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Monte Carlo methods

Approaches which make repeated use of random numbers:

I to simulate truly stochastic events

I to solve deterministic problems using probabilities

Very important class of methods in statistical mechanics

→ Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations → Quantum Monte Carlo



A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

→ Throw darts, compute Acicle, compute π

Throw darts which land randomly within the square

# hits inside circle

# hits inside the square
=

Acircle

Asquare
=
π

4

↑
many, many hits



Monte Carlo integration (1)

We want to compute the integral of f(x) in the interval [a, b]

f(x)

xa b

I =

∫ b

a
f (x) dx = (b − a)

∫ b

a
f (x)

1

b − a
dx

= (b − a)〈f 〉[a,b]

where 〈f 〉[a,b] is the average of the function in the range [a, b]



Monte Carlo integration (2)

〈f 〉[a,b] =

∫ b

a
f (x)

1

b − a
dx

=

∫ b

a
f (x)P(x)dx

f(x)

xa b

x

P(x)
1/(b-a)

a b

Draw M random numbers distributed unformely in [a, b]

x

P(x)
1/(b-a)

a b
−→ 〈f 〉[a,b] ≈

1

M

M∑
i=1

f (xi )



A less uniform function

I =

∫ b

a
f (x) dx

=

∫ b

a

f (x)

P(x)
P(x) dx

f(x)

x
a b

xa b

P(x)

Draw M random numbers distributed as P(x)

xa b

P(x)
−→ I ≈ 1

M

M∑
i=1

f (xi )



Monte Carlo integration in a nutshell

We want to compute 〈A〉 =

∫ b

a
A(x)P(x)

with P(x) ≥ 0 and

∫ b

a
P(x) = 1 ← a probability density!

Monte Carlo → Sample {x1, . . . , xM} from P(x)

Estimate 〈A〉 ≈ 1

M

M∑
i=1

A(xi )

Statistical physics: P(x) =
e−βE(x)

Z
, the Boltzman distribution



Quantum chemical simulations

• Density functional theory methods

Large systems but approximate exchange/correlation

• Quantum chemistry post-Hartree-Fock methods

Accurate on small-medium systems

→ Jungle of approaches: CI, MCSCF, CC, CASPT2 . . .

• Quantum Monte Carlo techniques

Stochastic solution of the Schrödinger equation

Accurate correlated calculations for medium-large systems



Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrödinger equation

Why (real-space) quantum Monte Carlo?

− Favorable scaling → Energy is O(N4)

− Flexibility in choice of functional form of wave function

− Easy parallelization

− Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto C136H44 (Alfé 2017)



A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

≥ E0

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

←
−
=

∫
dREL(R)P(R) = 〈EL(R)〉P

P(R) is a probability density and EL(R) =
HΨ(R)

Ψ(R)
the local energy



Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

. Sample R from P(R) using Metropolis algorithm

. Average local energy EL(R) =
HΨ(R)

Ψ(R)
to obtain EV as

EV = 〈EL(R)〉P ≈
1

M

M∑
i=1

EL(Ri )

R

Random walk in 3N dimensions, R = (r1, . . . , rN)

Just a trick to evaluate integrals in many dimensions



Is it really “just” a trick?

Si21H22

Number of electrons 4× 21 + 22 = 106

Number of dimensions 3× 106 = 318

Integral on a grid with 10 points/dimension → 10318 points!

MC is a powerful trick ⇒ Freedom in form of the wave function Ψ



Monte Carlo integration

We want to compute an integral

EV =

∫
dREL(R)P(R)

We sample P(R) → EV = 〈EL(R)〉P ≈
1

M

M∑
i=1

EL(Ri )

− Does the trick always work?

− How efficient is it?



The Central Limit Theorem

Probability density P and function f with finite mean and variance

µ =

∫
dx f (x)P(x) σ2 =

∫
dx (f (x)2 − µ)P(x)

Sample M independent random variables x1, . . . , xM from P(x)

Define FM =
1

M

M∑
i=1

f (xi )

As M increases, FM is normally distributed as
1√
2πσ

e−(x−µ)
2/2σ2

M

with a mean µ and variance σ2M = σ2/M

→ Irrespective of the original probability density function



Monte Carlo versus deterministic integration

Integration error ε using M integration/Monte Carlo points

− Monte Carlo methods

ε ∝ 1√
M

independent on dimension !

It follows from Central Limit Theorem

→ width of Gaussian decreases as
σ√
M

for finite variance

− Deterministic integration methods

1-dim Simpson rule: ε ∝ 1

M4

d-dim Simpson rule: ε ∝ 1

M4/d



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

. . . for many-body wave functions d = 3Nelec !

− Simpson rule integration (Mint integration points)

ε =
c

M
4/d
int

=
c

M
4/3Nelec

int

⇒ Mint =
(c
ε

)3Nelec/4
Exponential

− Monte Carlo integration (MMC Monte Carlo samples)

ε =
σ√
MMC

= c

√
Nelec

MMC
⇒ MMC =

(c
ε

)2
Nelec Linear



Summary of variational Monte Carlo

Expectation value of the Hamiltonian on Ψ

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R)P(R)

EV =

∫
dREL(R)P(R)

σ2 =

∫
dR(EL(R)− EV )2P(R)

Estimate EV and σ from M independent samples as

ĒV =
1

M

M∑
i=1

EL(Ri )

σ̄2 =
1

M − 1

M∑
i=1

(EL(Ri )− ĒV )2



Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any “computable” wave function if

. Continuous, normalizable, proper symmetry

. Finite variance

σ2 =
〈Ψ|(H− EV )2|Ψ〉

〈Ψ|Ψ〉
= 〈(EL(R)− EV )2〉P

since the Monte Carlo error goes as err(EV ) ∼ σ√
M

Zero variance principle: if Ψ → Ψ0, EL(R) does not fluctuate



Typical VMC run

Example: Local energy and average energy of acetone (C3H6O)

0 500 1000 1500 2000
MC step

-39
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-34
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σ VMC

EVMC = 〈EL(R)〉P = −36.542± 0.001 Hartree (40×20000 steps)

σVMC = 〈(EL(R)− EVMC)2〉P = 0.90 Hartree



Variational Monte Carlo: To do list

− Method to sample distribution function ρ(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

→ Obtain a set of {R1,R2, . . . ,RM} distributed as ρ(R)

How? As in classical Monte Carlo with Metropolis algorithm!

− Build the wave function Ψ(R). Which functional form ?

Here, we spend most of our time, open topic of research

− Compute expectation values
〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

Reformulate them to reduce fluctuations, open topic of research



How do we sample ρ(R)?

Generate a Markov chain

. . .
M−−−→ R

M−−−→ R′
M−−−→ R′′

M−−−→ . . .

R

Construct M(Rf |Ri) as probability for transition Ri → Rf so that

− M(Rf |Ri) ≥ 0 and

∫
dRfM(Rf |Ri) = 1 (stochastic)

− If we start from an arbitrary distribution Pinit, we evolve to P

→ Impose stationarity condition



Constructing M

To sample P, use M which satisfies stationarity condition :∫
dRi M(Rf |Ri) P(Ri) = P(Rf) ∀ Rf

. Stationarity condition

⇒ If we start with P, we continue to sample P

. Stationarity condition + stochastic property of P + ergodicity

⇒ Any initial distribution will evolve to P



More stringent condition

In practice, we impose detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

���

���

Stationarity condition can be obtained by summing over Ri∫
dRiM(Rf |Ri) P(Ri) =

∫
dRiM(Ri|Rf)︸ ︷︷ ︸

1

P(Rf) = P(Rf)

Detailed balance is a sufficient but not necessary condition



How do we construct the transition matrix P in practice?

Metropolis method → Write P as proposal T × acceptance A

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) ���
����

��
����

Let us rewrite the detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

A(Rf |Ri) T (Rf |Ri) P(Ri) = A(Ri|Rf) T (Ri|Rf) P(Rf)

⇒ A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)



Choice of acceptance matrix A

Original choice by Metropolis et al. maximizes the acceptance

A(Rf |Ri) = min

{
1,

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

}

Note: P(R) does not have to be normalized

→ For complicated Ψ we do not know the normalization!

→ P(R) = |Ψ(R)|2

Original Metropolis method ����

Δ"

Symmetric T (Rf |Ri) = 1/∆3N ⇒ A(Rf |Ri) = min

{
1,

P(Rf)

P(Ri)

}



Better choices of proposal matrix T

Sequential correlation ⇒ Meff < M independent observations

Meff =
M

Tcorr
with Tcorr autocorrelation time of desired observable

Aim is to achieve fast evolution and reduce correlation times

Use freedom in choice of T : For example, use available trial Ψ

T (Rf |Ri) = N exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
with V(Ri) =

∇Ψ(Ri)

Ψ(Ri)



Acceptance and Tcorr for the total energy EV

Example: All-electron Be atom with simple wave function

Simple Metropolis

∆ Tcorr Ā

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
0.20 45 0.75

Drift-diffusion transition

τ Tcorr Ā

0.100 13 0.42
0.050 7 0.66
0.020 8 0.87
0.010 14 0.94



Generalized Metropolis algorithm

1. Choose distribution P(R) and proposal matrix T (Rf |Ri)

2. Initialize the configuration Ri

3. Advance the configuration from Ri to R′

a) Sample R′ from T (R′|Ri).

b) Calculate the ratio p =
T (Ri|R′)

T (R′|Ri)

P(R′)

P(Ri)

c) Accept or reject with probability p

Pick a uniformly distributed random number χ ∈ [0, 1]

if χ < p, move accepted → set Rf = R′

if χ > p, move rejected → set Rf = R

4. Throw away first κ configurations of equilibration time

5. Collect the averages



Variational Monte Carlo → Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

⇒ More compact representation of Ψ than in quantum chemistry

⇒ Beyond c0DHF + c1D1 + c2D2 + . . . millions of determinants



Jastrow-Slater wave function

Commonly employed compact Jastrow-Slater wave functions

Ψ(r1, . . . , rN) = J (r1, . . . , rN)×
∑
i

ci Di (r1, . . . , rN)

×

J −→ Jastrow correlation factor

− Explicit dependence on electron-electron distances rij

∑
ci Di −→ Determinants of single-particle orbitals

− Few and not millions of determinants



Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

− Z

riα
for the electron-nucleus potential

1

rij
for the electron-electron potential

Local energy
HΨ

Ψ
= −1

2

∑
i

∇2
i Ψ

Ψ
+ V must be finite

⇒ Kinetic energy must have opposite divergence to the potential V



Divergence in potential and Kato’s cusp conditions

Finite local energy as rij → 0 ⇒ Ψ must satisfy:

∂Ψ

∂rij

∣∣∣∣
rij=0

= µijqi qjΨ(rij = 0)

Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor → J (rij) =
∏
i<j

exp

{
b0

rij
1 + b rij

}

Imposes cusp conditions
+

keeps electrons apart
00

rij



The effect of the Jastrow factor

Pair correlation function for ↑↓ electrons in the (110) plane of Si

g↑↓(r, r
′) with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)



Why should ΨQMC = JD work?

Full wave-function
Ψ

−→ Factorized wave-function
JΦ→ →

Full Hamiltonian
H

−→ Effective Hamiltonian
Heff

HΨ = EΨ −→ HJΦ= EJΦ → HJ
J

Φ= EΦ

HeffΦ = EΦ

Heff weaker Hamiltonian than H

⇒ Φ ≈ non-interacting wave function D

⇒ Quantum Monte Carlo wave function Ψ = JD



Beyond VMC?

Removing or reducing wave function bias?

⇒ Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function Ψ

0 0.02 0.04 0.06 0.08

Variance (   rs  (Ry/electron)
2
 )

-0.1090
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VMC JS+3B

VMC JS+BF

VMC JS+3B+BF

VMC JS

DMC JS

DMC JS+3B+BF

3D electron gas at a density rs=10

x 4

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



Why going beyond VMC?

What goes in, comes out! Can we remove wave function bias?

Projector (diffusion) Monte Carlo method

. Construct an operator which inverts spectrum of H

Diffusion Monte Carlo → e−τ(H−Eref)

. Use it to stochastically project the ground state of H



Diffusion Monte Carlo

Consider initial guess Ψ(0) and repeatedly apply projection operator

Ψ(n) = e−τ(H−Eref)Ψ(n−1)

Expand Ψ(0) on the eigenstates Ψi with energies Ei of H

Ψ(n) = e−nτ(H−Eref)Ψ(0) =
∑
i

Ψi 〈Ψi |Ψ(0)〉e−nτ(Ei−Eref)

and obtain in the limit of n→∞

lim
n→∞

Ψ(n) = Ψ0〈Ψ0|Ψ(0)〉e−nτ(E0−Eref)

If we choose Eref ≈ E0, we obtain lim
n→∞

Ψ(n) = Ψ0



How do we perform the projection?

Rewrite projection equation in integral form

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = 〈R′|e−τ(H−Eref)|R〉

. Can we sample the wave function?

For the moment, assume we are dealing with bosons , so Ψ > 0

. Can we interpret G (R′,R, τ) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

VMC Distribution function is given P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

Construct M which satisfies stationarity condition so that

lim
n→∞

∫
dRn · · · dR1M(R,Rn) · · ·M(R3,R2)M(R2,R1)Pinit(R1) = P(R)

DMC Opposite procedure!

The matrix M is given → M ≡ G = 〈R′|e−τ(H−Eref)|R〉

We do not know P !

lim
n→∞

∫
dRn · · · dR1G (R,Rn) · · ·G (R3,R2)G (R2,R1)Pinit(R1) = Ψ0(R)

In either case, we want to find the dominant eigenvector of M



What can we say about the Green’s function?

G (R′,R, τ) = 〈R′|e−τ(H−Eref)|R〉

G (R′,R, τ) satisfies the imaginary-time Schrödinger equation

(H− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t

with G (R′,R, 0) = δ(R′ − R)



Evolution equation of the probability distribution

We can understand the behavior of G which satisfies

(H− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t

to understand evolution of the distribution Ψ

Ψ(R, t) =

∫
dR0 G (R,R0, t)Ψ(0)(R0)

which satisfies the imaginary-time Schrödinger equation

(H− Eref)Ψ(R, t) = −∂Ψ(R, t)

∂t



Can we interpret G (R′,R, τ) as a transition probability? (1)

H = T

Imaginary-time Schrödinger equation is a diffusion equation

−1

2
∇2G (R,R0, t) = −∂G (R,R0, t)

∂t

The Green’s function is given by a Gaussian

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Positive and can be sampled



Can we interpret G (R′,R, τ) as a transition probability? (2)

H = V

(V(R)− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t
,

The Green’s function is given by

G (R′,R, τ) = exp [−τ (V(R)− Eref)] δ(R− R′),

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution Ψ(R, t)



H = T + V and a combination of diffusion and branching

Let us combine previous results

G (R′,R, τ) ≈ (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R)− ET)]

Diffusion + branching factor leading to survival/death/cloning

Why? Trotter’s theorem → e(A+B)τ = eAτeBτ +O(τ2)

→ Green’s function in the short-time approximation to O(τ2)



Time-step extrapolation

Example: Energy of Li2 versus time-step τ

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1. Sample Ψ(0)(R) with the Metropolis algorithm

Generate M0 walkers R1, . . . ,RM0 (zeroth generation)

2. Diffuse each walker as R′ = R + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. For each walker, compute the factor

p = exp [−τ(V(R)− Eref)]

p is the probability to survive/proliferate/die

4. Adjust Eref so that population fluctuates around target M0

→ After many iterations, walkers distributed as Ψ0(R)



Diffusion and branching in a harmonic potential

Ψ(x)
0

V(x)

Walkers proliferate/die where potential is lower/higher than Eref



Problems with simple algorithm

The simple algorithm is inefficient and unstable

. Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction → Exploding population

. Branching factor grows with system size



Importance sampling

Start from integral equation

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

Multiply each side by trial ΨT and define π(R, t) = ΨT(R)Ψ(R, t)

π(R′, t + τ) =

∫
dR G̃ (R′,R, τ)π(R, t)

where the importance sampled Green’s function is

G̃ (R′,R, τ) = ΨT(R′)〈R′|e−τ(H−Eref)|R〉/ΨT(R)

We obtain lim
n→∞

π(R) = ΨT(R)Ψ0(R)



Importance sampled Green’s function

The importance sampled G̃ (R,R0, τ) satisfies

−1

2
∇2G̃ +∇ · [G̃ V(R)] + [EL(R)− Eref ] G̃ = −∂G̃

∂τ

with quantum velocity V(R) =
∇ΨT(R)

ΨT(R)
and EL(R) =

HΨT(R)

ΨT(R)

We now have drift in addition to diffusion and branching terms

Trotter’s theorem ⇒ Consider them separately for small enough τ



The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R− τV(R))2

2τ

]
×

× exp {−τ (EL(R)− Eref)}

What is new in the drift-diffusion-branching expression?

. V(R) pushes walkers where Ψ is large

. EL(R) is better behaved than the potential V(R)

Cusp conditions ⇒ No divergences when particles approach

As ΨT → Ψ0, EL → E0 and branching factor is smaller



Basic DMC algorithm with importance sampling

1. Sample initial walkers from |ΨT(R)|2

2. Drift and diffuse the walkers as R′ = R + τV(R) + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. Branching step as in the simple algorithm but with the factor

p = exp
{
−τ [(EL(R) + EL(R′))/2− Eref ]

}
4. Adjust the trial energy to keep the population stable

→ After many iterations, walkers distributed as ΨT(R)Ψ0(R)



Electrons are fermions!

We assumed that Ψ0 > 0 and that we are dealing with bosons

Fermions → Ψ is antisymmetric and changes sign!

Fermion Sign Problem

All fermion QMC methods suffer from sign problems

These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Idea Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function Ψ(x , τ = 0)

Rewrite Ψ(x , τ = 0) as

Ψ = Ψ+ −Ψ−

where

Ψ+ =
1

2
(|Ψ|+ Ψ)

Ψ− =
1

2
(|Ψ| −Ψ)

+ −

Ψ

Ψ τ=0 Ψ

τ=0

τ=0

(x,      )

(x,      ) (x,      )



Particle in a box and the fermionic problem (1)

The imaginary-time Schrödinger equation

HΨ = −∂Ψ

∂t

is linear, so solving it with the initial condition

Ψ(x , t = 0) = Ψ+(x , t = 0)−Ψ−(x , t = 0)

is equivalent to solving

HΨ+ = −∂Ψ+

∂t
and HΨ− = −∂Ψ−

∂t

separately and subtracting one solution from the other



Particle in a box and the fermionic problem (2)

. Since E s
0 < E a

0 , both Ψ+ and Ψ− evolve to Ψs
0

Ψ± −→

. Antisymmetric component exponentially harder to extract

|Ψ+ −Ψ−|
|Ψ+ + Ψ−|

∝ e−E
a
0 t

e−E
s
0 t

as t →∞



The Fixed-Node Approximation

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable 
barrier



Fixed-node algorithm in simple DMC

impenetrable 
barrier

How do we impose this additional boundary condition?

. Annihilate walkers that bump into barrier (and into walls)

→ This step enforces Ψ = 0 boundary conditions

→ In each nodal pocket, evolution to ground state in pocket

Numerically stable algorithm (no exponentially growing noise)

→ Solution is exact if nodes are exact

→ Best solution consistent with the assumed nodes



For many electrons, what are the nodes? A complex beast

Many-electron wave function Ψ(R) = Ψ(r1, r2, . . . , rN)

Node → surface where Ψ = 0 and across which Ψ changes sign

A 2D slice through the 321-dimensional nodal surface

of a gas of 161 spin-up electrons.



Use the nodes of trial ΨT → Fixed-node approximation

Use the nodes of the best available trial ΨT wave function

(R)=0Ψ

(R)>0 RΨ

Find best solution with same nodes as trial wave function ΨT

Fixed-node solution exact if the nodes of trial ΨT are exact

Easy to implement in DMC with importance sampling: π ≥ 0



Have we solved all our problems?

Results depend on the nodes of the trail wave function Ψ

Diffusion Monte Carlo as a black-box approach?

εMAD for atomization energy of the G1 set

DMC with optimized CAS wave functions

DMC CCSD(T)/aug-cc-pVQZ

εMAD 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, JCP 136, 124116 (2012)

With “some” effort on Ψ, we can do rather well



Diffusion Monte Carlo as a black-box approach?

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP/aug-cc-PVTZ orbitals versus CCSD(T)/CBS

that FN-DMC with single-determinant trial functions is able to
approach the CCSD(T)/CBS reference to within 0.1 kcal/mol
(one standard deviation errors are reported) for small
complexes. In addition, the identified easy-to-use protocol is
tested on larger complexes, where the reliability of CCSD(T)
has yet to be fully tested. Here, the final FN-DMC results agree
to within 0.25 kcal/mol with the best available estimates. These
results show the potential of QMC for reliable estimation of
noncovalent molecular interaction energies well below chemical
accuracy.
The calculations were performed on a diverse set of

hydrogen and/or dispersion bound complexes for which
reliable estimates of interaction energies already exist8,39,40

and which were previously studied within QMC.26,29,34,35 The
considered test set consists of the dimers of ammonia, water,
hydrogen fluoride, methane, ethene, and the ethene/ethyne
complex (Figure 2). The larger considered complexes include
benzene/methane, benzene/water, and T-shape benzene dimer
(Figure 2).

■ ADJUSTING THE QMC PROTOCOL
The present methodology was developed via extensive testing
and elimination of the biases that affect the final FN-DMC
energies. Clearly, this has to be done in a step-by-step manner
since several sets of parameters enter the multistage refinement
strategy16,21 on the way to the final FN-DMC results. The
sequence of the steps includes (i) the construction of the trial
wave function, (ii) its VMC optimization, and (iii) FN-DMC
production calculation. The tasks i and ii involve optimizations
which affect the final interaction energies obtained in iii as the
differences of the statistically independent total energies.
We employ trial wave functions of the Slater-Jastrow

type,10,11 in general, a product of the sum of determinants

and a positive definite Jastrow term12 explicitly describing the
interparticle correlations. Remarkably, we have found that
single-reference wave functions filled with B3LYP/aug-TZV
orbitals reach the desired accuracy criterion for the whole test
set; consequently, multiple determinants were not considered.
Orbital sets from other methods were mostly comparable; in
the ammonia dimer complex, for instance, the HF nodes
provide the same FN-DMC interaction energy as B3LYP
(−3.12 ± 0.07 vs −3.10 ± 0.06 kcal/mol) within the error bars,
due to the FN error cancellation26,28,29 (cf. Figure 1).
Nevertheless, the total energies from B3LYP orbitals were
found to be variationally lower than those from HF (in dimer
by ∼0.001 au), in agreement with previous experience.15,41

Regarding the one-electron basis set, tests on the ammonia
dimer confirm the crucial effect of augmentation functions (cf.
ref 29). For the same system, TZV and QZV bases result in
interaction energies of −3.33 ± 0.07 and −3.47 ± 0.07, whereas
the aug-TZV and aug-QZV bases give −3.10 ± 0.06 and −3.13
± 0.6 kcal/mol, so that the impact of augmentation is clearly
visible and in accord with the reference value of −3.15 kcal/
mol.40 On the other hand, the increase of basis set cardinality
beyond the TZV level plays a smaller role than in the
mainstream correlated wave function methods.
In order to reduce the numerical cost of the calculations,

effective core potentials (ECP) were employed for all elements
(cf. Methods). Typically, this causes a mild dependence of the
FN-DMC total energy on the Jastrow factor,42,43 which cancels
out in energy differences with an accuracy ≈ 1 kcal/mol. In our
systems, elimination of this source of bias requires fully
converged Jastrow factors including electron−electron, elec-
tron−nucleus, and electron−electron−nucleus terms so as to
keep the target of 0.1 kcal/mol margin in energy differences.
This is true except for the water dimer, where a standard
Jastrow factor produces inaccurate energy difference (−5.26 ±
0.09 kcal/mol, cf. Table 1), and a distinct Jastrow factor
including unique parameter sets for nonequivalent atoms of the
same type is required.44 For the sake of completeness, we note
that the model of ammonia dimer, taken from the S22 set,39 is
not a genuine hydrogen bonded case, where the same behavior
would be expected, but a symmetrized transition structure that
apparently does not require more parameters in the Jastrow
factor. Note that a more economic variant of the correlation
factor, with only electron−electron and electron−nucleus
terms, doubles the average error on the considered test set,
and therefore it would be inadequate for our purposes.44 The
parameters of the Jastrow factor were exhaustively optimized
for each complex and its constituents separately, using a linear
combination of energy and variance cost function.45 We have
found that for large complexes, 7−10 iterations of VMC
optimization are sometimes necessary to reach the full
convergence.
The production protocol thus consists of (i) Slater−Jastrow

trial wave functions of B3LYP/aug-TZV quality, (ii) a
converged VMC optimization of the Jastrow factor with
electron−electron, electron−nucleus, and electron−electron−
nucleus terms, and (iii) a FN-DMC ground-state projection
using the T-moves scheme43 and a time step of 0.005 au. Note
that the VMC reoptimization of orbitals has not been explored,
although it could be tested in the future as well. The error bars
were converged to at least ∼0.1 kcal/mol in the projection time
of several thousands of atomic units.

Figure 2. The set of molecules used in the present work (from top left,
to bottom right): ammonia dimer, water dimer, hydrogen fluoride
dimer, methane dimer, ethene dimer, and the complexes of ethene/
ethyne, benzene/methane, benzene/water, and benzene dimer T-
shape.

Journal of Chemical Theory and Computation Letter

dx.doi.org/10.1021/ct4006739 | J. Chem. Theory Comput. 2013, 9, 4287−42924289

∆MAD = 0.058 kcal/mol

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on Ψ, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy and wave function dependence
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DMC is not a panacea but effort on Ψ pays off!



DMC and solid state calculations

Example: Structural/magnetic properties of superconducting FeSe

→ Accurate lattice constants, bulk moduli, and band dispersion

→ Resolving relative energetics of different magnetic ordering
COMPETING COLLINEAR MAGNETIC STRUCTURES IN . . . PHYSICAL REVIEW B 94, 035108 (2016)
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FIG. 1. Spin densities of magnetic orderings at ambient pressure: (a) collinear, (b) collinear, one flip, (c) bicollinear, and (d) checkerboard.
Four unit cells of a single iron layer are shown, divided by black lines. “Collinear, one flip” refers to flipping the spin of one iron per unit cell in
the collinear configuration. Since four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger red Se
atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller and blue and lie within a larger concentration
of spin. The two colors of the isosurfaces denote density of up and down.

cannot describe long-range fluctuations of the magnetic order
that might be the cause of loss of long-range order. For the
experimental crystal structure, the collinear magnetic ordering
is the lowest in energy in our calculations and is observed to
be the dominant short-range order experimentally [12]. The
energetic cost of introducing a “defect” into the magnetic
order is quite small; we will discuss that aspect later. Both the
DMC(opt) and DMC(PBE0) approaches result in a rather large
magnetic moment on the Fe atom. For the collinear magnetic
ordering we obtain a value of ∼3.4µB for DMC(PBE0) and
a slightly lower ∼3.1µB for the fully optimized calculations.
In both cases the magnetic moment is close to the atomic
limit.

Between the two DMC approaches, the energy difference
between different magnetic orderings is in agreement within
stochastic errors, so there is good reason to believe that the
cheaper DMC(PBE0) technique is accurate. In comparison to
PBE calculations, which are the most common in the literature,
the relative energies according DMC are quite different,
including the lowest-energy magnetic phase, which is the
“staggered dimer” configuration in DFT [50–52] but turns
out to be the collinear configuration in DMC. It appears that
hybrid DFT calculations in the PBE0 approximation obtain
reasonably good magnetic energy differences in comparison
to DMC; since this functional also produced the orbitals that
gave the lowest FN-DMC energy, it may be capturing some of
the correct physics for the magnetic properties of this material.

However, the PBE0 functional predicts an insulating gap [53]
for FeSe for all magnetic orderings, in contrast to DMC and
experiment.

B. Crystal structure

Obtaining the correct crystal structure for FeSe is a major
challenge since the layers interact through nonbonded interac-
tions. The c lattice parameter in particular is affected by van
der Waals interactions, and electron correlation plays a key role
in determining the in-plane physics. The behavior of FeSe’s
superconducting properties under pressure gives another clue
to the importance of structural variations in its description. A
first-principles prediction of the lattice parameters is thus an
important test of the description of this physics. Since the DMC
calculations are computationally costly, we limited our study
to the tetragonal phase of FeSe. Because the low-temperature
orthorhombic distortion is small [10], one might expect that
its effect on the overall electronic structure is also small. We
leave such considerations to another paper.

The equilibrium lattice parameters of FeSe are presented in
Table I. As mentioned in the previous sections, these results
are obtained with a direct optimization of FeSe cell parameters
with the VMC(opt) method. The in-plane FeSe properties
should be well captured by QMC since the a lattice parameter
is in close agreement with experimental results (within ∼4σ )
independently of the chosen magnetic configuration. Both
collinear and paramagnetic wave functions show also a

TABLE I. FeSe optimal structural parameters with different computational methods. DFT calculations have been performed with the
software package QUANTUM ESPRESSO [54] using a 10 × 10 × 10 k-point mesh, an energy cutoff of 75 Ry, and norm-conserving pseudopotentials
for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at only the " point with the 16-f.u. FeSe supercell containing
32 atoms.

Source Magnetic ordering a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862
DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568
VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)
VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)
Experiment [55], T 7 K 3.7646(1) 5.479 20(9) 1.4622
Experiment [48], T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879
Experiment [10], T 300 K 3.7724(1) 5.5217(1) 1.4759
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Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)



Other applications of quantum Monte Carlo methods

I Electronic structure calculations

I Strongly correlated systems (Hubbard, t-J, . . .)

I Quantum spin systems (Ising, Heisenberg, XY, . . .)

I Liquid-solid helium, liquid-solid interface, droplets

I Atomic clusters

I Nuclear structure

I Lattice gauge theory

Both zero (ground state) and finite temperature




