Quantum Monte Carlo

Table of Contents

1 Introduction

We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we propose to compute the energy of a hydrogen atom using numerical integration. The goal of this section is to introduce the local energy. Then we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function. Finally, we introduce the diffusion Monte Carlo (DMC) method which gives the exact energy of the \(H_2\) molecule.

Code examples will be given in Python and Fortran. Whatever language can be chosen.

We consider the stationary solution of the Schrödinger equation, so the wave functions considered here are real: for an \(N\) electron system where the electrons move in the 3-dimensional space, \(\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}\). In addition, \(\Psi\) is defined everywhere, continuous and infinitely differentiable.

Note

In Fortran, when you use a double precision constant, don't forget to put d0 as a suffix (for example 2.0d0), or it will be interpreted as a single precision value

2 Numerical evaluation of the energy

In this section we consider the Hydrogen atom with the following wave function:

\[ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) \]

We will first verify that \(\Psi\) is an eigenfunction of the Hamiltonian

\[ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} \]

when \(a=1\), by checking that \(\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})\) for all \(\mathbf{r}\). We will check that the local energy, defined as

\[ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, \]

is constant. We will also see that when \(a \ne 1\) the local energy is not constant, so \(\hat{H} \Psi \ne E \Psi\).

The probabilistic expected value of an arbitrary function \(f(x)\) with respect to a probability density function \(p(x)\) is given by

\[ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx \].

Recall that a probability density function \(p(x)\) is non-negative and integrates to one:

\[ \int_{-\infty}^\infty p(x)\,dx = 1 \].

The electronic energy of a system is the expectation value of the local energy \(E(\mathbf{r})\) with respect to the 3N-dimensional electron density given by the square of the wave function:

\begin{eqnarray*} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \langle E_L \rangle_{\Psi^2} \end{eqnarray*}

2.1 Local energy

2.1.1 Exercise 1

Write a function which computes the potential at \(\mathbf{r}\). The function accepts a 3-dimensional vector r as input arguments and returns the potential.

\(\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)\), so \[ V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}} \]

Python

import numpy as np

def potential(r):
    return -1. / np.sqrt(np.dot(r,r))

Fortran

double precision function potential(r)
  implicit none
  double precision, intent(in) :: r(3)
  potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
end function potential

2.1.2 Exercise 2

Write a function which computes the wave function at \(\mathbf{r}\). The function accepts a scalar a and a 3-dimensional vector r as input arguments, and returns a scalar.

Python

def psi(a, r):
    return np.exp(-a*np.sqrt(np.dot(r,r)))

Fortran

double precision function psi(a, r)
  implicit none
  double precision, intent(in) :: a, r(3)
  psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi

2.1.3 Exercise 3

Write a function which computes the local kinetic energy at \(\mathbf{r}\). The function accepts a and r as input arguments and returns the local kinetic energy.

The local kinetic energy is defined as \[-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.\]

We differentiate \(\Psi\) with respect to \(x\):

\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \] \[\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]

and we differentiate a second time:

\[ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(\mathbf{r}). \]

The Laplacian operator \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\) applied to the wave function gives:

\[ \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r}) \]

So the local kinetic energy is \[ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \]

Python

def kinetic(a,r):
    return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))

Fortran

double precision function kinetic(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)
  kinetic = -0.5d0 * (a*a - (2.d0*a) / &
       dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) 
end function kinetic

2.1.4 Exercise 4

Write a function which computes the local energy at \(\mathbf{r}\). The function accepts x,y,z as input arguments and returns the local energy.

\[ E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r}) \]

Python

def e_loc(a,r):
    return kinetic(a,r) + potential(r)

Fortran

double precision function e_loc(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)
  double precision, external   :: kinetic, potential
  e_loc = kinetic(a,r) + potential(r)
end function e_loc

2.2 Plot of the local energy along the \(x\) axis

2.2.1 Exercise

For multiple values of \(a\) (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the \(x\) axis.

Python

import numpy as np
import matplotlib.pyplot as plt

from hydrogen import e_loc

x=np.linspace(-5,5)

def make_array(a):
  y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
  return y

plt.figure(figsize=(10,5))
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
  y = make_array(a)
  plt.plot(x,y,label=f"a={a}")

plt.tight_layout()

plt.legend()

plt.savefig("plot_py.png")

plot_py.png

Fortran

program plot
  implicit none
  double precision, external :: e_loc

  double precision :: x(50), energy, dx, r(3), a(6)
  integer :: i, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  r(:) = 0.d0

  do j=1,size(a)
     print *, '# a=', a(j)
     do i=1,size(x)
        r(1) = x(i)
        energy = e_loc( a(j), r )
        print *, x(i), energy
     end do
     print *, ''
     print *, ''
  end do

end program plot

To compile and run:

gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data

To plot the data using gnuplot:

set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
     './data' index 1 using 1:2 with lines title 'a=0.2', \
     './data' index 2 using 1:2 with lines title 'a=0.5', \
     './data' index 3 using 1:2 with lines title 'a=1.0', \
     './data' index 4 using 1:2 with lines title 'a=1.5', \
     './data' index 5 using 1:2 with lines title 'a=2.0'

plot.png

2.3 Numerical estimation of the energy

If the space is discretized in small volume elements \(\mathbf{r}_i\) of size \(\delta \mathbf{r}\), the expression of \(\langle E_L \rangle_{\Psi^2}\) becomes a weighted average of the local energy, where the weights are the values of the probability density at \(\mathbf{r}_i\) multiplied by the volume element:

\[ \langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} \]

The energy is biased because:

  • The volume elements are not infinitely small (discretization error)
  • The energy is evaluated only inside the box (incompleteness of the space)

2.3.1 Exercise

Compute a numerical estimate of the energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\).

Python

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3

r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    E = 0.
    norm = 0.
      for x in interval:
          r[0] = x
            for y in interval:
                r[1] = y
                  for z in interval:
                      r[2] = z
                      w = psi(a,r)
                      w = w * w * delta
                      E    += w * e_loc(a,r)
                      norm += w 
    E = E / norm
    print(f"a = {a} \t E = {E}")                

Fortran

program energy_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
  integer :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta
              energy = energy + w * e_loc(a(j), r)
              norm   = norm   + w 
           end do
        end do
     end do
     energy = energy / norm
     print *, 'a = ', a(j), '    E = ', energy
  end do

end program energy_hydrogen

To compile the Fortran and run it:

gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen 
a =   0.10000000000000001          E =  -0.24518438948809140     
a =   0.20000000000000001          E =  -0.26966057967803236     
a =   0.50000000000000000          E =  -0.38563576125173815     
a =    1.0000000000000000          E =  -0.50000000000000000     
a =    1.5000000000000000          E =  -0.39242967082602065     
a =    2.0000000000000000          E =   -8.0869806678448772E-002

2.4 Variance of the local energy

The variance of the local energy is a functional of \(\Psi\) which measures the magnitude of the fluctuations of the local energy associated with \(\Psi\) around the average:

\[ \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \]

If the local energy is constant (i.e. \(\Psi\) is an eigenfunction of \(\hat{H}\)) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function.

2.4.1 Exercise

Compute a numerical estimate of the variance of the local energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\) for different values of \(a\).

Python

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3

r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    E = 0.
    norm = 0.
    for x in interval:
        r[0] = x
        for y in interval:
            r[1] = y
            for z in interval:
                r[2] = z
                w = psi(a, r)
                w = w * w * delta
                El = e_loc(a, r)
                E  += w * El
                norm += w 
    E = E / norm
    s2 = 0.
    for x in interval:
        r[0] = x
        for y in interval:
            r[1] = y
            for z in interval:
                r[2] = z
                w = psi(a, r)
                w = w * w * delta
                El = e_loc(a, r)
                s2 += w * (El - E)**2
    s2 = s2 / norm
    print(f"a = {a} \t E = {E:10.8f}  \t  \sigma^2 = {s2:10.8f}")

Fortran

program variance_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
  integer :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta
              energy = energy + w * e_loc(a(j), r)
              norm   = norm   + w 
           end do
        end do
     end do
     energy = energy / norm

     s2 = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta
              s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
              norm   = norm   + w 
           end do
        end do
     end do
     s2 = s2 / norm
     print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
  end do

end program variance_hydrogen

To compile and run:

gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen 
a =   0.10000000000000001       E =  -0.24518438948809140       s2 =    2.6965218719733813E-002
a =   0.20000000000000001       E =  -0.26966057967803236       s2 =    3.7197072370217653E-002
a =   0.50000000000000000       E =  -0.38563576125173815       s2 =    5.3185967578488862E-002
a =    1.0000000000000000       E =  -0.50000000000000000       s2 =    0.0000000000000000     
a =    1.5000000000000000       E =  -0.39242967082602065       s2 =   0.31449670909180444     
a =    2.0000000000000000       E =   -8.0869806678448772E-002  s2 =    1.8068814270851303     

3 Variational Monte Carlo

Numerical integration with deterministic methods is very efficient in low dimensions. When the number of dimensions becomes large, instead of computing the average energy as a numerical integration on a grid, it is usually more efficient to do a Monte Carlo sampling.

Moreover, a Monte Carlo sampling will alow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.

3.1 Computation of the statistical error

To compute the statistical error, you need to perform \(M\) independent Monte Carlo calculations. You will obtain \(M\) different estimates of the energy, which are expected to have a Gaussian distribution by the central limit theorem.

The estimate of the energy is

\[ E = \frac{1}{M} \sum_{i=1}^M E_M \]

The variance of the average energies can be computed as

\[ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2 \]

And the confidence interval is given by

\[ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} \]

3.1.1 Exercise

Write a function returning the average and statistical error of an input array.

Python

from math import sqrt
def ave_error(arr):
    M = len(arr)
    assert (M>1)
    average = sum(arr)/M
    variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
    return (average, sqrt(variance/M))

Fortran

subroutine ave_error(x,n,ave,err)
  implicit none
  integer, intent(in)           :: n 
  double precision, intent(in)  :: x(n) 
  double precision, intent(out) :: ave, err
  double precision :: variance
  if (n == 1) then
     ave = x(1)
     err = 0.d0
  else
     ave = sum(x(:)) / dble(n)
     variance = sum( (x(:) - ave)**2 ) / dble(n-1)
     err = dsqrt(variance/dble(n))
  endif
end subroutine ave_error

3.2 Uniform sampling in the box

We will now do our first Monte Carlo calculation to compute the energy of the hydrogen atom.

At every Monte Carlo step:

  • Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le (x,y,z) \le (5,5,5)\)
  • Compute \([\Psi(\mathbf{r}_i)]^2\) and accumulate the result in a variable normalization
  • Compute \([\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)\), and accumulate the result in a variable energy

One Monte Carlo run will consist of \(N\) Monte Carlo steps. Once all the steps have been computed, the run returns the average energy \(\bar{E}_k\) over the \(N\) steps of the run.

To compute the statistical error, perform \(M\) runs. The final estimate of the energy will be the average over the \(\bar{E}_k\), and the variance of the \(\bar{E}_k\) will be used to compute the statistical error.

3.2.1 Exercise

Parameterize the wave function with \(a=0.9\). Perform 30 independent Monte Carlo runs, each with 100 000 Monte Carlo steps. Store the final energies of each run and use this array to compute the average energy and the associated error bar.

Python

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax):
     E = 0.
     N = 0.
     for istep in range(nmax):
          r = np.random.uniform(-5., 5., (3))
          w = psi(a,r)
          w = w*w
          N += w
          E += w * e_loc(a,r)
   return E/N

a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

Fortran

When running Monte Carlo calculations, the number of steps is usually very large. We expect nmax to be possibly larger than 2 billion, so we use 8-byte integers (integer*8) to represent it, as well as the index of the current step.

subroutine uniform_montecarlo(a,nmax,energy)
  implicit none
  double precision, intent(in)  :: a
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy

  integer*8 :: istep

  double precision :: norm, r(3), w

  double precision, external :: e_loc, psi

  energy = 0.d0
  norm   = 0.d0
  do istep = 1,nmax
     call random_number(r)
     r(:) = -5.d0 + 10.d0*r(:)
     w = psi(a,r)
     w = w*w
     norm = norm + w
     energy = energy + w * e_loc(a,r)
  end do
  energy = energy / norm
end subroutine uniform_montecarlo

program qmc
  implicit none
  double precision, parameter :: a = 0.9
  integer*8       , parameter :: nmax = 100000
  integer         , parameter :: nruns = 30

  integer :: irun
  double precision :: X(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call uniform_montecarlo(a,nmax,X(irun))
  enddo
  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
E =  -0.49588321986667677      +/-   7.1758863546737969E-004

3.3 Gaussian sampling

We will now improve the sampling and allow to sample in the whole 3D space, correcting the bias related to the sampling in the box.

Instead of drawing uniform random numbers, we will draw Gaussian random numbers centered on 0 and with a variance of 1.

To obtain Gaussian-distributed random numbers, you can apply the Box Muller transform to uniform random numbers:

\begin{eqnarray*} z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\ z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2) \end{eqnarray*}

Here is a Fortran implementation returning a Gaussian-distributed n-dimensional vector \(\mathbf{z}\);

Fortran

subroutine random_gauss(z,n)
  implicit none
  integer, intent(in) :: n
  double precision, intent(out) :: z(n)
  double precision :: u(n+1)
  double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
  integer :: i

  call random_number(u)
  if (iand(n,1) == 0) then
     ! n is even
     do i=1,n,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do
  else
     ! n is odd
     do i=1,n-1,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do
     z(n)   = dsqrt(-2.d0*dlog(u(n))) 
     z(n)   = z(n) * dcos( two_pi*u(n+1) )
  end if
end subroutine random_gauss

Now the sampling probability can be inserted into the equation of the energy:

\[ E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} \]

with the Gaussian probability

\[ P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right). \]

As the coordinates are drawn with probability \(P(\mathbf{r})\), the average energy can be computed as

\[ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r} \]

3.3.1 Exercise

Modify the exercise of the previous section to sample with Gaussian-distributed random numbers. Can you see an reduction in the statistical error?

Python

from hydrogen  import *
from qmc_stats import *

norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
    return norm_gauss * np.exp(-np.dot(r,r)*0.5)

def MonteCarlo(a,nmax):
    E = 0.
    N = 0.
    for istep in range(nmax):
        r = np.random.normal(loc=0., scale=1.0, size=(3))
        w = psi(a,r)
        w = w*w / gaussian(r)
        N += w
        E += w * e_loc(a,r)
    return E/N

a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

Fortran

double precision function gaussian(r)
  implicit none
  double precision, intent(in) :: r(3)
  double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
  gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian


subroutine gaussian_montecarlo(a,nmax,energy)
  implicit none
  double precision, intent(in)  :: a
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy

  integer*8 :: istep

  double precision :: norm, r(3), w

  double precision, external :: e_loc, psi, gaussian

  energy = 0.d0
  norm   = 0.d0
  do istep = 1,nmax
     call random_gauss(r,3)
     w = psi(a,r) 
     w = w*w / gaussian(r)
     norm = norm + w
     energy = energy + w * e_loc(a,r)
  end do
  energy = energy / norm
end subroutine gaussian_montecarlo

program qmc
  implicit none
  double precision, parameter :: a = 0.9
  integer*8       , parameter :: nmax = 100000
  integer         , parameter :: nruns = 30

  integer :: irun
  double precision :: X(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call gaussian_montecarlo(a,nmax,X(irun))
  enddo
  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian
E =  -0.49517104619091717      +/-   1.0685523607878961E-004

3.4 Sampling with \(\Psi^2\)

We will now use the square of the wave function to make the sampling:

\[ P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2 \]

The expression for the energy will be simplified to the average of the local energies, each with a weight of 1.

\[ E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i) \]

3.4.1 Importance sampling

To generate the probability density \(\Psi^2\), we consider a diffusion process characterized by a time-dependent density \([\Psi(\mathbf{r},t)]^2\), which obeys the Fokker-Planck equation:

\[ \frac{\partial \Psi^2}{\partial t} = \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) [\Psi(\mathbf{r},t)]^2. \]

\(D\) is the diffusion constant and \(F_i\) is the i-th component of a drift velocity caused by an external potential. For a stationary density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so

\begin{eqnarray*} 0 & = & \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) [\Psi(\mathbf{r})]^2 \\ 0 & = & \sum_i D \frac{\partial}{\partial \mathbf{r}_i} \left( \frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} - F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\ 0 & = & \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} - \frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 - \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) \end{eqnarray*}

we search for a drift function which satisfies

\[ \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = [\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) \]

to obtain a second derivative on the left, we need the drift to be of the form \[ F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} \]

\[ \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = [\Psi(\mathbf{r})]^2 \frac{\partial g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} + [\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} \]

\(g = 1 / \Psi^2\) satisfies this equation, so

\[ F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right) \]

In statistical mechanics, Fokker-Planck trajectories are generated by a Langevin equation:

\[ \frac{\partial \mathbf{r}(t)}{\partial t} = 2D \frac{\nabla \Psi(\mathbf{r}(t))}{\Psi} + \eta \]

where \(\eta\) is a normally-distributed fluctuating random force.

Discretizing this differential equation gives the following drifted diffusion scheme:

\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau\, 2D \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi \] where \(\chi\) is a Gaussian random variable with zero mean and variance \(\tau\,2D\).

  1. Exercise 1

    Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\).

    Python

    def drift(a,r):
      ar_inv = -a/np.sqrt(np.dot(r,r))
      return r * ar_inv
    

    Fortran

    subroutine drift(a,r,b)
      implicit none
      double precision, intent(in)  :: a, r(3)
      double precision, intent(out) :: b(3)
      double precision :: ar_inv
      ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
      b(:) = r(:) * ar_inv
    end subroutine drift
    
  2. TODO Exercise 2

    Sample \(\Psi^2\) approximately using the drifted diffusion scheme, with a diffusion constant \(D=1/2\). You can use a time step of 0.001 a.u.

    Python

    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,tau,nmax):
        sq_tau = np.sqrt(tau)
    
        # Initialization
        E = 0.
        N = 0.
        r_old = np.random.normal(loc=0., scale=1.0, size=(3))
    
        for istep in range(nmax):
            d_old = drift(a,r_old)
            chi = np.random.normal(loc=0., scale=1.0, size=(3))
            r_new = r_old + tau * d_old + chi*sq_tau
            N += 1.
            E += e_loc(a,r_new)
            r_old = r_new
        return E/N
    
    
    a = 0.9
    nmax = 100000
    tau = 0.2
    X = [MonteCarlo(a,tau,nmax) for i in range(30)]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    

    Fortran

    subroutine variational_montecarlo(a,tau,nmax,energy)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy
    
      integer*8 :: istep
      double precision :: norm, r_old(3), r_new(3), d_old(3), sq_tau, chi(3)
      double precision, external :: e_loc
    
      sq_tau = dsqrt(tau)
    
      ! Initialization
      energy = 0.d0
      norm   = 0.d0
      call random_gauss(r_old,3)
    
      do istep = 1,nmax
         call drift(a,r_old,d_old)
         call random_gauss(chi,3)
         r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
         norm = norm + 1.d0
         energy = energy + e_loc(a,r_new)
         r_old(:) = r_new(:)
      end do
      energy = energy / norm
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 0.2
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
    ./vmc
    
    E =  -0.48584030499187431      +/-   1.0411743995438257E-004
    
    

3.4.2 Metropolis algorithm

Discretizing the differential equation to generate the desired probability density will suffer from a discretization error leading to biases in the averages. The Metropolis-Hastings sampling algorithm removes exactly the discretization errors, so large time steps can be employed.

After the new position \(\mathbf{r}_{n+1}\) has been computed, an additional accept/reject step is performed. The acceptance probability \(A\) is chosen so that it is consistent with the probability of leaving \(\mathbf{r}_n\) and the probability of entering \(\mathbf{r}_{n+1}\):

\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, \frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} {g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} \right) \]

In our Hydrogen atom example, \(P\) is \(\Psi^2\) and \(g\) is a solution of the discretized Fokker-Planck equation:

\begin{eqnarray*} P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\ g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & \frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right] \end{eqnarray*}

The accept/reject step is the following:

  • Compute \(A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\).
  • Draw a uniform random number \(u\)
  • if \(u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\), accept the move
  • if \(u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})\), reject the move: set \(\mathbf{r}_{n+1} = \mathbf{r}_{n}\), but don't remove the sample from the average!

The acceptance rate is the ratio of the number of accepted step over the total number of steps. The time step should be adapted so that the acceptance rate is around 0.5 for a good efficiency of the simulation.

  1. Exercise

    Modify the previous program to introduce the accept/reject step. You should recover the unbiased result. Adjust the time-step so that the acceptance rate is 0.5.

    Python

    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,tau,nmax):
        E = 0.
        N = 0.
        accep_rate = 0.
        sq_tau = np.sqrt(tau)
        r_old = np.random.normal(loc=0., scale=1.0, size=(3))
        d_old = drift(a,r_old)
        d2_old = np.dot(d_old,d_old)
        psi_old = psi(a,r_old)
        for istep in range(nmax):
            chi = np.random.normal(loc=0., scale=1.0, size=(3))
            r_new = r_old + tau * d_old + sq_tau * chi
            d_new = drift(a,r_new)
            d2_new = np.dot(d_new,d_new)
            psi_new = psi(a,r_new)
            # Metropolis
            prod = np.dot((d_new + d_old), (r_new - r_old))
            argexpo = 0.5 * (d2_new - d2_old)*tau + prod
            q = psi_new / psi_old
            q = np.exp(-argexpo) * q*q
            if np.random.uniform() < q:
                accep_rate += 1.
                r_old = r_new
                d_old = d_new
                d2_old = d2_new
                psi_old = psi_new
            N += 1.
            E += e_loc(a,r_old)
        return E/N, accep_rate/N
    
    
    a = 0.9
    nmax = 100000
    tau = 1.0
    X = [MonteCarlo(a,tau,nmax) for i in range(30)]
    E, deltaE = ave_error([x[0] for x in X])
    A, deltaA = ave_error([x[1] for x in X])
    print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
    

    Fortran

    subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy, accep_rate
    
      integer*8 :: istep
      double precision :: norm, sq_tau, chi(3), d2_old, prod, u
      double precision :: psi_old, psi_new, d2_new, argexpo, q
      double precision :: r_old(3), r_new(3)
      double precision :: d_old(3), d_new(3)
      double precision, external :: e_loc, psi
    
      sq_tau = dsqrt(tau)
    
      ! Initialization
      energy = 0.d0
      norm   = 0.d0
      accep_rate = 0.d0
      call random_gauss(r_old,3)
      call drift(a,r_old,d_old)
      d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
      psi_old = psi(a,r_old)
    
      do istep = 1,nmax
         call random_gauss(chi,3)
         r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
         call drift(a,r_new,d_new)
         d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
         psi_new = psi(a,r_new)
         ! Metropolis
         prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
                (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
                (d_new(3) + d_old(3))*(r_new(3) - r_old(3))
         argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
         q = psi_new / psi_old
         q = dexp(-argexpo) * q*q
         call random_number(u)
         if (u<q) then
            accep_rate = accep_rate + 1.d0
            r_old(:) = r_new(:)
            d_old(:) = d_new(:)
            d2_old = d2_new
            psi_old = psi_new
         end if
         norm = norm + 1.d0
         energy = energy + e_loc(a,r_old)
      end do
      energy = energy / norm
      accep_rate = accep_rate / norm
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 1.0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), accep(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
      call ave_error(accep,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
    ./vmc_metropolis
    
    E =  -0.49499990423528023      +/-   1.5958250761863871E-004
    A =   0.78861366666666655      +/-   3.5096729498002445E-004
    
    

4 TODO Diffusion Monte Carlo

4.1 Hydrogen atom

  1. Exercise

    Modify the Metropolis VMC program to introduce the PDMC weight. In the limit \(\tau \rightarrow 0\), you should recover the exact energy of H for any value of \(a\).

    Python

    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,tau,nmax,Eref):
        E = 0.
        N = 0.
        accep_rate = 0.
        sq_tau = np.sqrt(tau)
        r_old = np.random.normal(loc=0., scale=1.0, size=(3))
        d_old = drift(a,r_old)
        d2_old = np.dot(d_old,d_old)
        psi_old = psi(a,r_old)
        w = 1.0
        for istep in range(nmax):
            chi = np.random.normal(loc=0., scale=1.0, size=(3))
            el = e_loc(a,r_old)
            w *= np.exp(-tau*(el - Eref))
            N += w
            E += w * el
    
            r_new = r_old + tau * d_old + sq_tau * chi
            d_new = drift(a,r_new)
            d2_new = np.dot(d_new,d_new)
            psi_new = psi(a,r_new)
            # Metropolis
            prod = np.dot((d_new + d_old), (r_new - r_old))
            argexpo = 0.5 * (d2_new - d2_old)*tau + prod
            q = psi_new / psi_old
            q = np.exp(-argexpo) * q*q
            # PDMC weight
            if np.random.uniform() < q:
                accep_rate += w
                r_old = r_new
                d_old = d_new
                d2_old = d2_new
                psi_old = psi_new
        return E/N, accep_rate/N
    
    
    a = 0.9
    nmax = 10000
    tau = .1
    X = [MonteCarlo(a,tau,nmax,-0.5) for i in range(30)]
    E, deltaE = ave_error([x[0] for x in X])
    A, deltaA = ave_error([x[1] for x in X])
    print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
    

    Fortran

    subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy, accep_rate
    
      integer*8 :: istep
      double precision :: norm, sq_tau, chi(3), d2_old, prod, u
      double precision :: psi_old, psi_new, d2_new, argexpo, q
      double precision :: r_old(3), r_new(3)
      double precision :: d_old(3), d_new(3)
      double precision, external :: e_loc, psi
    
      sq_tau = dsqrt(tau)
    
      ! Initialization
      energy = 0.d0
      norm   = 0.d0
      accep_rate = 0.d0
      call random_gauss(r_old,3)
      call drift(a,r_old,d_old)
      d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
      psi_old = psi(a,r_old)
    
      do istep = 1,nmax
         call random_gauss(chi,3)
         r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
         call drift(a,r_new,d_new)
         d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
         psi_new = psi(a,r_new)
         ! Metropolis
         prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
                (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
                (d_new(3) + d_old(3))*(r_new(3) - r_old(3))
         argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
         q = psi_new / psi_old
         q = dexp(-argexpo) * q*q
         call random_number(u)
         if (u<q) then
            accep_rate = accep_rate + 1.d0
            r_old(:) = r_new(:)
            d_old(:) = d_new(:)
            d2_old = d2_new
            psi_old = psi_new
         end if
         norm = norm + 1.d0
         energy = energy + e_loc(a,r_old)
      end do
      energy = energy / norm
      accep_rate = accep_rate / norm
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 1.0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), accep(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
      call ave_error(accep,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
    ./vmc_metropolis
    
    E =  -0.49499990423528023      +/-   1.5958250761863871E-004
    A =   0.78861366666666655      +/-   3.5096729498002445E-004
    
    

4.2 Dihydrogen

We will now consider the H2 molecule in a minimal basis composed of the \(1s\) orbitals of the hydrogen atoms:

\[ \Psi(\mathbf{r}_1, \mathbf{r}_2) = \exp(-(\mathbf{r}_1 - \mathbf{R}_A)) + \] where \(\mathbf{r}_1\) and \(\mathbf{r}_2\) denote the electron coordinates and \(\mathbf{R}_A\) and \(\mathbf{R}_B\) the coordinates of the nuclei.

Author: Anthony Scemama, Claudia Filippi

Created: 2021-01-13 Wed 17:16

Validate