1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-05 11:00:36 +01:00

Finished ee_deriv_e. #20

This commit is contained in:
vijay gopal chilkuri 2021-07-06 12:57:14 +05:30
parent c9decf482f
commit 0df816c0ba
2 changed files with 83 additions and 51 deletions

View File

@ -88,8 +88,11 @@ int main() {
| ~double~ | ~factor_een[walk_num]~ | out | Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_een[walk_num]~ | out | Jastrow factor: electron-electron-nucleus part |
| ~double~ | ~factor_een_date~ | out | Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_een_date~ | out | Jastrow factor: electron-electron-nucleus part |
| ~double~ | ~factor_ee_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_ee_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~double~ | ~factor_ee_deriv_e_date~ | out | Keep track of the date for the derivative |
| ~double~ | ~factor_en_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_en_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~double~ | ~factor_en_deriv_e_date~ | out | Keep track of the date for the en derivative |
| ~double~ | ~factor_een_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part | | ~double~ | ~factor_een_deriv_e[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~double~ | ~factor_een_deriv_e_date~ | out | Keep track of the date for the een derivative |
computed data: computed data:
@ -169,6 +172,10 @@ ee_distance_rescaled = [
0.956034127544344 ,0.931221472309472 ,0.540903688625053 , 0.956034127544344 ,0.931221472309472 ,0.540903688625053 ,
0.000000000000000E+000]] 0.000000000000000E+000]]
# symmetrize it
for i in range(elec_num):
for j in range(elec_num):
ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i]
type_nucl_num = 1 type_nucl_num = 1
aord_num = 5 aord_num = 5
@ -250,6 +257,9 @@ typedef struct qmckl_jastrow_struct{
int64_t factor_ee_date; int64_t factor_ee_date;
int64_t factor_en_date; int64_t factor_en_date;
int64_t factor_een_date; int64_t factor_een_date;
int64_t factor_ee_deriv_e_date;
int64_t factor_en_deriv_e_date;
int64_t factor_een_deriv_e_date;
double * aord_vector; double * aord_vector;
double * bord_vector; double * bord_vector;
double * cord_vector; double * cord_vector;
@ -1625,7 +1635,8 @@ qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, doubl
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context; qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL); assert (ctx != NULL);
memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, ctx->electron.walk_num*sizeof(double)); int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num;
memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS; return QMCKL_SUCCESS;
} }
@ -1653,14 +1664,18 @@ qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context)
rc = qmckl_provide_ee_distance_rescaled(context); rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc; if(rc != QMCKL_SUCCESS) return rc;
/* Check if ee rescaled distance deriv e is provided */
rc = qmckl_provide_ee_distance_rescaled_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */ /* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_ee_date) { if (ctx->date > ctx->jastrow.factor_ee_deriv_e_date) {
/* Allocate array */ /* Allocate array */
if (ctx->jastrow.factor_ee_deriv_e == NULL) { if (ctx->jastrow.factor_ee_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double); mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double);
double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info); double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_ee_deriv_e == NULL) { if (factor_ee_deriv_e == NULL) {
@ -1709,9 +1724,9 @@ qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context)
| int64_t | bord_num | in | Number of coefficients | | int64_t | bord_num | in | Number of coefficients |
| double | bord_vector[bord_num + 1] | in | List of coefficients | | double | bord_vector[bord_num + 1] | in | List of coefficients |
| double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances |
| double | ee_distance_rescaled_deriv_e[4][walk_num][elec_num][elec_num] | in | Electron-electron distances | | double | ee_distance_rescaled_deriv_e[walk_num][4][elec_num][elec_num] | in | Electron-electron distances |
| double | asymp_jasb[2] | in | Electron-electron distances | | double | asymp_jasb[2] | in | Electron-electron distances |
| double | factor_ee_deriv_e[walk_num] | out | Electron-electron distances | | double | factor_ee_deriv_e[walk_num][4][elec_num] | out | Electron-electron distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes #+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, up_num, bord_num, & integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, up_num, bord_num, &
@ -1726,7 +1741,7 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num,
double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num) double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num)
double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num) double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num)
double precision , intent(in) :: asymp_jasb(2) double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee_deriv_e(walk_num, 4, elec_num) double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num)
integer*8 :: i, j, p, ipar, nw, ii integer*8 :: i, j, p, ipar, nw, ii
double precision :: x, spin_fact, y double precision :: x, spin_fact, y
@ -1763,18 +1778,19 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num,
do nw =1, walk_num do nw =1, walk_num
do j = 1, elec_num do j = 1, elec_num
do i = 1, elec_num do i = 1, elec_num
x = ee_distance_rescaled(nw,i,j) x = ee_distance_rescaled(nw, i, j)
if(abs(x) < 1.0d-18) cycle
pow_ser_g = 0.0d0 pow_ser_g = 0.0d0
spin_fact = 1.0d0 spin_fact = 1.0d0
den = 1.0d0 + bord_vector(2) * ee_distance_rescaled(nw, i, j) den = 1.0d0 + bord_vector(2) * x
invden = 1.0d0 / den invden = 1.0d0 / den
invden2 = invden * invden invden2 = invden * invden
invden3 = invden2 * invden invden3 = invden2 * invden
xinv = 1.0d0 / (ee_distance_rescaled(nw, i, j) + 1.0d0-18) xinv = 1.0d0 / (x + 1.0d-18)
ipar = 1 ipar = 1
do ii = 1, 4 do ii = 1, 4
dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, j, i) dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, i, j)
end do end do
if((i .LE. up_num .AND. j .LE. up_num ) .OR. & if((i .LE. up_num .AND. j .LE. up_num ) .OR. &
@ -1787,6 +1803,7 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num,
lap3 = 0.0d0 lap3 = 0.0d0
do ii = 1, 3 do ii = 1, 3
x = ee_distance_rescaled(nw, i, j) x = ee_distance_rescaled(nw, i, j)
if(abs(x) < 1.0d-18) cycle
do p = 2, bord_num do p = 2, bord_num
y = p * bord_vector(p + 1) * x y = p * bord_vector(p + 1) * x
pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii) pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii)
@ -1797,15 +1814,15 @@ integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num,
lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii) lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii)
factor_ee_deriv_e(nw, ii, j) = factor_ee_deriv_e(nw, ii, j) + spin_fact * bord_vector(1) * & factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + spin_fact * bord_vector(1) * &
dx(ii) * invden + pow_ser_g(ii) dx(ii) * invden2 + pow_ser_g(ii)
end do end do
ii = 4 ii = 4
lap2 = lap2 * dx(ii) * third lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii) lap3 = lap3 + den * dx(ii)
lap3 = lap3 + spin_fact * bord_vector(1) * invden3 lap3 = lap3 * (spin_fact * bord_vector(1) * invden3)
factor_ee_deriv_e(nw, ii, j) = factor_ee_deriv_e(nw, ii, j) + lap1 + lap2 + lap3 factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + lap1 + lap2 + lap3
end do end do
end do end do
@ -1859,9 +1876,9 @@ end function qmckl_compute_factor_ee_deriv_e_f
integer (c_int64_t) , intent(in) , value :: bord_num integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: bord_vector(bord_num + 1) real (c_double ) , intent(in) :: bord_vector(bord_num + 1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num) real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,walk_num,4) real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,4,walk_num)
real (c_double ) , intent(in) :: asymp_jasb(2) real (c_double ) , intent(in) :: asymp_jasb(2)
real (c_double ) , intent(out) :: factor_ee_deriv_e(walk_num) real (c_double ) , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_f integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_f
info = qmckl_compute_factor_ee_deriv_e_f & info = qmckl_compute_factor_ee_deriv_e_f &
@ -1893,79 +1910,85 @@ elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num): for i in range(elec_num):
for j in range(elec_num): for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(np.abs(elec_coord[i] - elec_coord[j])) elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float) elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num): for j in range(elec_num):
for i in range(elec_num): for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j] rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3): for ii in range(3):
elec_dist_deriv_e[ii, i, j] = (elec_coord[i][ii] - elec_coord[j][ii]) * rij_inv elec_dist_deriv_e[ii, i, j] = (elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
elec_dist_deriv_e[:, j, j] = 0.0 elec_dist_deriv_e[:, j, j] = 0.0
ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float) ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float)
for i in range(elec_num): for j in range(elec_num):
for j in range(elec_num): for i in range(elec_num):
f = 1.0 - kappa * ee_distance_rescaled[i][j] f = 1.0 - kappa * ee_distance_rescaled[i][j]
for ii in range(4): for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j] ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j]
ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \ ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \
(-kappa * ee_distance_rescaled_deriv_e[0][i][j]**2) + \ (-kappa * ee_distance_rescaled_deriv_e[0][i][j] * ee_distance_rescaled_deriv_e[0][i][j]) + \
(-kappa * ee_distance_rescaled_deriv_e[1][i][j]**2) + \ (-kappa * ee_distance_rescaled_deriv_e[1][i][j] * ee_distance_rescaled_deriv_e[1][i][j]) + \
(-kappa * ee_distance_rescaled_deriv_e[2][i][j]**2) (-kappa * ee_distance_rescaled_deriv_e[2][i][j] * ee_distance_rescaled_deriv_e[2][i][j])
for ii in range(4): for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f
third = 1.0 / 3.0 third = 1.0 / 3.0
factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float) dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(4),dtype=float)
for i in range(elec_num): for j in range(elec_num):
for j in range(elec_num): for i in range(elec_num):
x = ee_distance_rescaled[i][j] x = ee_distance_rescaled[j][i]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(4),dtype=float) pow_ser_g = np.zeros(shape=(4),dtype=float)
spin_fact = 1.0 spin_fact = 1.0
den = 1.0 + bord_vector[1] * ee_distance_rescaled[i][j] den = 1.0 + bord_vector[1] * ee_distance_rescaled[j][i]
invden = 1.0 / den invden = 1.0 / den
invden2 = invden * invden invden2 = invden * invden
invden3 = invden2 * invden invden3 = invden2 * invden
xinv = 1.0 / (ee_distance_rescaled[i][j] + 1.0-18) xinv = 1.0 / (ee_distance_rescaled[j][i] + 1.0E-18)
ipar = 1 ipar = 1
for ii in range(4): for ii in range(4):
dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i] dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i]
if((i <= up_num and j <= up_num ) or \ if((i <= (up_num-1) and j <= (up_num-1) ) or \
(i > up_num and j > up_num)): (i > (up_num-1) and j > (up_num-1))):
spin_fact = 0.5 spin_fact = 0.5
lap1 = 0.0 lap1 = 0.0
lap2 = 0.0 lap2 = 0.0
lap3 = 0.0 lap3 = 0.0
for ii in range(3): for ii in range(3):
x = ee_distance_rescaled[i][j] x = ee_distance_rescaled[j][i]
for p in range(1,bord_num): if x < 1e-18:
y = p * bord_vector[p + 1] * x continue
for p in range(2,bord_num+1):
y = p * bord_vector[(p-1) + 1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y lap2 = lap2 + y
x = x * ee_distance_rescaled[i][j] x = x * ee_distance_rescaled[j][i]
lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii] lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii]
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \ factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \
dx[ii] * invden + pow_ser_g[ii] dx[ii] * invden2 + pow_ser_g[ii]
ii = 3 ii = 3
lap2 = lap2 * dx[ii] * third lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii] lap3 = lap3 + den * dx[ii]
lap3 = lap3 + spin_fact * bord_vector[1] * invden3 lap3 = lap3 * (spin_fact * bord_vector[0] * invden3)
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3 factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3
print("factor_ee_deriv_e:",factor_ee_deriv_e) print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0])
print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0])
print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0])
print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0])
print(factor_ee_deriv_e)
#+end_src #+end_src
@ -1974,14 +1997,18 @@ print("factor_ee_deriv_e:",factor_ee_deriv_e)
asym_one : 0.43340325572525706 asym_one : 0.43340325572525706
asymp_jasb[0] : 0.5323750557252571 asymp_jasb[0] : 0.5323750557252571
asymp_jasb[1] : 0.31567342786262853 asymp_jasb[1] : 0.31567342786262853
factor_ee_deriv_e: [[-0.98933561 -1.90335162 1.55808557 -0.4175529 0.61492377 -0.39831866 factor_ee_deriv_e[0][0]: 0.16364894652107934
-0.39927944 0.65028576 -0.3615353 0.18529135] factor_ee_deriv_e[1][0]: -0.6927548119830084
[ 1.63379825 -0.20386723 -0.68681515 -0.12852739 -0.26752663 -0.38482884 factor_ee_deriv_e[2][0]: 0.073267755223968
-0.08399636 0.0271138 0.47700861 -0.15444407] factor_ee_deriv_e[3][0]: 1.5111672803213185
[-1.50784905 -0.77857073 -2.65602338 0.47954785 2.47647536 -0.73979109 [[ 0.16364895 0.60354957 -0.19825547 0.02359797 -0.13123153 -0.18789233
-1.45880891 -0.57274462 0.20895041 0.22564652] 0.07762515 -0.42459184 0.27920265 -0.2056531 ]
[ 3.33386195 2.70852681 -4.1135207 7.24473889 -1.68083113 6.11612348 [-0.69275481 0.15690393 0.09831069 0.18490587 0.04361723 0.3250686
3.74311012 0.3229593 7.21394604 2.7578531 ]] 0.12657961 -0.01736522 -0.40149005 0.17622416]
[ 0.07326776 -0.27532276 0.22396943 0.18771633 -0.34506246 0.07298062
0.63302352 -0.00910198 -0.30238713 -0.25908332]
[ 1.51116728 1.5033247 0.00325003 2.89377255 0.1338393 2.15893795
1.74732003 0.23561147 2.67455607 0.82810434]]
#+end_example #+end_example
@ -1989,11 +2016,15 @@ print("factor_ee_deriv_e:",factor_ee_deriv_e)
/* Check if Jastrow is properly initialized */ /* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context)); assert(qmckl_jastrow_provided(context));
double factor_ee_deriv_e[walk_num];
rc = qmckl_get_jastrow_factor_ee_deriv_e(context, factor_ee_deriv_e);
// calculate factor_ee_deriv_e // calculate factor_ee_deriv_e
assert(fabs(factor_ee_deriv_e[0]+4.282760865958113) < 1.e-12); double factor_ee_deriv_e[walk_num][4][elec_num];
rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0]));
// check factor_ee_deriv_e
assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][1][0]+0.6927548119830084 ) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][2][0]-0.073267755223968 ) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12);
#+end_src #+end_src

View File

@ -258,3 +258,4 @@ return results
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none #+begin_src f90 :tangle (eval fh_func) :comments org :exports none
#+end_src #+end_src