src
** Electron-nucleus component derivative \(f'_{en}\)
Calculate the electron-electron jastrow component ~factor_en_deriv_e~ derivative
with respect to the electron coordinates using the ~en_distance_rescaled~ and
~en_distance_rescaled_deriv_e~ which are already calculated previously.
TODO: write equations.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_en_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
memcpy(factor_en_deriv_e, ctx->jastrow.factor_en_deriv_e, ctx->electron.walk_num*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_en_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_en_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.factor_en_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_en_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_en_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_en_deriv_e",
NULL);
}
ctx->jastrow.factor_en_deriv_e = factor_en_deriv_e;
}
qmckl_exit_code rc =
qmckl_compute_factor_en_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector,
ctx->jastrow.aord_num,
ctx->jastrow.aord_vector,
ctx->electron.en_distance_rescaled,
ctx->electron.en_distance_rescaled_deriv_e,
ctx->jastrow.factor_en_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_en_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_en_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_en_deriv_e_args
| qmckl_context | context | in | Global state |
| int64_t | walk_num | in | Number of walkers |
| int64_t | elec_num | in | Number of electrons |
| int64_t | nucl_num | in | Number of nucleii |
| int64_t | type_nucl_num | in | Number of unique nuclei |
| int64_t | type_nucl_vector[type_nucl_num] | in | IDs of unique nucleii |
| int64_t | aord_num | in | Number of coefficients |
| double | aord_vector[aord_num + 1][type_nucl_num] | in | List of coefficients |
| double | en_distance_rescaled[walk_num][nucl_num][elec_num] | in | Electron-nucleus distances |
| double | en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num] | in | Electron-nucleus distance derivatives |
| double | factor_en_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, aord_vector, &
en_distance_rescaled, en_distance_rescaled_deriv_e, factor_en_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(type_nucl_num)
double precision , intent(in) :: aord_vector(aord_num, nucl_num)
double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num)
double precision , intent(in) :: en_distance_rescaled_deriv_e(walk_num, 4, elec_num, nucl_num)
double precision , intent(out) :: factor_en_deriv_e(walk_num,4,elec_num)
integer*8 :: i, a, p, ipar, nw, ii
double precision :: x, spin_fact, den, invden, invden2, invden3, xinv
double precision :: y, lap1, lap2, lap3, third
double precision, dimension(3) :: power_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num <= 0) then
info = QMCKL_INVALID_ARG_7
return
endif
factor_en_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(nw, i, a)
if(abs(x) < 1.0d-18) continue
power_ser_g = 0.0d0
den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / x
do ii = 1, 4
dx(ii) = en_distance_rescaled_deriv_e(nw, ii, i, a)
end do
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = en_distance_rescaled(nw, i, a)
do p = 2, aord_num
y = p * aord_vector(p + 1, type_nucl_vector(a)) * x
power_ser_g(ii) = power_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * en_distance_rescaled(nw, i, a)
end do
lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii)
factor_en_deriv_e(nw, ii, i) = factor_en_deriv_e(nw, ii, i) + aord_vector(1, type_nucl_vector(a)) &
* dx(ii) * invden2 &
+ power_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * aord_vector(1, type_nucl_vector(a)) * invden3
factor_en_deriv_e(nw, ii, i) = factor_en_deriv_e(nw, ii, i) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_en_deriv_e_f
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_factor_en_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_deriv_e,
double* const factor_en_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_en_deriv_e &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
aord_num, &
aord_vector, &
en_distance_rescaled, &
en_distance_rescaled_deriv_e, &
factor_en_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(type_nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: aord_vector(type_nucl_num,aord_num + 1)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,4,walk_num)
real (c_double ) , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_en_deriv_e_f
info = qmckl_compute_factor_en_deriv_e_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
aord_num, &
aord_vector, &
en_distance_rescaled, &
en_distance_rescaled_deriv_e, &
factor_en_deriv_e)
end function qmckl_compute_factor_en_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
factor_en = 0.0
for a in range(0,nucl_num):
for i in range(0,elec_num):
x = en_distance_rescaled[i][a]
pow_ser = 0.0
for p in range(2,aord_num+1):
x = x * en_distance_rescaled[i][a]
pow_ser = pow_ser + aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
factor_en = factor_en + aord_vector[0][type_nucl_vector[a]-1] * en_distance_rescaled[i][a] \
/ (1.0 + aord_vector[1][type_nucl_vector[a]-1] * en_distance_rescaled[i][a]) \
+ pow_ser
print("factor_en :",factor_en)
#+end_src
#+RESULTS:
: factor_en : -5.865822569188727
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
//double factor_en[walk_num];
//rc = qmckl_get_jastrow_factor_en(context, factor_en);
//
//// calculate factor_en
//assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12);
#+end_src
* End of files :noexport: