From f69b5f0502b142ab13a9865e8215bfacd1786350 Mon Sep 17 00:00:00 2001 From: filippi-claudia <44236509+filippi-claudia@users.noreply.github.com> Date: Mon, 1 Feb 2021 21:56:01 +0100 Subject: [PATCH] Update QMC.org --- QMC.org | 58 +++++++++++++++++++-------------------------------------- 1 file changed, 19 insertions(+), 39 deletions(-) diff --git a/QMC.org b/QMC.org index 1e766b0..a0ab8f7 100644 --- a/QMC.org +++ b/QMC.org @@ -99,7 +99,7 @@ where the probability density is given by the square of the wave function: - $$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$ + $$ P(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|^2}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$ If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations: @@ -1397,7 +1397,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform step such that the acceptance rate is close to 0.5 is a good compromise for the current problem. - NOTE: below, we use the symbol dt to denote dL since we will use + NOTE: below, we use the symbol $\delta t$ to denote $\delta L$ since we will use the same variable later on to store a time step. @@ -1762,8 +1762,7 @@ end subroutine random_gauss \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi$ Evaluate $\Psi$ and $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$ at the new position - 2) Compute the ratio $A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} - {T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}$ + 2) Compute the ratio $A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}$ 3) Draw a uniform random number $v \in [0,1]$ 4) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ 5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ @@ -2086,7 +2085,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = (\hat{H} -E_{\rm ref}) \Psi(\mathbf{r},t)\,. \] - where we introduced a shift in the energy, $E_{\rm ref}$, which will come useful below. + where we introduced a shift in the energy, $E_{\rm ref}$, for reasons which will become apparent below. We can expand a given starting wave function, $\Psi(\mathbf{r},0)$, in the basis of the eigenstates of the time-independent Hamiltonian, $\Phi_k$, with energies $E_k$: @@ -2108,12 +2107,12 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis -\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = (\hat{H} -E_{\rm ref}) \psi(\mathbf{r}, \tau) \] - where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,t)$ + where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,\tau)$ and \begin{eqnarray*} - \psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -(E_k-E_{\rm ref})\, \tau) \phi_k(\mathbf{r})\\ - &=& \exp(-(E_0-E_{\rm ref})\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \phi_k(\mathbf{r})\,. + \psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -(E_k-E_{\rm ref})\, \tau) \Phi_k(\mathbf{r})\\ + &=& \exp(-(E_0-E_{\rm ref})\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \Phi_k(\mathbf{r})\,. \end{eqnarray*} For large positive values of $\tau$, $\psi$ is dominated by the @@ -2164,8 +2163,8 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis can be simulated by creating or destroying particles over time (a so-called branching process). - /Diffusion Monte Carlo/ (DMC) consists in obtaining the ground state of a - system by simulating the Schrödinger equation in imaginary time, by + In /Diffusion Monte Carlo/ (DMC), one onbtains the ground state of a + system by simulating the Schrödinger equation in imaginary time via the combination of a diffusion process and a branching process. We note that the ground-state wave function of a Fermionic system is @@ -2184,7 +2183,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis ** Importance sampling In a molecular system, the potential is far from being constant - and diverges at inter-particle coalescence points. Hence, when the + and, in fact, diverges at the inter-particle coalescence points. Hence, when the rate equation is simulated, it results in very large fluctuations in the numbers of particles, making the calculations impossible in practice. @@ -2209,7 +2208,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis The new "kinetic energy" can be simulated by the drift-diffusion scheme presented in the previous section (VMC). The new "potential" is the local energy, which has smaller fluctuations - when $\Psi_T$ gets closer to the exact wave function. It can be simulated by + when $\Psi_T$ gets closer to the exact wave function. This term can be simulated by changing the number of particles according to $\exp\left[ -\delta t\, \left(E_L(\mathbf{r}) - E_{\rm ref}\right)\right]$ where $E_{\rm ref}$ is the constant we had introduced above, which is adjusted to @@ -2321,8 +2320,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi$ Evaluate $\Psi$ and $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$ at the new position - 2) Compute the ratio $A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} - {T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}$ + 2) Compute the ratio $A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}$ 3) Draw a uniform random number $v \in [0,1]$ 4) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ 5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ @@ -2335,36 +2333,18 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis - You estimate the energy as \begin{eqnarray*} - E = \frac{\sum_{i=1}{N_{\rm MC}} E_L(\mathbf{r}_i) W(\mathbf{r}_i, i\delta t)}{\sum_{i=1}{N_{\rm MC}} W(\mathbf{r}_i, i\delta t)} - \end{eqnarray} + E = \frac{\sum_{k=1}{N_{\rm MC}} E_L(\mathbf{r}_k) W(\mathbf{r}_k, k\delta t)}{\sum_{k=1}{N_{\rm MC}} W(\mathbf{r}_k, k\delta t)} + \end{eqnarray*} - The result will be affected by a time-step error (the finite size of $\delta t$) and one has in principle to extrapolate to the limit $\delta t \rightarrow 0$. This amounts to fitting - the energy computed for multiple values of $\delta t$. - - The accept/reject step (steps 2-5 in the algorithm) is not in principle needed for the correctness of - the DMC algorithm. However, its use reduces si + the energy computed for multiple values of $\delta t$. + Here, you will be using a small enough time-step and you should not worry about the extrapolation. + - The accept/reject step (steps 2-5 in the algorithm) is in principle not needed for the correctness of + the DMC algorithm. However, its use reduces significantly the time-step error. - - - - - The wave function becomes - - \[ - \psi(\mathbf{r},\tau) = \Psi_T(\mathbf{r}) W(\mathbf{r},\tau) - \] - - and the expression of the fixed-node DMC energy is - - \begin{eqnarray*} - E(\tau) & = & \frac{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}} - {\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) d\mathbf{r}} \\ - & = & \frac{\int \left[ \Psi_T(\mathbf{r}) \right]^2 W(\mathbf{r},\tau) E_L(\mathbf{r}) d\mathbf{r}} - {\int \left[ \Psi_T(\mathbf{r}) \right]^2 W(\mathbf{r},\tau) d\mathbf{r}} \\ - \end{eqnarray*} - - This algorithm is less stable than the branching algorithm: it + PDMC algorithm is less stable than the branching algorithm: it requires to have a value of $E_\text{ref}$ which is close to the fixed-node energy, and a good trial wave function. Its big advantage is that it is very easy to program starting from a VMC