Quantum Monte Carlo

Table of Contents

1 Introduction

We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we propose to compute the energy of a hydrogen atom using numerical integration. The goal of this section is to introduce the local energy. Then we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function. Finally, we introduce the diffusion Monte Carlo (DMC) method which gives the exact energy of the hydrogen atom and of the \(H_2\) molecule.

Code examples will be given in Python and Fortran. You can use whatever language you prefer to write the program.

We consider the stationary solution of the Schrödinger equation, so the wave functions considered here are real: for an \(N\) electron system where the electrons move in the 3-dimensional space, \(\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}\). In addition, \(\Psi\) is defined everywhere, continuous and infinitely differentiable.

All the quantities are expressed in atomic units (energies, coordinates, etc).

2 Numerical evaluation of the energy

In this section we consider the Hydrogen atom with the following wave function:

\[ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) \]

We will first verify that, for a given value of \(a\), \(\Psi\) is an eigenfunction of the Hamiltonian

\[ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} \]

To do that, we will check if the local energy, defined as

\[ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, \]

is constant.

The probabilistic expected value of an arbitrary function \(f(x)\) with respect to a probability density function \(p(x)\) is given by

\[ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx. \]

Recall that a probability density function \(p(x)\) is non-negative and integrates to one:

\[ \int_{-\infty}^\infty p(x)\,dx = 1. \]

The electronic energy of a system is the expectation value of the local energy \(E(\mathbf{r})\) with respect to the 3N-dimensional electron density given by the square of the wave function:

\begin{eqnarray*} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} = \langle E_L \rangle_{\Psi^2} \end{eqnarray*}

2.1 Local energy

Write all the functions of this section in a single file : hydrogen.py if you use Python, or hydrogen.f90 is you use Fortran.

  • When computing a square root in \(\mathbb{R}\), always make sure that the argument of the square root is non-negative.
  • When you divide, always make sure that you will not divide by zero

If a floating-point exception can occur, you should make a test to catch the error.

2.1.1 Exercise 1

Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(\hat{H}\).

2.1.2 Exercise 2

Write a function which computes the potential at \(\mathbf{r}\). The function accepts a 3-dimensional vector r as input arguments and returns the potential.

\(\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)\), so \[ V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}} \]

  1. Python
    import numpy as np
    
    def potential(r):
        # TODO
    
  2. Python   solution
    import numpy as np
    
    def potential(r):
        distance = np.sqrt(np.dot(r,r))
        assert (distance > 0)
        return -1. / distance
    
  3. Fortran
    double precision function potential(r)
      implicit none
      double precision, intent(in) :: r(3)
      ! TODO
    end function potential
    
  4. Fortran   solution
    double precision function potential(r)
      implicit none
      double precision, intent(in) :: r(3)
      double precision :: distance
      distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
      if (distance > 0.d0) then
         potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
      else
         stop 'potential at r=0.d0 diverges'
      end if
    end function potential
    

2.1.3 Exercise 3

Write a function which computes the wave function at \(\mathbf{r}\). The function accepts a scalar a and a 3-dimensional vector r as input arguments, and returns a scalar.

  1. Python
    def psi(a, r):
        # TODO
    
  2. Python   solution
    def psi(a, r):
        return np.exp(-a*np.sqrt(np.dot(r,r)))
    
  3. Fortran
    double precision function psi(a, r)
      implicit none
      double precision, intent(in) :: a, r(3)
      ! TODO
    end function psi
    
  4. Fortran   solution
    double precision function psi(a, r)
      implicit none
      double precision, intent(in) :: a, r(3)
      psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
    end function psi
    

2.1.4 Exercise 4

Write a function which computes the local kinetic energy at \(\mathbf{r}\). The function accepts a and r as input arguments and returns the local kinetic energy.

The local kinetic energy is defined as \[-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.\]

We differentiate \(\Psi\) with respect to \(x\):

\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \] \[\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]

and we differentiate a second time:

\[ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(\mathbf{r}). \]

The Laplacian operator \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\) applied to the wave function gives:

\[ \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r}) \]

So the local kinetic energy is \[ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \]

  1. Python
    def kinetic(a,r):
        # TODO
    
  2. Python   solution
    def kinetic(a,r):
        distance = np.sqrt(np.dot(r,r))
        assert (distance > 0.)
        return -0.5 * (a**2 - (2.*a)/distance)
    
  3. Fortran
    double precision function kinetic(a,r)
      implicit none
      double precision, intent(in) :: a, r(3)
      ! TODO
    end function kinetic
    
  4. Fortran   solution
    double precision function kinetic(a,r)
      implicit none
      double precision, intent(in) :: a, r(3)
      double precision :: distance
      distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) 
      if (distance > 0.d0) then
         kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
      else
         stop 'kinetic energy diverges at r=0'
      end if
    end function kinetic
    

2.1.5 Exercise 5

Write a function which computes the local energy at \(\mathbf{r}\), using the previously defined functions. The function accepts a and r as input arguments and returns the local kinetic energy.

\[ E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r}) \]

  1. Python
    def e_loc(a,r):
        #TODO
    
  2. Python   solution
    def e_loc(a,r):
        return kinetic(a,r) + potential(r)
    
  3. Fortran
    double precision function e_loc(a,r)
      implicit none
      double precision, intent(in) :: a, r(3)
      ! TODO
    end function e_loc
    
  4. Fortran   solution
    double precision function e_loc(a,r)
      implicit none
      double precision, intent(in) :: a, r(3)
      double precision, external   :: kinetic, potential
      e_loc = kinetic(a,r) + potential(r)
    end function e_loc
    

2.2 Plot of the local energy along the \(x\) axis

The potential and the kinetic energy both diverge at \(r=0\), so we choose a grid which does not contain the origin.

2.2.1 Exercise

For multiple values of \(a\) (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the \(x\) axis. In Python, you can use matplotlib for example. In Fortran, it is convenient to write in a text file the values of \(x\) and \(E_L(\mathbf{r})\) for each point, and use Gnuplot to plot the files.

  1. Python
    import numpy as np
    import matplotlib.pyplot as plt
    
    from hydrogen import e_loc
    
    x=np.linspace(-5,5)
    plt.figure(figsize=(10,5))
    
    # TODO
    
    plt.tight_layout()
    plt.legend()
    plt.savefig("plot_py.png")
    
  2. Python   solution
    import numpy as np
    import matplotlib.pyplot as plt
    
    from hydrogen import e_loc
    
    x=np.linspace(-5,5)
    plt.figure(figsize=(10,5))
    
    for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
      y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
      plt.plot(x,y,label=f"a={a}")
    
    plt.tight_layout()
    plt.legend()
    plt.savefig("plot_py.png")
    

    plot_py.png

  3. Fortran
    program plot
      implicit none
      double precision, external :: e_loc
    
      double precision :: x(50), dx
      integer :: i, j
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      ! TODO
    
    end program plot
    

    To compile and run:

    gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
    ./plot_hydrogen > data
    

    To plot the data using Gnuplot:

    set grid
    set xrange [-5:5]
    set yrange [-2:1]
    plot './data' index 0 using 1:2 with lines title 'a=0.1', \
         './data' index 1 using 1:2 with lines title 'a=0.2', \
         './data' index 2 using 1:2 with lines title 'a=0.5', \
         './data' index 3 using 1:2 with lines title 'a=1.0', \
         './data' index 4 using 1:2 with lines title 'a=1.5', \
         './data' index 5 using 1:2 with lines title 'a=2.0'
    
  4. Fortran   solution
    program plot
      implicit none
      double precision, external :: e_loc
    
      double precision :: x(50), energy, dx, r(3), a(6)
      integer :: i, j
    
      a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      r(:) = 0.d0
    
      do j=1,size(a)
         print *, '# a=', a(j)
         do i=1,size(x)
            r(1) = x(i)
            energy = e_loc( a(j), r )
            print *, x(i), energy
         end do
         print *, ''
         print *, ''
      end do
    
    end program plot
    

    To compile and run:

    gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
    ./plot_hydrogen > data
    

    To plot the data using Gnuplot:

    set grid
    set xrange [-5:5]
    set yrange [-2:1]
    plot './data' index 0 using 1:2 with lines title 'a=0.1', \
         './data' index 1 using 1:2 with lines title 'a=0.2', \
         './data' index 2 using 1:2 with lines title 'a=0.5', \
         './data' index 3 using 1:2 with lines title 'a=1.0', \
         './data' index 4 using 1:2 with lines title 'a=1.5', \
         './data' index 5 using 1:2 with lines title 'a=2.0'
    

    plot.png

2.3 Numerical estimation of the energy

If the space is discretized in small volume elements \(\mathbf{r}_i\) of size \(\delta \mathbf{r}\), the expression of \(\langle E_L \rangle_{\Psi^2}\) becomes a weighted average of the local energy, where the weights are the values of the probability density at \(\mathbf{r}_i\) multiplied by the volume element:

\[ \langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} \]

The energy is biased because:

  • The volume elements are not infinitely small (discretization error)
  • The energy is evaluated only inside the box (incompleteness of the space)

2.3.1 Exercise

Compute a numerical estimate of the energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\).

  1. Python
    import numpy as np
    from hydrogen import e_loc, psi
    
    interval = np.linspace(-5,5,num=50)
    delta = (interval[1]-interval[0])**3
    
    r = np.array([0.,0.,0.])
    
    for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
        # TODO
        print(f"a = {a} \t E = {E}")                
    
    
  2. Python   solution
    import numpy as np
    from hydrogen import e_loc, psi
    
    interval = np.linspace(-5,5,num=50)
    delta = (interval[1]-interval[0])**3
    
    r = np.array([0.,0.,0.])
    
    for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
        E = 0.
        norm = 0.
        for x in interval:
            r[0] = x
            for y in interval:
                r[1] = y
                for z in interval:
                    r[2] = z
                    w = psi(a,r)
                    w = w * w * delta
                    E    += w * e_loc(a,r)
                    norm += w 
        E = E / norm
        print(f"a = {a} \t E = {E}")                
    
    
  3. Fortran
    program energy_hydrogen
      implicit none
      double precision, external :: e_loc, psi
      double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
      integer :: i, k, l, j
    
      a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      do j=1,size(a)
         ! TODO
         print *, 'a = ', a(j), '    E = ', energy
      end do
    
    end program energy_hydrogen
    

    To compile the Fortran and run it:

    gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
    ./energy_hydrogen 
    
  4. Fortran   solution
    program energy_hydrogen
      implicit none
      double precision, external :: e_loc, psi
      double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
      integer :: i, k, l, j
    
      a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      delta = dx**3
    
      r(:) = 0.d0
    
      do j=1,size(a)
         energy = 0.d0
         norm = 0.d0
         do i=1,size(x)
            r(1) = x(i)
            do k=1,size(x)
               r(2) = x(k)
               do l=1,size(x)
                  r(3) = x(l)
                  w = psi(a(j),r)
                  w = w * w * delta
                  energy = energy + w * e_loc(a(j), r)
                  norm   = norm   + w 
               end do
            end do
         end do
         energy = energy / norm
         print *, 'a = ', a(j), '    E = ', energy
      end do
    
    end program energy_hydrogen
    

    To compile the Fortran and run it:

    gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
    ./energy_hydrogen 
    
    a =   0.10000000000000001          E =  -0.24518438948809140     
    a =   0.20000000000000001          E =  -0.26966057967803236     
    a =   0.50000000000000000          E =  -0.38563576125173815     
    a =    1.0000000000000000          E =  -0.50000000000000000     
    a =    1.5000000000000000          E =  -0.39242967082602065     
    a =    2.0000000000000000          E =   -8.0869806678448772E-002
    
    

2.4 Variance of the local energy

The variance of the local energy is a functional of \(\Psi\) which measures the magnitude of the fluctuations of the local energy associated with \(\Psi\) around its average:

\[ \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \] which can be simplified as

\[ \sigma^2(E_L) = \langle E_L^2 \rangle_{\Psi^2} - \langle E_L \rangle_{\Psi^2}^2.\]

If the local energy is constant (i.e. \(\Psi\) is an eigenfunction of \(\hat{H}\)) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function.

2.4.1 Exercise (optional)

Prove that : \[\left( \langle E - \langle E \rangle_{\Psi^2} \rangle_{\Psi^2} \right)^2 = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 \]

2.4.2 Exercise

Add the calculation of the variance to the previous code, and compute a numerical estimate of the variance of the local energy in a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\) for different values of \(a\).

  1. Python
    import numpy as np
    from hydrogen import e_loc, psi
    
    interval = np.linspace(-5,5,num=50)
    delta = (interval[1]-interval[0])**3
    
    r = np.array([0.,0.,0.])
    
    for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
        # TODO
        print(f"a = {a} \t E = {E:10.8f}  \t  \sigma^2 = {s2:10.8f}")
    
  2. Python   solution
    import numpy as np
    from hydrogen import e_loc, psi
    
    interval = np.linspace(-5,5,num=50)
    delta = (interval[1]-interval[0])**3
    
    r = np.array([0.,0.,0.])
    
    for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
        E = 0.
        E2 = 0.
        norm = 0.
        for x in interval:
            r[0] = x
            for y in interval:
                r[1] = y
                for z in interval:
                    r[2] = z
                    w = psi(a, r)
                    w = w * w * delta
                    El = e_loc(a, r)
                    E  += w * El
                    E2 += w * El*El
                    norm += w 
        E = E / norm
        E2 = E2 / norm
        s2 = E2 - E*E
        print(f"a = {a} \t E = {E:10.8f}  \t  \sigma^2 = {s2:10.8f}")
    
  3. Fortran
    program variance_hydrogen
      implicit none
      double precision, external :: e_loc, psi
      double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
      double precision :: e, energy2
      integer :: i, k, l, j
    
      a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      delta = dx**3
    
      r(:) = 0.d0
    
      do j=1,size(a)
         ! TODO
         print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
      end do
    
    end program variance_hydrogen
    

    To compile and run:

    gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
    ./variance_hydrogen 
    
  4. Fortran   solution
    program variance_hydrogen
      implicit none
      double precision, external :: e_loc, psi
      double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
      double precision :: e, energy2
      integer :: i, k, l, j
    
      a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
    
      dx = 10.d0/(size(x)-1)
      do i=1,size(x)
         x(i) = -5.d0 + (i-1)*dx
      end do
    
      delta = dx**3
    
      r(:) = 0.d0
    
      do j=1,size(a)
         energy = 0.d0
         energy2 = 0.d0
         norm = 0.d0
         do i=1,size(x)
            r(1) = x(i)
            do k=1,size(x)
               r(2) = x(k)
               do l=1,size(x)
                  r(3) = x(l)
                  w = psi(a(j),r)
                  w = w * w * delta
                  e = e_loc(a(j), r)
                  energy  = energy  + w * e
                  energy2 = energy2 + w * e * e
                  norm   = norm   + w 
               end do
            end do
         end do
         energy  = energy  / norm
         energy2 = energy2 / norm
         s2 = energy2 - energy*energy
         print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
      end do
    
    end program variance_hydrogen
    

    To compile and run:

    gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
    ./variance_hydrogen 
    
    a =   0.10000000000000001       E =  -0.24518438948809140       s2 =    2.6965218719722767E-002
    a =   0.20000000000000001       E =  -0.26966057967803236       s2 =    3.7197072370201284E-002
    a =   0.50000000000000000       E =  -0.38563576125173815       s2 =    5.3185967578480653E-002
    a =    1.0000000000000000       E =  -0.50000000000000000       s2 =    0.0000000000000000     
    a =    1.5000000000000000       E =  -0.39242967082602065       s2 =   0.31449670909172917     
    a =    2.0000000000000000       E =   -8.0869806678448772E-002  s2 =    1.8068814270846534     
    
    

3 Variational Monte Carlo

Numerical integration with deterministic methods is very efficient in low dimensions. When the number of dimensions becomes large, instead of computing the average energy as a numerical integration on a grid, it is usually more efficient to do a Monte Carlo sampling.

Moreover, a Monte Carlo sampling will alow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.

3.1 Computation of the statistical error

To compute the statistical error, you need to perform \(M\) independent Monte Carlo calculations. You will obtain \(M\) different estimates of the energy, which are expected to have a Gaussian distribution according to the Central Limit Theorem.

The estimate of the energy is

\[ E = \frac{1}{M} \sum_{i=1}^M E_M \]

The variance of the average energies can be computed as

\[ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2 \]

And the confidence interval is given by

\[ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} \]

3.1.1 Exercise

Write a function returning the average and statistical error of an input array.

  1. Python
    from math import sqrt
    def ave_error(arr):
        #TODO
        return (average, error)
    
  2. Python   solution
    from math import sqrt
    def ave_error(arr):
        M = len(arr)
        assert(M>0)
        if M == 1:
            return (arr[0], 0.)
        else:
            average = sum(arr)/M
            variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
            error = sqrt(variance/M)
            return (average, error)
    
  3. Fortran
    subroutine ave_error(x,n,ave,err)
      implicit none
      integer, intent(in)           :: n 
      double precision, intent(in)  :: x(n) 
      double precision, intent(out) :: ave, err
      ! TODO
    end subroutine ave_error
    
  4. Fortran   solution
    subroutine ave_error(x,n,ave,err)
      implicit none
      integer, intent(in)           :: n 
      double precision, intent(in)  :: x(n) 
      double precision, intent(out) :: ave, err
      double precision :: variance
      if (n < 1) then
         stop 'n<1 in ave_error'
      else if (n == 1) then
         ave = x(1)
         err = 0.d0
      else
         ave = sum(x(:)) / dble(n)
         variance = sum( (x(:) - ave)**2 ) / dble(n-1)
         err = dsqrt(variance/dble(n))
      endif
    end subroutine ave_error
    

3.2 Uniform sampling in the box

We will now do our first Monte Carlo calculation to compute the energy of the hydrogen atom.

At every Monte Carlo iteration:

  • Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le (x,y,z) \le (5,5,5)\)
  • Compute \([\Psi(\mathbf{r}_i)]^2\) and accumulate the result in a variable normalization
  • Compute \([\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)\), and accumulate the result in a variable energy

One Monte Carlo run will consist of \(N\) Monte Carlo iterations. Once all the iterations have been computed, the run returns the average energy \(\bar{E}_k\) over the \(N\) iterations of the run.

To compute the statistical error, perform \(M\) independent runs. The final estimate of the energy will be the average over the \(\bar{E}_k\), and the variance of the \(\bar{E}_k\) will be used to compute the statistical error.

3.2.1 Exercise

Parameterize the wave function with \(a=0.9\). Perform 30 independent Monte Carlo runs, each with 100 000 Monte Carlo steps. Store the final energies of each run and use this array to compute the average energy and the associated error bar.

  1. Python

    To draw a uniform random number in Python, you can use the random.uniform function of Numpy.

    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a, nmax):
         # TODO
    
    a = 0.9
    nmax = 100000
    #TODO
    print(f"E = {E} +/- {deltaE}")
    
  2. Python   solution
    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a, nmax):
         energy = 0.
         normalization = 0.
         for istep in range(nmax):
              r = np.random.uniform(-5., 5., (3))
              w = psi(a,r)
              w = w*w
              normalization += w
              energy += w * e_loc(a,r)
         return energy/normalization
    
    a = 0.9
    nmax = 100000
    X = [MonteCarlo(a,nmax) for i in range(30)]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    
  3. Fortran

    To draw a uniform random number in Fortran, you can use the RANDOM_NUMBER subroutine.

    When running Monte Carlo calculations, the number of steps is usually very large. We expect nmax to be possibly larger than 2 billion, so we use 8-byte integers (integer*8) to represent it, as well as the index of the current step.

    subroutine uniform_montecarlo(a,nmax,energy)
      implicit none
      double precision, intent(in)  :: a
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy
    
      integer*8 :: istep
    
      double precision :: norm, r(3), w
    
      double precision, external :: e_loc, psi
    
      ! TODO
    end subroutine uniform_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns)
      double precision :: ave, err
    
      !TODO
      print *, 'E = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
    ./qmc_uniform
    
  4. Fortran   solution

    When running Monte Carlo calculations, the number of steps is usually very large. We expect nmax to be possibly larger than 2 billion, so we use 8-byte integers (integer*8) to represent it, as well as the index of the current step.

    subroutine uniform_montecarlo(a,nmax,energy)
      implicit none
      double precision, intent(in)  :: a
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy
    
      integer*8 :: istep
    
      double precision :: norm, r(3), w
    
      double precision, external :: e_loc, psi
    
      energy = 0.d0
      norm   = 0.d0
      do istep = 1,nmax
         call random_number(r)
         r(:) = -5.d0 + 10.d0*r(:)
         w = psi(a,r)
         w = w*w
         norm = norm + w
         energy = energy + w * e_loc(a,r)
      end do
      energy = energy / norm
    end subroutine uniform_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call uniform_montecarlo(a,nmax,X(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
    ./qmc_uniform
    
    E =  -0.49588321986667677      +/-   7.1758863546737969E-004
    
    

3.3 Metropolis sampling with \(\Psi^2\)

We will now use the square of the wave function to sample random points distributed with the probability density \[ P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2 \]

The expression of the average energy is now simplified as the average of the local energies, since the weights are taken care of by the sampling :

\[ E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i) \]

To sample a chosen probability density, an efficient method is the Metropolis-Hastings sampling algorithm. Starting from a random initial position \(\mathbf{r}_0\), we will realize a random walk as follows:

\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \mathbf{u} \]

where \(\tau\) is a fixed constant (the so-called time-step), and \(\mathbf{u}\) is a uniform random number in a 3-dimensional box \((-1,-1,-1) \le \mathbf{u} \le (1,1,1)\). We will then add the accept/reject step that guarantees that the distribution of the \(\mathbf{r}_n\) is \(\Psi^2\):

  1. Compute \(\Psi\) at a new position \(\mathbf{r'} = \mathbf{r}_n + \tau \mathbf{u}\)
  2. Compute the ratio \(R = \frac{\left[\Psi(\mathbf{r'})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}\)
  3. Draw a uniform random number \(v \in [0,1]\)
  4. if \(v \le R\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)
  5. else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)
  6. evaluate the local energy at \(\mathbf{r}_{n+1}\)

A common error is to remove the rejected samples from the calculation of the average. Don't do it!

All samples should be kept, from both accepted and rejected moves.

If the time step is infinitely small, the ratio will be very close to one and all the steps will be accepted. But the trajectory will be infinitely too short to have statistical significance.

On the other hand, as the time step increases, the number of accepted steps will decrease because the ratios might become small. If the number of accepted steps is close to zero, then the space is not well sampled either.

The time step should be adjusted so that it is as large as possible, keeping the number of accepted steps not too small. To achieve that, we define the acceptance rate as the number of accepted steps over the total number of steps. Adjusting the time step such that the acceptance rate is close to 0.5 is a good compromise.

3.3.1 Exercise

Modify the program of the previous section to compute the energy, sampled with \(\Psi^2\).

Compute also the acceptance rate, so that you can adapt the time step in order to have an acceptance rate close to 0.5 .

Can you observe a reduction in the statistical error?

  1. Python
    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,nmax,tau):
        # TODO
        return energy/nmax, N_accep/nmax
    
    # Run simulation
    a = 0.9
    nmax = 100000
    tau = 1.3
    X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
    
    # Energy
    X = [ x for (x, _) in X0 ]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    
    # Acceptance rate
    X = [ x for (_, x) in X0 ]
    A, deltaA = ave_error(X)
    print(f"A = {A} +/- {deltaA}")
    
  2. Python   solution
    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,nmax,tau):
        energy = 0.
        N_accep = 0
        r_old = np.random.uniform(-tau, tau, (3))
        psi_old = psi(a,r_old)
        for istep in range(nmax):
            r_new = r_old + np.random.uniform(-tau,tau,(3))
            psi_new = psi(a,r_new)
            ratio = (psi_new / psi_old)**2
            v = np.random.uniform()
            if v <= ratio:
                N_accep += 1
                r_old = r_new
                psi_old = psi_new
            energy += e_loc(a,r_old)
        return energy/nmax, N_accep/nmax
    
    # Run simulation
    a = 0.9
    nmax = 100000
    tau = 1.3
    X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
    
    # Energy
    X = [ x for (x, _) in X0 ]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    
    # Acceptance rate
    X = [ x for (_, x) in X0 ]
    A, deltaA = ave_error(X)
    print(f"A = {A} +/- {deltaA}")
    
  3. Fortran
    subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
      implicit none
      double precision, intent(in)  :: a
      integer*8       , intent(in)  :: nmax 
      double precision, intent(in)  :: tau
      double precision, intent(out) :: energy
      double precision, intent(out) :: accep
    
      integer*8 :: istep
    
      double precision :: r_old(3), r_new(3), psi_old, psi_new
      double precision :: v, ratio
      integer*8        :: n_accep
      double precision, external :: e_loc, psi, gaussian
    
      ! TODO
    end subroutine metropolis_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9d0
      double precision, parameter :: tau = 1.3d0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), Y(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
      enddo
    
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
    
      call ave_error(Y,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
    ./qmc_metropolis
    
  4. Fortran   solution
    subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
      implicit none
      double precision, intent(in)  :: a
      integer*8       , intent(in)  :: nmax 
      double precision, intent(in)  :: tau
      double precision, intent(out) :: energy
      double precision, intent(out) :: accep
    
      integer*8 :: istep
    
      double precision :: r_old(3), r_new(3), psi_old, psi_new
      double precision :: v, ratio
      integer*8        :: n_accep
      double precision, external :: e_loc, psi, gaussian
    
      energy = 0.d0
      n_accep = 0_8
      call random_number(r_old)
      r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
      psi_old = psi(a,r_old)
      do istep = 1,nmax
         call random_number(r_new)
         r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
         psi_new = psi(a,r_new)
         ratio = (psi_new / psi_old)**2
         call random_number(v)
         if (v <= ratio) then
            r_old(:) = r_new(:)
            psi_old = psi_new
            n_accep = n_accep + 1_8
         endif
         energy = energy + e_loc(a,r_old)
      end do
      energy = energy / dble(nmax)
      accep  = dble(n_accep) / dble(nmax)
    end subroutine metropolis_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9d0
      double precision, parameter :: tau = 1.3d0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), Y(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
      enddo
    
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
    
      call ave_error(Y,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
    ./qmc_metropolis
    
    E =  -0.49515370205041676      +/-   1.7660819245720729E-004
    A =   0.51713866666666664      +/-   3.7072551835783688E-004
    
    

3.4 Gaussian random number generator

To obtain Gaussian-distributed random numbers, you can apply the Box Muller transform to uniform random numbers:

\begin{eqnarray*} z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\ z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2) \end{eqnarray*}

Below is a Fortran implementation returning a Gaussian-distributed n-dimensional vector \(\mathbf{z}\). This will be useful for the following sections.

Fortran

subroutine random_gauss(z,n)
  implicit none
  integer, intent(in) :: n
  double precision, intent(out) :: z(n)
  double precision :: u(n+1)
  double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
  integer :: i

  call random_number(u)
  if (iand(n,1) == 0) then
     ! n is even
     do i=1,n,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do
  else
     ! n is odd
     do i=1,n-1,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do
     z(n)   = dsqrt(-2.d0*dlog(u(n))) 
     z(n)   = z(n) * dcos( two_pi*u(n+1) )
  end if
end subroutine random_gauss

In Python, you can use the random.normal function of Numpy.

3.5 Generalized Metropolis algorithm

One can use more efficient numerical schemes to move the electrons, but the Metropolis accepation step has to be adapted accordingly: the acceptance probability \(A\) is chosen so that it is consistent with the probability of leaving \(\mathbf{r}_n\) and the probability of entering \(\mathbf{r}_{n+1}\):

\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} {T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} \right) \] where \(T(\mathbf{r}_n \rightarrow \mathbf{r}_{n+1})\) is the probability of transition from \(\mathbf{r}_n\) to \(\mathbf{r}_{n+1}\).

In the previous example, we were using uniform random numbers. Hence, the transition probability was

\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \text{constant} \]

so the expression of \(A\) was simplified to the ratios of the squared wave functions.

Now, if instead of drawing uniform random numbers we choose to draw Gaussian random numbers with zero mean and variance \(\tau\), the transition probability becomes:

\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\tau} \right] \]

To sample even better the density, we can "push" the electrons into in the regions of high probability, and "pull" them away from the low-probability regions. This will mechanically increase the acceptance ratios and improve the sampling.

To do this, we can add the drift vector

\[ \frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}. \]

The numerical scheme becomes a drifted diffusion:

\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi \]

where \(\chi\) is a Gaussian random variable with zero mean and variance \(\tau\). The transition probability becomes:

\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\tau} \right] \]

3.5.1 Exercise 1

Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\).

  1. Python
    def drift(a,r):
       # TODO
    
  2. Python   solution
    def drift(a,r):
       ar_inv = -a/np.sqrt(np.dot(r,r))
       return r * ar_inv
    
  3. Fortran
    subroutine drift(a,r,b)
      implicit none
      double precision, intent(in)  :: a, r(3)
      double precision, intent(out) :: b(3)
      ! TODO
    end subroutine drift
    
  4. Fortran   solution
    subroutine drift(a,r,b)
      implicit none
      double precision, intent(in)  :: a, r(3)
      double precision, intent(out) :: b(3)
      double precision :: ar_inv
      ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
      b(:) = r(:) * ar_inv
    end subroutine drift
    

3.5.2 Exercise 2

Modify the previous program to introduce the drifted diffusion scheme. (This is a necessary step for the next section).

  1. Python
    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,nmax,tau):
       # TODO
    
    # Run simulation
    a = 0.9
    nmax = 100000
    tau = 1.3
    X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
    
    # Energy
    X = [ x for (x, _) in X0 ]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    
    # Acceptance rate
    X = [ x for (_, x) in X0 ]
    A, deltaA = ave_error(X)
    print(f"A = {A} +/- {deltaA}")
    
  2. Python   solution
    from hydrogen  import *
    from qmc_stats import *
    
    def MonteCarlo(a,nmax,tau):
        energy = 0.
        accep_rate = 0.
        sq_tau = np.sqrt(tau)
        r_old = np.random.normal(loc=0., scale=1.0, size=(3))
        d_old = drift(a,r_old)
        d2_old = np.dot(d_old,d_old)
        psi_old = psi(a,r_old)
        for istep in range(nmax):
            chi = np.random.normal(loc=0., scale=1.0, size=(3))
            r_new = r_old + tau * d_old + sq_tau * chi
            d_new = drift(a,r_new)
            d2_new = np.dot(d_new,d_new)
            psi_new = psi(a,r_new)
            # Metropolis
            prod = np.dot((d_new + d_old), (r_new - r_old))
            argexpo = 0.5 * (d2_new - d2_old)*tau + prod
            q = psi_new / psi_old
            q = np.exp(-argexpo) * q*q
            if np.random.uniform() < q:
                accep_rate += 1.
                r_old = r_new
                d_old = d_new
                d2_old = d2_new
                psi_old = psi_new
            energy += e_loc(a,r_old)
        return energy/nmax, accep_rate/nmax
    
    
    # Run simulation
    a = 0.9
    nmax = 100000
    tau = 1.3
    X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
    
    # Energy
    X = [ x for (x, _) in X0 ]
    E, deltaE = ave_error(X)
    print(f"E = {E} +/- {deltaE}")
    
    # Acceptance rate
    X = [ x for (_, x) in X0 ]
    A, deltaA = ave_error(X)
    print(f"A = {A} +/- {deltaA}")
    
  3. Fortran
    subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy, accep_rate
    
      integer*8 :: istep
      double precision :: sq_tau, chi(3)
      double precision :: psi_old, psi_new
      double precision :: r_old(3), r_new(3)
      double precision :: d_old(3), d_new(3)
      double precision, external :: e_loc, psi
    
      ! TODO
    
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 1.0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), accep(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
      call ave_error(accep,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
    ./vmc_metropolis
    
  4. Fortran   solution
    subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy, accep_rate
    
      integer*8 :: istep
      double precision :: sq_tau, chi(3), d2_old, prod, u
      double precision :: psi_old, psi_new, d2_new, argexpo, q
      double precision :: r_old(3), r_new(3)
      double precision :: d_old(3), d_new(3)
      double precision, external :: e_loc, psi
    
      sq_tau = dsqrt(tau)
    
      ! Initialization
      energy = 0.d0
      accep_rate = 0.d0
      call random_gauss(r_old,3)
      call drift(a,r_old,d_old)
      d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
      psi_old = psi(a,r_old)
    
      do istep = 1,nmax
         call random_gauss(chi,3)
         r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
         call drift(a,r_new,d_new)
         d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
         psi_new = psi(a,r_new)
         ! Metropolis
         prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
                (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
                (d_new(3) + d_old(3))*(r_new(3) - r_old(3))
         argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
         q = psi_new / psi_old
         q = dexp(-argexpo) * q*q
         call random_number(u)
         if (u<q) then
            accep_rate = accep_rate + 1.d0
            r_old(:) = r_new(:)
            d_old(:) = d_new(:)
            d2_old = d2_new
            psi_old = psi_new
         end if
         energy = energy + e_loc(a,r_old)
      end do
      energy = energy / dble(nmax)
      accep_rate = dble(accep_rate) / dble(nmax)
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 1.0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), accep(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
      call ave_error(accep,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
    ./vmc_metropolis
    
    E =  -0.49495906384751226      +/-   1.5257646086088266E-004
    A =   0.78861366666666666      +/-   3.7855335138754813E-004
    
    

4 TODO Diffusion Monte Carlo

Consider the time-dependent Schrödinger equation:

\[ i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \hat{H} \Psi(\mathbf{r},t) \]

We can expand \(\Psi(\mathbf{r},0)\), in the basis of the eigenstates of the time-independent Hamiltonian:

\[ \Psi(\mathbf{r},0) = \sum_k a_k\, \Phi_k(\mathbf{r}). \]

The solution of the Schrödinger equation at time \(t\) is

\[ \Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, E_k\, t \right) \Phi_k(\mathbf{r}). \]

Now, let's replace the time variable \(t\) by an imaginary time variable \(\tau=i\,t\), we obtain

\[ -\frac{\partial \psi(\mathbf{r}, t)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, t) \]

where \(\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)\) and \[ \psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}). \] For large positive values of \(\tau\), \(\psi\) is dominated by the \(k=0\) term, namely the ground state.

4.1 TODO Hydrogen atom

4.1.1 Exercise

Modify the Metropolis VMC program to introduce the PDMC weight. In the limit \(\tau \rightarrow 0\), you should recover the exact energy of H for any value of \(a\).

Python

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a,nmax,tau,Eref):
    energy = 0.
    normalization = 0.
    accep_rate = 0
    sq_tau = np.sqrt(tau)
    r_old = np.random.normal(loc=0., scale=1.0, size=(3))
    d_old = drift(a,r_old)
    d2_old = np.dot(d_old,d_old)
    psi_old = psi(a,r_old)
    w = 1.0
    for istep in range(nmax):
        chi = np.random.normal(loc=0., scale=1.0, size=(3))
        el = e_loc(a,r_old)
        w *= np.exp(-tau*(el - Eref))
        normalization += w
        energy += w * el

        r_new = r_old + tau * d_old + sq_tau * chi
        d_new = drift(a,r_new)
        d2_new = np.dot(d_new,d_new)
        psi_new = psi(a,r_new)
        # Metropolis
        prod = np.dot((d_new + d_old), (r_new - r_old))
        argexpo = 0.5 * (d2_new - d2_old)*tau + prod
        q = psi_new / psi_old
        q = np.exp(-argexpo) * q*q
        # PDMC weight
        if np.random.uniform() < q:
            accep_rate += 1
            r_old = r_new
            d_old = d_new
            d2_old = d2_new
            psi_old = psi_new
    return energy/normalization, accep_rate/nmax


a = 0.9
nmax = 10000
tau = .1
E_ref = -0.5
X = [MonteCarlo(a,nmax,tau,E_ref) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
  1. Fortran
    subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
      implicit none
      double precision, intent(in)  :: a, tau
      integer*8       , intent(in)  :: nmax 
      double precision, intent(out) :: energy, accep_rate
    
      integer*8 :: istep
      double precision :: norm, sq_tau, chi(3), d2_old, prod, u
      double precision :: psi_old, psi_new, d2_new, argexpo, q
      double precision :: r_old(3), r_new(3)
      double precision :: d_old(3), d_new(3)
      double precision, external :: e_loc, psi
    
      sq_tau = dsqrt(tau)
    
      ! Initialization
      energy = 0.d0
      norm   = 0.d0
      accep_rate = 0.d0
      call random_gauss(r_old,3)
      call drift(a,r_old,d_old)
      d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
      psi_old = psi(a,r_old)
    
      do istep = 1,nmax
         call random_gauss(chi,3)
         r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
         call drift(a,r_new,d_new)
         d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
         psi_new = psi(a,r_new)
         ! Metropolis
         prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
                (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
                (d_new(3) + d_old(3))*(r_new(3) - r_old(3))
         argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
         q = psi_new / psi_old
         q = dexp(-argexpo) * q*q
         call random_number(u)
         if (u<q) then
            accep_rate = accep_rate + 1.d0
            r_old(:) = r_new(:)
            d_old(:) = d_new(:)
            d2_old = d2_new
            psi_old = psi_new
         end if
         norm = norm + 1.d0
         energy = energy + e_loc(a,r_old)
      end do
      energy = energy / norm
      accep_rate = accep_rate / norm
    end subroutine variational_montecarlo
    
    program qmc
      implicit none
      double precision, parameter :: a = 0.9
      double precision, parameter :: tau = 1.0
      integer*8       , parameter :: nmax = 100000
      integer         , parameter :: nruns = 30
    
      integer :: irun
      double precision :: X(nruns), accep(nruns)
      double precision :: ave, err
    
      do irun=1,nruns
         call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
      enddo
      call ave_error(X,nruns,ave,err)
      print *, 'E = ', ave, '+/-', err
      call ave_error(accep,nruns,ave,err)
      print *, 'A = ', ave, '+/-', err
    end program qmc
    
    gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
    ./vmc_metropolis
    
    E =  -0.49499990423528023      +/-   1.5958250761863871E-004
    A =   0.78861366666666655      +/-   3.5096729498002445E-004
    
    

4.2 TODO Dihydrogen

We will now consider the H2 molecule in a minimal basis composed of the \(1s\) orbitals of the hydrogen atoms:

\[ \Psi(\mathbf{r}_1, \mathbf{r}_2) = \exp(-(\mathbf{r}_1 - \mathbf{R}_A)) + \] where \(\mathbf{r}_1\) and \(\mathbf{r}_2\) denote the electron coordinates and \(\mathbf{R}_A\) and \(\mathbf{R}_B\) the coordinates of the nuclei.

5 TODO [0/1] Last things to do

  • [ ] Prepare 4 questions for the exam: multiple-choice questions with 4 possible answers. Questions should be independent because they will be asked in a random order.
  • [ ] Propose a project for the students to continue the programs. Idea: Modify the program to compute the exact energy of the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.

Author: Anthony Scemama, Claudia Filippi

Created: 2021-01-26 Tue 16:09

Validate