Quantum Monte Carlo
Table of Contents
1 Introduction
We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we propose to compute the energy of a hydrogen atom using numerical integration. The goal of this section is to introduce the local energy. Then we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function. Finally, we introduce the diffusion Monte Carlo (DMC) method which gives the exact energy of the \(H_2\) molecule.
Code examples will be given in Python and Fortran. Whatever language can be chosen.
We consider the stationary solution of the Schrödinger equation, so the wave functions considered here are real: for an \(N\) electron system where the electrons move in the 3-dimensional space, \(\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}\). In addition, \(\Psi\) is defined everywhere, continuous and infinitely differentiable.
Note
In Fortran, when you use a double precision constant, don't forget to put d0 as a suffix (for example 2.0d0), or it will be interpreted as a single precision value
2 Numerical evaluation of the energy
In this section we consider the Hydrogen atom with the following wave function:
\[ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) \]
We will first verify that \(\Psi\) is an eigenfunction of the Hamiltonian
\[ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} \]
when \(a=1\), by checking that \(\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})\) for all \(\mathbf{r}\). We will check that the local energy, defined as
\[ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, \]
is constant. We will also see that when \(a \ne 1\) the local energy is not constant, so \(\hat{H} \Psi \ne E \Psi\).
The probabilistic expected value of an arbitrary function \(f(x)\) with respect to a probability density function \(p(x)\) is given by
\[ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx \].
Recall that a probability density function \(p(x)\) is non-negative and integrates to one:
\[ \int_{-\infty}^\infty p(x)\,dx = 1 \].
The electronic energy of a system is the expectation value of the local energy \(E(\mathbf{r})\) with respect to the 3N-dimensional electron density given by the square of the wave function:
\begin{eqnarray*} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \langle E_L \rangle_{\Psi^2} \end{eqnarray*}2.1 Local energy
2.1.1 Exercise 1
Write a function which computes the potential at \(\mathbf{r}\).
The function accepts a 3-dimensional vector r
as input arguments
and returns the potential.
\(\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)\), so \[ V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}} \]
Python
import numpy as np def potential(r): return -1. / np.sqrt(np.dot(r,r))
Fortran
double precision function potential(r) implicit none double precision, intent(in) :: r(3) potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) end function potential
2.1.2 Exercise 2
Write a function which computes the wave function at \(\mathbf{r}\).
The function accepts a scalar a
and a 3-dimensional vector r
as
input arguments, and returns a scalar.
Python
def psi(a, r): return np.exp(-a*np.sqrt(np.dot(r,r)))
Fortran
double precision function psi(a, r) implicit none double precision, intent(in) :: a, r(3) psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )) end function psi
2.1.3 Exercise 3
Write a function which computes the local kinetic energy at \(\mathbf{r}\).
The function accepts a
and r
as input arguments and returns the
local kinetic energy.
The local kinetic energy is defined as \[-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.\]
We differentiate \(\Psi\) with respect to \(x\):
\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \] \[\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]
and we differentiate a second time:
\[ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(\mathbf{r}). \]
The Laplacian operator \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\) applied to the wave function gives:
\[ \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r}) \]
So the local kinetic energy is \[ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \]
Python
def kinetic(a,r): return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
Fortran
double precision function kinetic(a,r) implicit none double precision, intent(in) :: a, r(3) kinetic = -0.5d0 * (a*a - (2.d0*a) / & dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) end function kinetic
2.1.4 Exercise 4
Write a function which computes the local energy at \(\mathbf{r}\).
The function accepts x,y,z
as input arguments and returns the
local energy.
\[ E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r}) \]
Python
def e_loc(a,r): return kinetic(a,r) + potential(r)
Fortran
double precision function e_loc(a,r) implicit none double precision, intent(in) :: a, r(3) double precision, external :: kinetic, potential e_loc = kinetic(a,r) + potential(r) end function e_loc
2.2 Plot of the local energy along the \(x\) axis
2.2.1 Exercise
For multiple values of \(a\) (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the \(x\) axis.
Python
import numpy as np import matplotlib.pyplot as plt from hydrogen import e_loc x=np.linspace(-5,5) def make_array(a): y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x]) return y plt.figure(figsize=(10,5)) for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]: y = make_array(a) plt.plot(x,y,label=f"a={a}") plt.tight_layout() plt.legend() plt.savefig("plot_py.png")
Fortran
program plot implicit none double precision, external :: e_loc double precision :: x(50), energy, dx, r(3), a(6) integer :: i, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do r(:) = 0.d0 do j=1,size(a) print *, '# a=', a(j) do i=1,size(x) r(1) = x(i) energy = e_loc( a(j), r ) print *, x(i), energy end do print *, '' print *, '' end do end program plot
To compile and run:
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen ./plot_hydrogen > data
To plot the data using gnuplot:
set grid set xrange [-5:5] set yrange [-2:1] plot './data' index 0 using 1:2 with lines title 'a=0.1', \ './data' index 1 using 1:2 with lines title 'a=0.2', \ './data' index 2 using 1:2 with lines title 'a=0.5', \ './data' index 3 using 1:2 with lines title 'a=1.0', \ './data' index 4 using 1:2 with lines title 'a=1.5', \ './data' index 5 using 1:2 with lines title 'a=2.0'
2.3 Numerical estimation of the energy
If the space is discretized in small volume elements \(\mathbf{r}_i\) of size \(\delta \mathbf{r}\), the expression of \(\langle E_L \rangle_{\Psi^2}\) becomes a weighted average of the local energy, where the weights are the values of the probability density at \(\mathbf{r}_i\) multiplied by the volume element:
\[ \langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} \]
The energy is biased because:
- The volume elements are not infinitely small (discretization error)
- The energy is evaluated only inside the box (incompleteness of the space)
2.3.1 Exercise
Compute a numerical estimate of the energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\).
Python
import numpy as np from hydrogen import e_loc, psi interval = np.linspace(-5,5,num=50) delta = (interval[1]-interval[0])**3 r = np.array([0.,0.,0.]) for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: E = 0. norm = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a,r) w = w * w * delta E += w * e_loc(a,r) norm += w E = E / norm print(f"a = {a} \t E = {E}")
Fortran
program energy_hydrogen implicit none double precision, external :: e_loc, psi double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm integer :: i, k, l, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do delta = dx**3 r(:) = 0.d0 do j=1,size(a) energy = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta energy = energy + w * e_loc(a(j), r) norm = norm + w end do end do end do energy = energy / norm print *, 'a = ', a(j), ' E = ', energy end do end program energy_hydrogen
To compile the Fortran and run it:
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen ./energy_hydrogen
a = 0.10000000000000001 E = -0.24518438948809140 a = 0.20000000000000001 E = -0.26966057967803236 a = 0.50000000000000000 E = -0.38563576125173815 a = 1.0000000000000000 E = -0.50000000000000000 a = 1.5000000000000000 E = -0.39242967082602065 a = 2.0000000000000000 E = -8.0869806678448772E-002
2.4 Variance of the local energy
The variance of the local energy is a functional of \(\Psi\) which measures the magnitude of the fluctuations of the local energy associated with \(\Psi\) around the average:
\[ \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \]
If the local energy is constant (i.e. \(\Psi\) is an eigenfunction of \(\hat{H}\)) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function.
2.4.1 Exercise
Compute a numerical estimate of the variance of the local energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\) for different values of \(a\).
Python
import numpy as np from hydrogen import e_loc, psi interval = np.linspace(-5,5,num=50) delta = (interval[1]-interval[0])**3 r = np.array([0.,0.,0.]) for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: E = 0. norm = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a, r) w = w * w * delta El = e_loc(a, r) E += w * El norm += w E = E / norm s2 = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a, r) w = w * w * delta El = e_loc(a, r) s2 += w * (El - E)**2 s2 = s2 / norm print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
Fortran
program variance_hydrogen implicit none double precision, external :: e_loc, psi double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2 integer :: i, k, l, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do delta = dx**3 r(:) = 0.d0 do j=1,size(a) energy = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta energy = energy + w * e_loc(a(j), r) norm = norm + w end do end do end do energy = energy / norm s2 = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta s2 = s2 + w * ( e_loc(a(j), r) - energy )**2 norm = norm + w end do end do end do s2 = s2 / norm print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2 end do end program variance_hydrogen
To compile and run:
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen ./variance_hydrogen
a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002 a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002 a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002 a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000 a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444 a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303
3 Variational Monte Carlo
Numerical integration with deterministic methods is very efficient in low dimensions. When the number of dimensions becomes large, instead of computing the average energy as a numerical integration on a grid, it is usually more efficient to do a Monte Carlo sampling.
Moreover, a Monte Carlo sampling will alow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.
3.1 Computation of the statistical error
To compute the statistical error, you need to perform \(M\) independent Monte Carlo calculations. You will obtain \(M\) different estimates of the energy, which are expected to have a Gaussian distribution by the central limit theorem.
The estimate of the energy is
\[ E = \frac{1}{M} \sum_{i=1}^M E_M \]
The variance of the average energies can be computed as
\[ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2 \]
And the confidence interval is given by
\[ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} \]
3.1.1 Exercise
Write a function returning the average and statistical error of an input array.
Python
from math import sqrt def ave_error(arr): M = len(arr) assert (M>1) average = sum(arr)/M variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] ) return (average, sqrt(variance/M))
Fortran
subroutine ave_error(x,n,ave,err) implicit none integer, intent(in) :: n double precision, intent(in) :: x(n) double precision, intent(out) :: ave, err double precision :: variance if (n == 1) then ave = x(1) err = 0.d0 else ave = sum(x(:)) / dble(n) variance = sum( (x(:) - ave)**2 ) / dble(n-1) err = dsqrt(variance/dble(n)) endif end subroutine ave_error
3.2 Uniform sampling in the box
We will now do our first Monte Carlo calculation to compute the energy of the hydrogen atom.
At every Monte Carlo step:
- Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le (x,y,z) \le (5,5,5)\)
- Compute \([\Psi(\mathbf{r}_i)]^2\) and accumulate the result in a
variable
normalization
- Compute \([\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)\), and accumulate the
result in a variable
energy
One Monte Carlo run will consist of \(N\) Monte Carlo steps. Once all the steps have been computed, the run returns the average energy \(\bar{E}_k\) over the \(N\) steps of the run.
To compute the statistical error, perform \(M\) runs. The final estimate of the energy will be the average over the \(\bar{E}_k\), and the variance of the \(\bar{E}_k\) will be used to compute the statistical error.
3.2.1 Exercise
Parameterize the wave function with \(a=0.9\). Perform 30 independent Monte Carlo runs, each with 100 000 Monte Carlo steps. Store the final energies of each run and use this array to compute the average energy and the associated error bar.
Python
from hydrogen import * from qmc_stats import * def MonteCarlo(a, nmax): E = 0. N = 0. for istep in range(nmax): r = np.random.uniform(-5., 5., (3)) w = psi(a,r) w = w*w N += w E += w * e_loc(a,r) return E/N a = 0.9 nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}")
Fortran
When running Monte Carlo calculations, the number of steps is
usually very large. We expect nmax
to be possibly larger than 2
billion, so we use 8-byte integers (integer*8
) to represent it, as
well as the index of the current step.
subroutine uniform_montecarlo(a,nmax,energy) implicit none double precision, intent(in) :: a integer*8 , intent(in) :: nmax double precision, intent(out) :: energy integer*8 :: istep double precision :: norm, r(3), w double precision, external :: e_loc, psi energy = 0.d0 norm = 0.d0 do istep = 1,nmax call random_number(r) r(:) = -5.d0 + 10.d0*r(:) w = psi(a,r) w = w*w norm = norm + w energy = energy + w * e_loc(a,r) end do energy = energy / norm end subroutine uniform_montecarlo program qmc implicit none double precision, parameter :: a = 0.9 integer*8 , parameter :: nmax = 100000 integer , parameter :: nruns = 30 integer :: irun double precision :: X(nruns) double precision :: ave, err do irun=1,nruns call uniform_montecarlo(a,nmax,X(irun)) enddo call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform ./qmc_uniform
E = -0.49588321986667677 +/- 7.1758863546737969E-004
3.3 Gaussian sampling
We will now improve the sampling and allow to sample in the whole 3D space, correcting the bias related to the sampling in the box.
Instead of drawing uniform random numbers, we will draw Gaussian random numbers centered on 0 and with a variance of 1.
To obtain Gaussian-distributed random numbers, you can apply the Box Muller transform to uniform random numbers:
\begin{eqnarray*} z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\ z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2) \end{eqnarray*}Here is a Fortran implementation returning a Gaussian-distributed n-dimensional vector \(\mathbf{z}\);
Fortran
subroutine random_gauss(z,n) implicit none integer, intent(in) :: n double precision, intent(out) :: z(n) double precision :: u(n+1) double precision, parameter :: two_pi = 2.d0*dacos(-1.d0) integer :: i call random_number(u) if (iand(n,1) == 0) then ! n is even do i=1,n,2 z(i) = dsqrt(-2.d0*dlog(u(i))) z(i+1) = z(i) * dsin( two_pi*u(i+1) ) z(i) = z(i) * dcos( two_pi*u(i+1) ) end do else ! n is odd do i=1,n-1,2 z(i) = dsqrt(-2.d0*dlog(u(i))) z(i+1) = z(i) * dsin( two_pi*u(i+1) ) z(i) = z(i) * dcos( two_pi*u(i+1) ) end do z(n) = dsqrt(-2.d0*dlog(u(n))) z(n) = z(n) * dcos( two_pi*u(n+1) ) end if end subroutine random_gauss
Now the sampling probability can be inserted into the equation of the energy:
\[ E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} \]
with the Gaussian probability
\[ P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right). \]
As the coordinates are drawn with probability \(P(\mathbf{r})\), the average energy can be computed as
\[ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r} \]
3.3.1 Exercise
Modify the exercise of the previous section to sample with Gaussian-distributed random numbers. Can you see an reduction in the statistical error?
Python
from hydrogen import * from qmc_stats import * norm_gauss = 1./(2.*np.pi)**(1.5) def gaussian(r): return norm_gauss * np.exp(-np.dot(r,r)*0.5) def MonteCarlo(a,nmax): E = 0. N = 0. for istep in range(nmax): r = np.random.normal(loc=0., scale=1.0, size=(3)) w = psi(a,r) w = w*w / gaussian(r) N += w E += w * e_loc(a,r) return E/N a = 0.9 nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}")
Fortran
double precision function gaussian(r) implicit none double precision, intent(in) :: r(3) double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0) gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )) end function gaussian subroutine gaussian_montecarlo(a,nmax,energy) implicit none double precision, intent(in) :: a integer*8 , intent(in) :: nmax double precision, intent(out) :: energy integer*8 :: istep double precision :: norm, r(3), w double precision, external :: e_loc, psi, gaussian energy = 0.d0 norm = 0.d0 do istep = 1,nmax call random_gauss(r,3) w = psi(a,r) w = w*w / gaussian(r) norm = norm + w energy = energy + w * e_loc(a,r) end do energy = energy / norm end subroutine gaussian_montecarlo program qmc implicit none double precision, parameter :: a = 0.9 integer*8 , parameter :: nmax = 100000 integer , parameter :: nruns = 30 integer :: irun double precision :: X(nruns) double precision :: ave, err do irun=1,nruns call gaussian_montecarlo(a,nmax,X(irun)) enddo call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian ./qmc_gaussian
E = -0.49517104619091717 +/- 1.0685523607878961E-004
3.4 Sampling with \(\Psi^2\)
We will now use the square of the wave function to make the sampling:
\[ P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2 \]
The expression for the energy will be simplified to the average of the local energies, each with a weight of 1.
\[ E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i) \]
3.4.1 Importance sampling
To generate the probability density \(\Psi^2\), we consider a diffusion process characterized by a time-dependent density \([\Psi(\mathbf{r},t)]^2\), which obeys the Fokker-Planck equation:
\[ \frac{\partial \Psi^2}{\partial t} = \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) [\Psi(\mathbf{r},t)]^2. \]
\(D\) is the diffusion constant and \(F_i\) is the i-th component of a drift velocity caused by an external potential. For a stationary density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
\begin{eqnarray*} 0 & = & \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) [\Psi(\mathbf{r})]^2 \\ 0 & = & \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} - F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\ 0 & = & \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} - \frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 - \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) \end{eqnarray*}we search for a drift function which satisfies
\[ \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = [\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) \]
to obtain a second derivative on the left, we need the drift to be of the form \[ F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} \]
\[ \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = [\Psi(\mathbf{r})]^2 \frac{\partial g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} + [\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} \]
\(g = 1 / \Psi^2\) satisfies this equation, so
\[ F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right) \]
In statistical mechanics, Fokker-Planck trajectories are generated by a Langevin equation:
\[ \frac{\partial \mathbf{r}(t)}{\partial t} = 2D \frac{\nabla \Psi(\mathbf{r}(t))}{\Psi} + \eta \]
where \(\eta\) is a normally-distributed fluctuating random force.
Discretizing this differential equation gives the following drifted diffusion scheme:
\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau\, 2D \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi \] where \(\chi\) is a Gaussian random variable with zero mean and variance \(\tau\,2D\).
- Exercise 1
Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\).
Python
def drift(a,r): ar_inv = -a/np.sqrt(np.dot(r,r)) return r * ar_inv
Fortran
subroutine drift(a,r,b) implicit none double precision, intent(in) :: a, r(3) double precision, intent(out) :: b(3) double precision :: ar_inv ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3)) b(:) = r(:) * ar_inv end subroutine drift
- TODO Exercise 2
Sample \(\Psi^2\) approximately using the drifted diffusion scheme, with a diffusion constant \(D=1/2\). You can use a time step of 0.001 a.u.
Python
from hydrogen import * from qmc_stats import * def MonteCarlo(a,tau,nmax): sq_tau = np.sqrt(tau) # Initialization E = 0. N = 0. r_old = np.random.normal(loc=0., scale=1.0, size=(3)) for istep in range(nmax): d_old = drift(a,r_old) chi = np.random.normal(loc=0., scale=1.0, size=(3)) r_new = r_old + tau * d_old + chi*sq_tau N += 1. E += e_loc(a,r_new) r_old = r_new return E/N a = 0.9 nmax = 100000 tau = 0.2 X = [MonteCarlo(a,tau,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}")
Fortran
subroutine variational_montecarlo(a,tau,nmax,energy) implicit none double precision, intent(in) :: a, tau integer*8 , intent(in) :: nmax double precision, intent(out) :: energy integer*8 :: istep double precision :: norm, r_old(3), r_new(3), d_old(3), sq_tau, chi(3) double precision, external :: e_loc sq_tau = dsqrt(tau) ! Initialization energy = 0.d0 norm = 0.d0 call random_gauss(r_old,3) do istep = 1,nmax call drift(a,r_old,d_old) call random_gauss(chi,3) r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau norm = norm + 1.d0 energy = energy + e_loc(a,r_new) r_old(:) = r_new(:) end do energy = energy / norm end subroutine variational_montecarlo program qmc implicit none double precision, parameter :: a = 0.9 double precision, parameter :: tau = 0.2 integer*8 , parameter :: nmax = 100000 integer , parameter :: nruns = 30 integer :: irun double precision :: X(nruns) double precision :: ave, err do irun=1,nruns call variational_montecarlo(a,tau,nmax,X(irun)) enddo call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc ./vmc
E = -0.48584030499187431 +/- 1.0411743995438257E-004
3.4.2 Metropolis algorithm
Discretizing the differential equation to generate the desired probability density will suffer from a discretization error leading to biases in the averages. The Metropolis-Hastings sampling algorithm removes exactly the discretization errors, so large time steps can be employed.
After the new position \(\mathbf{r}_{n+1}\) has been computed, an additional accept/reject step is performed. The acceptance probability \(A\) is chosen so that it is consistent with the probability of leaving \(\mathbf{r}_n\) and the probability of entering \(\mathbf{r}_{n+1}\):
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, \frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} {g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} \right) \]
In our Hydrogen atom example, \(P\) is \(\Psi^2\) and \(g\) is a solution of the discretized Fokker-Planck equation:
\begin{eqnarray*} P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\ g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & \frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right] \end{eqnarray*}The accept/reject step is the following:
- Compute \(A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\).
- Draw a uniform random number \(u\)
- if \(u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\), accept the move
- if \(u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\), reject the move: set \(\mathbf{r}_{n+1} = \mathbf{r}_{n}\), but don't remove the sample from the average!
The acceptance rate is the ratio of the number of accepted step over the total number of steps. The time step should be adapted so that the acceptance rate is around 0.5 for a good efficiency of the simulation.
- Exercise
Modify the previous program to introduce the accept/reject step. You should recover the unbiased result. Adjust the time-step so that the acceptance rate is 0.5.
Python
from hydrogen import * from qmc_stats import * def MonteCarlo(a,tau,nmax): E = 0. N = 0. accep_rate = 0. sq_tau = np.sqrt(tau) r_old = np.random.normal(loc=0., scale=1.0, size=(3)) d_old = drift(a,r_old) d2_old = np.dot(d_old,d_old) psi_old = psi(a,r_old) for istep in range(nmax): chi = np.random.normal(loc=0., scale=1.0, size=(3)) r_new = r_old + tau * d_old + sq_tau * chi d_new = drift(a,r_new) d2_new = np.dot(d_new,d_new) psi_new = psi(a,r_new) # Metropolis prod = np.dot((d_new + d_old), (r_new - r_old)) argexpo = 0.5 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = np.exp(-argexpo) * q*q if np.random.uniform() < q: accep_rate += 1. r_old = r_new d_old = d_new d2_old = d2_new psi_old = psi_new N += 1. E += e_loc(a,r_old) return E/N, accep_rate/N a = 0.9 nmax = 100000 tau = 1.0 X = [MonteCarlo(a,tau,nmax) for i in range(30)] E, deltaE = ave_error([x[0] for x in X]) A, deltaA = ave_error([x[1] for x in X]) print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
Fortran
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate) implicit none double precision, intent(in) :: a, tau integer*8 , intent(in) :: nmax double precision, intent(out) :: energy, accep_rate integer*8 :: istep double precision :: norm, sq_tau, chi(3), d2_old, prod, u double precision :: psi_old, psi_new, d2_new, argexpo, q double precision :: r_old(3), r_new(3) double precision :: d_old(3), d_new(3) double precision, external :: e_loc, psi sq_tau = dsqrt(tau) ! Initialization energy = 0.d0 norm = 0.d0 accep_rate = 0.d0 call random_gauss(r_old,3) call drift(a,r_old,d_old) d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3) psi_old = psi(a,r_old) do istep = 1,nmax call random_gauss(chi,3) r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau call drift(a,r_new,d_new) d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3) psi_new = psi(a,r_new) ! Metropolis prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + & (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + & (d_new(3) + d_old(3))*(r_new(3) - r_old(3)) argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = dexp(-argexpo) * q*q call random_number(u) if (u<q) then accep_rate = accep_rate + 1.d0 r_old(:) = r_new(:) d_old(:) = d_new(:) d2_old = d2_new psi_old = psi_new end if norm = norm + 1.d0 energy = energy + e_loc(a,r_old) end do energy = energy / norm accep_rate = accep_rate / norm end subroutine variational_montecarlo program qmc implicit none double precision, parameter :: a = 0.9 double precision, parameter :: tau = 1.0 integer*8 , parameter :: nmax = 100000 integer , parameter :: nruns = 30 integer :: irun double precision :: X(nruns), accep(nruns) double precision :: ave, err do irun=1,nruns call variational_montecarlo(a,tau,nmax,X(irun),accep(irun)) enddo call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err call ave_error(accep,nruns,ave,err) print *, 'A = ', ave, '+/-', err end program qmc
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis ./vmc_metropolis
E = -0.49499990423528023 +/- 1.5958250761863871E-004 A = 0.78861366666666655 +/- 3.5096729498002445E-004
4 TODO Diffusion Monte Carlo
4.1 Hydrogen atom
- Exercise
Modify the Metropolis VMC program to introduce the PDMC weight. In the limit \(\tau \rightarrow 0\), you should recover the exact energy of H for any value of \(a\).
Python
from hydrogen import * from qmc_stats import * def MonteCarlo(a,tau,nmax,Eref): E = 0. N = 0. accep_rate = 0. sq_tau = np.sqrt(tau) r_old = np.random.normal(loc=0., scale=1.0, size=(3)) d_old = drift(a,r_old) d2_old = np.dot(d_old,d_old) psi_old = psi(a,r_old) w = 1.0 for istep in range(nmax): chi = np.random.normal(loc=0., scale=1.0, size=(3)) el = e_loc(a,r_old) w *= np.exp(-tau*(el - Eref)) N += w E += w * el r_new = r_old + tau * d_old + sq_tau * chi d_new = drift(a,r_new) d2_new = np.dot(d_new,d_new) psi_new = psi(a,r_new) # Metropolis prod = np.dot((d_new + d_old), (r_new - r_old)) argexpo = 0.5 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = np.exp(-argexpo) * q*q # PDMC weight if np.random.uniform() < q: accep_rate += w r_old = r_new d_old = d_new d2_old = d2_new psi_old = psi_new return E/N, accep_rate/N a = 0.9 nmax = 10000 tau = .1 X = [MonteCarlo(a,tau,nmax,-0.5) for i in range(30)] E, deltaE = ave_error([x[0] for x in X]) A, deltaA = ave_error([x[1] for x in X]) print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
Fortran
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate) implicit none double precision, intent(in) :: a, tau integer*8 , intent(in) :: nmax double precision, intent(out) :: energy, accep_rate integer*8 :: istep double precision :: norm, sq_tau, chi(3), d2_old, prod, u double precision :: psi_old, psi_new, d2_new, argexpo, q double precision :: r_old(3), r_new(3) double precision :: d_old(3), d_new(3) double precision, external :: e_loc, psi sq_tau = dsqrt(tau) ! Initialization energy = 0.d0 norm = 0.d0 accep_rate = 0.d0 call random_gauss(r_old,3) call drift(a,r_old,d_old) d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3) psi_old = psi(a,r_old) do istep = 1,nmax call random_gauss(chi,3) r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau call drift(a,r_new,d_new) d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3) psi_new = psi(a,r_new) ! Metropolis prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + & (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + & (d_new(3) + d_old(3))*(r_new(3) - r_old(3)) argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = dexp(-argexpo) * q*q call random_number(u) if (u<q) then accep_rate = accep_rate + 1.d0 r_old(:) = r_new(:) d_old(:) = d_new(:) d2_old = d2_new psi_old = psi_new end if norm = norm + 1.d0 energy = energy + e_loc(a,r_old) end do energy = energy / norm accep_rate = accep_rate / norm end subroutine variational_montecarlo program qmc implicit none double precision, parameter :: a = 0.9 double precision, parameter :: tau = 1.0 integer*8 , parameter :: nmax = 100000 integer , parameter :: nruns = 30 integer :: irun double precision :: X(nruns), accep(nruns) double precision :: ave, err do irun=1,nruns call variational_montecarlo(a,tau,nmax,X(irun),accep(irun)) enddo call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err call ave_error(accep,nruns,ave,err) print *, 'A = ', ave, '+/-', err end program qmc
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis ./vmc_metropolis
E = -0.49499990423528023 +/- 1.5958250761863871E-004 A = 0.78861366666666655 +/- 3.5096729498002445E-004
4.2 Dihydrogen
We will now consider the H2 molecule in a minimal basis composed of the \(1s\) orbitals of the hydrogen atoms:
\[ \Psi(\mathbf{r}_1, \mathbf{r}_2) = \exp(-(\mathbf{r}_1 - \mathbf{R}_A)) + \] where \(\mathbf{r}_1\) and \(\mathbf{r}_2\) denote the electron coordinates and \(\mathbf{R}_A\) and \(\mathbf{R}_B\) the coordinates of the nuclei.