2020-10-28 23:57:26 +00:00
|
|
|
<?xml version="1.0" encoding="utf-8"?>
|
|
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
|
|
<head>
|
|
|
|
<title>Atomic Orbitals</title>
|
2020-10-31 18:09:14 +00:00
|
|
|
<!-- 2020-10-31 Sat 18:09 -->
|
2020-10-28 23:57:26 +00:00
|
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
|
|
<meta name="generator" content="Org-mode" />
|
|
|
|
<style type="text/css">
|
|
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
|
|
.title { text-align: center; }
|
|
|
|
.todo { font-family: monospace; color: red; }
|
|
|
|
.done { color: green; }
|
|
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
|
|
.timestamp { color: #bebebe; }
|
|
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
|
|
.right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
|
|
.left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
|
|
.center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
|
|
.underline { text-decoration: underline; }
|
|
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
|
|
p.verse { margin-left: 3%; }
|
|
|
|
pre {
|
|
|
|
border: 1px solid #ccc;
|
|
|
|
box-shadow: 3px 3px 3px #eee;
|
|
|
|
padding: 8pt;
|
|
|
|
font-family: monospace;
|
|
|
|
overflow: auto;
|
|
|
|
margin: 1.2em;
|
|
|
|
}
|
|
|
|
pre.src {
|
|
|
|
position: relative;
|
|
|
|
overflow: visible;
|
|
|
|
padding-top: 1.2em;
|
|
|
|
}
|
|
|
|
pre.src:before {
|
|
|
|
display: none;
|
|
|
|
position: absolute;
|
|
|
|
background-color: white;
|
|
|
|
top: -10px;
|
|
|
|
right: 10px;
|
|
|
|
padding: 3px;
|
|
|
|
border: 1px solid black;
|
|
|
|
}
|
|
|
|
pre.src:hover:before { display: inline;}
|
|
|
|
pre.src-sh:before { content: 'sh'; }
|
|
|
|
pre.src-bash:before { content: 'sh'; }
|
|
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
|
|
pre.src-R:before { content: 'R'; }
|
|
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
|
|
pre.src-java:before { content: 'Java'; }
|
|
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
|
|
|
|
|
|
table { border-collapse:collapse; }
|
|
|
|
caption.t-above { caption-side: top; }
|
|
|
|
caption.t-bottom { caption-side: bottom; }
|
|
|
|
td, th { vertical-align:top; }
|
|
|
|
th.right { text-align: center; }
|
|
|
|
th.left { text-align: center; }
|
|
|
|
th.center { text-align: center; }
|
|
|
|
td.right { text-align: right; }
|
|
|
|
td.left { text-align: left; }
|
|
|
|
td.center { text-align: center; }
|
|
|
|
dt { font-weight: bold; }
|
|
|
|
.footpara:nth-child(2) { display: inline; }
|
|
|
|
.footpara { display: block; }
|
|
|
|
.footdef { margin-bottom: 1em; }
|
|
|
|
.figure { padding: 1em; }
|
|
|
|
.figure p { text-align: center; }
|
|
|
|
.inlinetask {
|
|
|
|
padding: 10px;
|
|
|
|
border: 2px solid gray;
|
|
|
|
margin: 10px;
|
|
|
|
background: #ffffcc;
|
|
|
|
}
|
|
|
|
#org-div-home-and-up
|
|
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
|
|
textarea { overflow-x: auto; }
|
|
|
|
.linenr { font-size: smaller }
|
|
|
|
.code-highlighted { background-color: #ffff00; }
|
|
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
|
|
#org-info-js_console-label
|
|
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
|
|
.org-info-js_search-highlight
|
|
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
|
|
/*]]>*/-->
|
|
|
|
</style>
|
|
|
|
<link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
|
|
|
|
<link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
|
|
|
|
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
|
|
|
|
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
|
|
|
|
<script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
|
|
|
|
<script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
|
|
|
|
<script type="text/javascript">
|
|
|
|
/*
|
|
|
|
@licstart The following is the entire license notice for the
|
|
|
|
JavaScript code in this tag.
|
|
|
|
|
|
|
|
Copyright (C) 2012-2013 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
|
|
that code without the copy of the GNU GPL normally required by
|
|
|
|
section 4, provided you include this license notice and a URL
|
|
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
|
|
for the JavaScript code in this tag.
|
|
|
|
*/
|
|
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
|
|
function CodeHighlightOn(elem, id)
|
|
|
|
{
|
|
|
|
var target = document.getElementById(id);
|
|
|
|
if(null != target) {
|
|
|
|
elem.cacheClassElem = elem.className;
|
|
|
|
elem.cacheClassTarget = target.className;
|
|
|
|
target.className = "code-highlighted";
|
|
|
|
elem.className = "code-highlighted";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function CodeHighlightOff(elem, id)
|
|
|
|
{
|
|
|
|
var target = document.getElementById(id);
|
|
|
|
if(elem.cacheClassElem)
|
|
|
|
elem.className = elem.cacheClassElem;
|
|
|
|
if(elem.cacheClassTarget)
|
|
|
|
target.className = elem.cacheClassTarget;
|
|
|
|
}
|
|
|
|
/*]]>*///-->
|
|
|
|
</script>
|
|
|
|
<script type="text/javascript" src="http://orgmode.org/mathjax/MathJax.js"></script>
|
|
|
|
<script type="text/javascript">
|
|
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
|
|
MathJax.Hub.Config({
|
|
|
|
// Only one of the two following lines, depending on user settings
|
|
|
|
// First allows browser-native MathML display, second forces HTML/CSS
|
|
|
|
// config: ["MMLorHTML.js"], jax: ["input/TeX"],
|
|
|
|
jax: ["input/TeX", "output/HTML-CSS"],
|
|
|
|
extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
|
|
|
|
"TeX/noUndefined.js"],
|
|
|
|
tex2jax: {
|
|
|
|
inlineMath: [ ["\\(","\\)"] ],
|
|
|
|
displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
|
|
|
|
skipTags: ["script","noscript","style","textarea","pre","code"],
|
|
|
|
ignoreClass: "tex2jax_ignore",
|
|
|
|
processEscapes: false,
|
|
|
|
processEnvironments: true,
|
|
|
|
preview: "TeX"
|
|
|
|
},
|
|
|
|
showProcessingMessages: true,
|
|
|
|
displayAlign: "center",
|
|
|
|
displayIndent: "2em",
|
|
|
|
|
|
|
|
"HTML-CSS": {
|
|
|
|
scale: 100,
|
|
|
|
availableFonts: ["STIX","TeX"],
|
|
|
|
preferredFont: "TeX",
|
|
|
|
webFont: "TeX",
|
|
|
|
imageFont: "TeX",
|
|
|
|
showMathMenu: true,
|
|
|
|
},
|
|
|
|
MMLorHTML: {
|
|
|
|
prefer: {
|
|
|
|
MSIE: "MML",
|
|
|
|
Firefox: "MML",
|
|
|
|
Opera: "HTML",
|
|
|
|
other: "HTML"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
/*]]>*///-->
|
|
|
|
</script>
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<div id="content">
|
|
|
|
<h1 class="title">Atomic Orbitals</h1>
|
|
|
|
<div id="table-of-contents">
|
|
|
|
<h2>Table of Contents</h2>
|
|
|
|
<div id="text-table-of-contents">
|
|
|
|
<ul>
|
|
|
|
<li><a href="#sec-1">1. Polynomials</a>
|
|
|
|
<ul>
|
|
|
|
<li><a href="#sec-1-1">1.1. <code>qmckl_ao_powers</code></a>
|
|
|
|
<ul>
|
|
|
|
<li><a href="#sec-1-1-1">1.1.1. Arguments</a></li>
|
|
|
|
<li><a href="#sec-1-1-2">1.1.2. Requirements</a></li>
|
|
|
|
<li><a href="#sec-1-1-3">1.1.3. Header</a></li>
|
|
|
|
<li><a href="#sec-1-1-4">1.1.4. Source</a></li>
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li><a href="#sec-1-2">1.2. <code>qmckl_ao_polynomial_vgl</code></a>
|
|
|
|
<ul>
|
|
|
|
<li><a href="#sec-1-2-1">1.2.1. Arguments</a></li>
|
|
|
|
<li><a href="#sec-1-2-2">1.2.2. Requirements</a></li>
|
|
|
|
<li><a href="#sec-1-2-3">1.2.3. Header</a></li>
|
|
|
|
<li><a href="#sec-1-2-4">1.2.4. Source</a></li>
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li><a href="#sec-2">2. <span class="todo TODO">TODO</span> Gaussian basis functions</a></li>
|
|
|
|
<li><a href="#sec-3">3. <span class="todo TODO">TODO</span> Slater basis functions</a></li>
|
|
|
|
</ul>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<p>
|
|
|
|
This files contains all the routines for the computation of the
|
|
|
|
values, gradients and Laplacian of the atomic basis functions.
|
|
|
|
</p>
|
|
|
|
|
|
|
|
<p>
|
|
|
|
4 files are produced:
|
|
|
|
</p>
|
|
|
|
<ul class="org-ul">
|
|
|
|
<li>a header file : <code>qmckl_ao.h</code>
|
|
|
|
</li>
|
|
|
|
<li>a source file : <code>qmckl_ao.f90</code>
|
|
|
|
</li>
|
|
|
|
<li>a C test file : <code>test_qmckl_ao.c</code>
|
|
|
|
</li>
|
|
|
|
<li>a Fortran test file : <code>test_qmckl_ao_f.f90</code>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1" class="outline-2">
|
|
|
|
<h2 id="sec-1"><span class="section-number-2">1</span> Polynomials</h2>
|
|
|
|
<div class="outline-text-2" id="text-1">
|
|
|
|
<p>
|
|
|
|
\[
|
|
|
|
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
|
|
|
|
\]
|
|
|
|
</p>
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
|
|
|
|
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
|
|
|
|
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
|
|
|
|
\end{eqnarray*}
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\left( \frac{\partial }{\partial x^2} +
|
|
|
|
\frac{\partial }{\partial y^2} +
|
|
|
|
\frac{\partial }{\partial z^2} \right) P_l
|
|
|
|
\left(\mathbf{r},\mathbf{R}_i \right) & = &
|
|
|
|
a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\
|
|
|
|
&& b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\
|
|
|
|
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}
|
|
|
|
\end{eqnarray*}
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-1" class="outline-3">
|
|
|
|
<h3 id="sec-1-1"><span class="section-number-3">1.1</span> <code>qmckl_ao_powers</code></h3>
|
|
|
|
<div class="outline-text-3" id="text-1-1">
|
|
|
|
<p>
|
|
|
|
Computes all the powers of the <code>n</code> input data up to the given
|
|
|
|
maximum value given in input for each of the \(n\) points:
|
|
|
|
</p>
|
|
|
|
|
|
|
|
<p>
|
|
|
|
\[ P_{ij} = X_j^i \]
|
|
|
|
</p>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-1-1" class="outline-4">
|
|
|
|
<h4 id="sec-1-1-1"><span class="section-number-4">1.1.1</span> Arguments</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-1-1">
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
|
|
|
|
|
|
<colgroup>
|
|
|
|
<col class="left" />
|
|
|
|
|
|
|
|
<col class="left" />
|
|
|
|
|
|
|
|
<col class="left" />
|
|
|
|
</colgroup>
|
|
|
|
<tbody>
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>context</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Global state</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>n</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Number of values</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>X(n)</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Array containing the input values</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>LMAX(n)</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Array containing the maximum power for each value</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>P(LDP,n)</code></td>
|
|
|
|
<td class="left">output</td>
|
|
|
|
<td class="left">Array containing all the powers of <code>X</code></td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>LDP</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Leading dimension of array <code>P</code></td>
|
|
|
|
</tr>
|
|
|
|
</tbody>
|
|
|
|
</table>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-1-2" class="outline-4">
|
|
|
|
<h4 id="sec-1-1-2"><span class="section-number-4">1.1.2</span> Requirements</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-1-2">
|
|
|
|
<ul class="org-ul">
|
|
|
|
<li><code>context</code> is not 0
|
|
|
|
</li>
|
|
|
|
<li><code>n</code> > 0
|
|
|
|
</li>
|
|
|
|
<li><code>X</code> is allocated with at least \(n \times 8\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>LMAX</code> is allocated with at least \(n \times 4\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>P</code> is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>LDP</code> >= \(\max_i\) <code>LMAX[i]</code>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-1-3" class="outline-4">
|
|
|
|
<h4 id="sec-1-1-3"><span class="section-number-4">1.1.3</span> Header</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-1-3">
|
|
|
|
<div class="org-src-container">
|
|
|
|
|
2020-10-31 18:09:14 +00:00
|
|
|
<pre class="src src-C">qmckl_exit_code qmckl_ao_powers(const qmckl_context context,
|
|
|
|
const int64_t n,
|
|
|
|
const double *X, const int32_t *LMAX,
|
|
|
|
const double *P, const int64_t LDP);
|
2020-10-28 23:57:26 +00:00
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-1-4" class="outline-4">
|
|
|
|
<h4 id="sec-1-1-4"><span class="section-number-4">1.1.4</span> Source</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-1-4">
|
|
|
|
<div class="org-src-container">
|
|
|
|
|
|
|
|
<pre class="src src-f90">integer function qmckl_ao_powers_f(context, n, X, LMAX, P, ldp) result(info)
|
|
|
|
implicit none
|
|
|
|
integer*8 , intent(in) :: context
|
|
|
|
integer*8 , intent(in) :: n
|
|
|
|
real*8 , intent(in) :: X(n)
|
|
|
|
integer , intent(in) :: LMAX(n)
|
|
|
|
real*8 , intent(out) :: P(ldp,n)
|
|
|
|
integer*8 , intent(in) :: ldp
|
|
|
|
|
|
|
|
integer*8 :: i,j
|
|
|
|
|
|
|
|
info = 0
|
|
|
|
|
|
|
|
if (context == 0_8) then
|
|
|
|
info = -1
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (LDP < MAXVAL(LMAX)) then
|
|
|
|
info = -2
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
do j=1,n
|
|
|
|
P(1,j) = X(j)
|
|
|
|
do i=2,LMAX(j)
|
|
|
|
P(i,j) = P(i-1,j) * X(j)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
|
|
|
|
end function qmckl_ao_powers_f
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-2" class="outline-3">
|
|
|
|
<h3 id="sec-1-2"><span class="section-number-3">1.2</span> <code>qmckl_ao_polynomial_vgl</code></h3>
|
|
|
|
<div class="outline-text-3" id="text-1-2">
|
|
|
|
<p>
|
|
|
|
Computes the values, gradients and Laplacians at a given point of
|
|
|
|
all polynomials with an angular momentum up to <code>lmax</code>.
|
|
|
|
</p>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-2-1" class="outline-4">
|
|
|
|
<h4 id="sec-1-2-1"><span class="section-number-4">1.2.1</span> Arguments</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-2-1">
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
|
|
|
|
|
|
<colgroup>
|
|
|
|
<col class="left" />
|
|
|
|
|
|
|
|
<col class="left" />
|
|
|
|
|
|
|
|
<col class="left" />
|
|
|
|
</colgroup>
|
|
|
|
<tbody>
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>context</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Global state</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>X(3)</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Array containing the coordinates of the points</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>R(3)</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Array containing the x,y,z coordinates of the center</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>lmax</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Maximum angular momentum</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>n</code></td>
|
|
|
|
<td class="left">output</td>
|
|
|
|
<td class="left">Number of computed polynomials</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>L(ldl,n)</code></td>
|
|
|
|
<td class="left">output</td>
|
|
|
|
<td class="left">Contains a,b,c for all <code>n</code> results</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>ldl</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Leading dimension of <code>L</code></td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>VGL(ldv,n)</code></td>
|
|
|
|
<td class="left">output</td>
|
|
|
|
<td class="left">Value, gradients and Laplacian of the polynomials</td>
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
<tr>
|
|
|
|
<td class="left"><code>ldv</code></td>
|
|
|
|
<td class="left">input</td>
|
|
|
|
<td class="left">Leading dimension of array <code>VGL</code></td>
|
|
|
|
</tr>
|
|
|
|
</tbody>
|
|
|
|
</table>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-2-2" class="outline-4">
|
|
|
|
<h4 id="sec-1-2-2"><span class="section-number-4">1.2.2</span> Requirements</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-2-2">
|
|
|
|
<ul class="org-ul">
|
|
|
|
<li><code>context</code> is not 0
|
|
|
|
</li>
|
|
|
|
<li><code>n</code> > 0
|
|
|
|
</li>
|
|
|
|
<li><code>X</code> is allocated with at least \(3 \times 8\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>R</code> is allocated with at least \(3 \times 8\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>lmax</code> >= 0
|
|
|
|
</li>
|
|
|
|
<li>On output, <code>n</code> should be equal to (=lmax=+1)(=lmax=+2)(=lmax=+3)/6
|
|
|
|
</li>
|
|
|
|
<li><code>L</code> is allocated with at least \(3 \times n \times 4\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>ldl</code> >= 3
|
|
|
|
</li>
|
|
|
|
<li><code>VGL</code> is allocated with at least \(5 \times n \times 8\) bytes
|
|
|
|
</li>
|
|
|
|
<li><code>ldv</code> >= 5
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-2-3" class="outline-4">
|
|
|
|
<h4 id="sec-1-2-3"><span class="section-number-4">1.2.3</span> Header</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-2-3">
|
|
|
|
<div class="org-src-container">
|
|
|
|
|
2020-10-31 18:09:14 +00:00
|
|
|
<pre class="src src-C">qmckl_exit_code qmckl_ao_polynomial_vgl(const qmckl_context context,
|
|
|
|
const double *X, const double *R,
|
|
|
|
const int32_t lmax, const int64_t *n,
|
|
|
|
const int32_t *L, const int64_t ldl,
|
|
|
|
const double *VGL, const int64_t ldv);
|
2020-10-28 23:57:26 +00:00
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-1-2-4" class="outline-4">
|
|
|
|
<h4 id="sec-1-2-4"><span class="section-number-4">1.2.4</span> Source</h4>
|
|
|
|
<div class="outline-text-4" id="text-1-2-4">
|
|
|
|
<div class="org-src-container">
|
|
|
|
|
|
|
|
<pre class="src src-f90">integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
|
|
|
|
implicit none
|
|
|
|
integer*8 , intent(in) :: context
|
|
|
|
real*8 , intent(in) :: X(3), R(3)
|
|
|
|
integer , intent(in) :: lmax
|
|
|
|
integer*8 , intent(out) :: n
|
|
|
|
integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
|
|
|
|
integer*8 , intent(in) :: ldl
|
|
|
|
real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
|
|
|
|
integer*8 , intent(in) :: ldv
|
|
|
|
|
|
|
|
integer*8 :: i,j
|
|
|
|
integer :: a,b,c,d
|
|
|
|
real*8 :: Y(3)
|
|
|
|
integer :: lmax_array(3)
|
|
|
|
real*8 :: pows(-2:lmax,3)
|
|
|
|
integer, external :: qmckl_ao_powers_f
|
|
|
|
double precision :: xy, yz, xz
|
|
|
|
double precision :: da, db, dc, dd
|
|
|
|
|
|
|
|
info = 0
|
|
|
|
|
|
|
|
if (context == 0_8) then
|
|
|
|
info = -1
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
n = (lmax+1)*(lmax+2)*(lmax+3)/6
|
|
|
|
|
|
|
|
if (ldl < 3) then
|
|
|
|
info = -2
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (ldv < 5) then
|
|
|
|
info = -3
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
|
|
|
|
do i=1,3
|
|
|
|
Y(i) = X(i) - R(i)
|
|
|
|
end do
|
|
|
|
pows(-2:-1,1:3) = 0.d0
|
|
|
|
pows(0,1:3) = 1.d0
|
|
|
|
lmax_array(1:3) = lmax
|
|
|
|
info = qmckl_ao_powers_f(context, 1_8, Y(1), (/lmax/), pows(1,1), size(pows,1,kind=8))
|
|
|
|
if (info /= 0) return
|
|
|
|
info = qmckl_ao_powers_f(context, 1_8, Y(2), (/lmax/), pows(1,2), size(pows,1,kind=8))
|
|
|
|
if (info /= 0) return
|
|
|
|
info = qmckl_ao_powers_f(context, 1_8, Y(3), (/lmax/), pows(1,3), size(pows,1,kind=8))
|
|
|
|
if (info /= 0) return
|
|
|
|
|
|
|
|
|
|
|
|
n=1
|
|
|
|
vgl(1:5,1:n) = 0.d0
|
|
|
|
l(1:3,n) = 0
|
|
|
|
vgl(1,n) = 1.d0
|
|
|
|
dd = 1.d0
|
|
|
|
do d=1,lmax
|
|
|
|
da = 0.d0
|
|
|
|
do a=0,d
|
|
|
|
db = 0.d0
|
|
|
|
do b=0,d-a
|
|
|
|
c = d - a - b
|
|
|
|
dc = dd - da - db
|
|
|
|
n = n+1
|
|
|
|
l(1,n) = a
|
|
|
|
l(2,n) = b
|
|
|
|
l(3,n) = c
|
|
|
|
|
|
|
|
xy = pows(a,1) * pows(b,2)
|
|
|
|
yz = pows(b,2) * pows(c,3)
|
|
|
|
xz = pows(a,1) * pows(c,3)
|
|
|
|
|
|
|
|
vgl(1,n) = xy * pows(c,3)
|
|
|
|
|
|
|
|
xy = dc * xy
|
|
|
|
xz = db * xz
|
|
|
|
yz = da * yz
|
|
|
|
|
|
|
|
vgl(2,n) = pows(a-1,1) * yz
|
|
|
|
vgl(3,n) = pows(b-1,2) * xz
|
|
|
|
vgl(4,n) = pows(c-1,3) * xy
|
|
|
|
|
|
|
|
vgl(5,n) = &
|
|
|
|
(da-1.d0) * pows(a-2,1) * yz + &
|
|
|
|
(db-1.d0) * pows(b-2,2) * xz + &
|
|
|
|
(dc-1.d0) * pows(c-2,3) * xy
|
|
|
|
|
|
|
|
db = db + 1.d0
|
|
|
|
end do
|
|
|
|
da = da + 1.d0
|
|
|
|
end do
|
|
|
|
dd = dd + 1.d0
|
|
|
|
end do
|
|
|
|
|
|
|
|
end function qmckl_ao_polynomial_vgl_f
|
|
|
|
</pre>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div id="outline-container-sec-2" class="outline-2">
|
|
|
|
<h2 id="sec-2"><span class="section-number-2">2</span> <span class="todo TODO">TODO</span> Gaussian basis functions</h2>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div id="outline-container-sec-3" class="outline-2">
|
|
|
|
<h2 id="sec-3"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Slater basis functions</h2>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<div id="postamble" class="status">
|
2020-10-31 18:09:14 +00:00
|
|
|
<p class="date">Created: 2020-10-31 Sat 18:09</p>
|
2020-10-28 23:57:26 +00:00
|
|
|
<p class="creator"><a href="http://www.gnu.org/software/emacs/">Emacs</a> 25.2.2 (<a href="http://orgmode.org">Org</a> mode 8.2.10)</p>
|
|
|
|
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
|
|
|
</div>
|
|
|
|
</body>
|
|
|
|
</html>
|