from hydrogen import * from qmc_stats import * def MonteCarlo(a,tau,nmax): E = 0. N = 0. accep_rate = 0. sq_tau = np.sqrt(tau) r_old = np.random.normal(loc=0., scale=1.0, size=(3)) d_old = drift(a,r_old) d2_old = np.dot(d_old,d_old) psi_old = psi(a,r_old) for istep in range(nmax): chi = np.random.normal(loc=0., scale=1.0, size=(3)) r_new = r_old + tau * d_old + sq_tau * chi d_new = drift(a,r_new) d2_new = np.dot(d_new,d_new) psi_new = psi(a,r_new) # Metropolis prod = np.dot((d_new + d_old), (r_new - r_old)) argexpo = 0.5 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = np.exp(-argexpo) * q*q if np.random.uniform() < q: accep_rate += 1. r_old = r_new d_old = d_new d2_old = d2_new psi_old = psi_new N += 1. E += e_loc(a,r_old) return E/N, accep_rate/N a = 0.9 nmax = 100000 tau = 1.0 X = [MonteCarlo(a,tau,nmax) for i in range(30)] E, deltaE = ave_error([x[0] for x in X]) A, deltaA = ave_error([x[1] for x in X]) print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")